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Abstract

A finite family of subsets of a finite set is said to be evolutionary if its members
can be ordered so that each subset except the first has an element in the union of the
previous subsets and also an element not in that union. The study of evolutionary families
is motivated by a conjecture of Naddef and Pulleyblank concerning ear decompositions
of 1-extendable graphs. The present paper gives some sufficient conditions for a family
to be evolutionary.
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1 Introduction

The motivation for the concept of an evolutionary family of sets lies in a conjecture of Naddef
and Pulleyblank [5]. This conjecture has recently been proved by Carvalho, Lucchesi and
Murty [2]. In order to explain this theorem, we need several definitions concerning 1-factors
of graphs. We adopt the terminology and notation found in [1]. In this paper, graphs will be
assumed to be finite and to have no loops or multiple edges. A1-factor in such a graphG is
a setF of edges such that|F ∩ ∂v| = 1 for eachv ∈ V G. A graph is1-extendableif for
each edgee there is a 1-factor containinge. An alternating circuit is a circuit which is the
sum (symmetric difference) of two 1-factors. A setS of alternating circuits isconsanguineous
(with respect) to a 1-factorF if each circuit inS has half its edges inF . Note that ifG is
a connected 1-extendable graph with more than one edge, then every edge ofG belongs to
an alternating circuit. The alternating circuits span a subspace of the cycle space ofG. This
space is called thealternating space, and is denoted byA(G).

Now letH be a subgraph of a graphG. An earof G (with respect toH) is a path inG, of
odd length, joining vertices ofH but having no edges or internal vertices belonging toH. Let
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S be a set ofn vertex-disjoint ears ofG with respect toH. If each vertex and edge ofG is in
H or a member ofS, then we say thatG is obtained fromH by ann-ear addition.

Let G be a 1-extendable graph. Anear decompositionof G of lengthn is a sequence
(G0, G1, . . . , Gn) of graphs such that the following conditions hold:

1. G0 consists of an edge ofG, together with its ends;

2. Gn = G;

3. for eachi > 0 the graphGi is 1-extendable and obtained fromGi−1 by the addition of a
set of vertex-disjoint ears.

It is well known that there is a unique 1-factorF of G such thatF ∩ EGi is a 1-factor ofGi

for eachi. We say thatF is associatedwith the decomposition. For eachi > 0 and each ear
of Gi with respect toGi−1 there exists an alternating circuit ofGi that includes the ear and is
consanguineous toF ∩Gi.

The following theorem has been proved by Lov´asz and Plummer [4] [p. 182].

Theorem 1 A 1-extendable graph has an ear decomposition(G0, G1, . . . , Gn) in which, for
eachi > 0, the graphGi is obtained fromGi−1 by a 1- or 2-ear addition.

In view of Theorem 1, let us define an ear decomposition of a 1-extendable graph to be
permissibleif each graph in the decomposition (other than the first) is obtained from the pre-
ceding one by the addition of no more than two ears, and no 2-ear addition can be replaced by
a pair of 1-ear additions. The latter clause shows that in the case of a 2-ear addition there is no
alternating circuit which is consanguineous to the associated 1-factor and includes just one of
the ears.

One question addressed by Naddef and Pulleyblank [5] concerns the smallest number of
2-ear additions in a permissible decomposition. It is easy to obtain a lower bound for this
number. Indeed, if we denote byC(G) the cycle space of a graphG, then the number of ears
added in the course of the decomposition isdim C(G), for if G is obtained from a subgraphH
by ann-ear addition then

dim C(G)− dim C(H) = n.

On the other hand,
dimA(G)− dimA(H) ≥ 1.

These results imply that a lower bound for the number of 2-ear additions in a permissible ear
decomposition is given bydim C(G) − dimA(G). The theorem of Carvalho, Lucchesi and
Murty alluded to earlier is that this lower bound can always be met.

Theorem 2 [2] The minimum number of 2-ear additions in a permissible ear decomposition
of a 1-extendable graphG is dim C(G)− dimA(G).
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For convenience we shall call the numberdim C(G)− dimA(G) theNaddef-Pulleyblank
bound.

Let (G0, G1, . . . , Gn) be an ear decomposition of a 1-extendable graphG. If for each
i > 0 we select an alternating circuit which is consanguineous to the associated 1-factor and
includes the ear or ears ofGi with respect toGi−1, then the resulting set of alternating circuits
is linearly independent. In fact, if the decomposition is permissible and the number of 2-ear
additions isdim C(G) − dimA(G), then these alternating circuits supply a basis forA(G).
ThusdimA(G) = n. Let us denote this basis by(A1, A2, . . . , An), where for eachi we have
Ai ⊆ EGi. Note that for eachi > 0 we have the following properties:

1. Ai ∩ EGi−1 6= ∅;

2. Ai ∩ (EG− EGi−1) 6= ∅.

Roughly speaking, these conditions mean thatAi contains something old (in other words, in
EGi−1) and something new (inEG− EGi−1). They motivate the following definition.

Definition 1 LetS be a finite family of subsets of a finite setS. We say thatS is evolutionary
if there exists an ordering(S1, S2, . . . , Sn) of the sets inS such that for eachi > 1 we have

Si ∩
i−1⋃
j=1

Sj 6= ∅ (1)

and

Si ∩ (S −
i−1⋃
j=1

Sj) 6= ∅. (2)

The ordering(S1, S2, . . . , Sn) is also said to beevolutionary.

For example, the family{{1}, {1, 2}, {2, 3}} has evolutionary ordering

({1}, {1, 2}, {2, 3}),

but the family{{1}, {2}, {1, 2, 3}} is not evolutionary.
Thus if a 1-extendable graphG has a permissible ear decomposition with the number of

2-ear additions meeting the Naddef-Pulleyblank bound, then its alternating space has a con-
sanguineous evolutionary basis. Conversely, suppose thatA(G) has such a basis, with evolu-
tionary ordering(A1, A2, . . . , An). We propose to construct a permissible ear decomposition
of G with the number of 2-ear additions meeting the Naddef-Pulleyblank bound. First, define
G0 = G[{e}] for any e ∈ A1, and for eachi > 0 defineGi = G[∪ij=1Aj ]. Since the basis
of A(G) is evolutionary, it follows that(G0, G1, . . . , Gn) is an ear decomposition ofG. As
dimA(G) = n, there is no longer ear decomposition ofG. In fact, (G0, G1, . . . , Gi) is a
longest ear decomposition ofGi, for eachi > 0. But consanguinity implies that ifGi is ob-
tained fromGi−1 by the addition of more than two ears, then by the proof of Theorem 1 in [3]
there is a longer ear decomposition ofGi. This contradiction shows that the ear decomposition
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of G is permissible. That the number of 2-ear additions meets the Naddef-Pulleyblank bound
follows from the fact thatdimA(G) = n. We have therefore established that the existence, in
a 1-extendable graphG, of a permissible ear decomposition such that the number of 2-ear ad-
ditions meets the Naddef-Pulleyblank bound is equivalent to the existence of a consanguineous
evolutionary basis forA(G).

In this connection the following theorem is also of interest.

Theorem 3 Any finite-dimensional vector space overZZ2 (with addition given by symmetric
difference) has an evolutionary basis.

Proof: Let {S1, S2, . . . , Sn} be a basis for a finite-dimensional vector space overZZ2. We
may assume thatS1 has an element that does not appear inSi for anyi > 1, for otherwise we
may chooses ∈ S1 and replaceSi by Si + S1 for eachi > 1 such thats ∈ Si. Then resulting
vectors are linearly independent. Proceeding inductively, we may assume that

Si 6⊆
n⋃

j=i+1

Sj (3)

for eachi < n. We may also assume thatSn ∩ Si 6= ∅ for all i < n, for otherwise we may
replaceSi by Si + Sn. Note again that then resulting vectors are linearly independent, and
moreover that they satisfy (3). The required evolutionary ordering for the resulting basis is
(Sn, Sn−1, . . . , S1). 2

In this paper we therefore propose to study evolutionary families. In particular we concen-
trate on sufficient conditions for a family to be evolutionary.

2 Evolutionary Families

Let S be a finite family of subsets of a finite setS. We derive necessary conditions and suffi-
cient conditions forS to be evolutionary. TriviallyS is evolutionary if|S| ≤ 1, but if |S| > 1
and∅ ∈ S thenS is not evolutionary. Accordingly we shall assume henceforth that|S| > 1
and that the elements ofS are non-empty. Clearly the components of any evolutionary order-
ing must be distinct. Hence we may also assume thatS has no repeated elements (elements
of multiplicity greater than 1). We may therefore refer toS as a set, rather than as a family,
though we sometimes retain the latter terminology for variety. A further observation is that at
most one element of an evolutionary family can be of cardinality 1, and we may assume that
S satisfies this condition also.

Let S be a finite set of subsets of a finite set. Suppose that
⋃ T ∩ ⋃(S − T ) 6= ∅ for each

nonempty proper subsetT of S . Then we say thatS is connected. Connectedness is clearly
another requirement of an evolutionary family. The next result is slightly less trivial.

Theorem 4 Let S be a finite connected family of sets. Suppose that each member ofS has
cardinality no greater than 2. ThenS is evolutionary if and only if it is linearly independent.
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Proof: We representS by a simple graphG whose vertices are the members of
⋃S,

distinct vertices being adjacent if and only if both are found in a single member ofS. If a
(unique) member ofS is of cardinality 1, then its unique element is considered to be a distin-
guished vertex ofG. The connectedness ofS implies that ofG. The familyS is evolutionary
if and only if there is a sequence(G1, G2, . . . , Gn) of subgraphs ofG satisfying the following
conditions:

• G1 consists of a single vertex ofG (the distinguished vertex, if possible);

• for eachi > 1 the graphGi has an edgeei, joining a vertex of∪i−1
j=1V Gi to a vertex of

V G−∪i−1
j=1V Gi, such thatEGi = EGi−1 ∪ {ei} andV Gi = V G[EGi−1 ∪ {ei}];

• Gn = G.

SinceG is connected, such a sequence exists if and only ifG is a tree. This condition is
equivalent to a lack of circuits, and therefore to the linear independence ofS. 2

Further progress can be made by the introduction of the concepts of backward evolutionary
families and forward evolutionary families. An ordering of a finite familyS of subsets of a
finite setS is backward evolutionaryor forward evolutionaryif it satisfies condition (1) or
condition (2), respectively, of Definition 1. The family isbackward evolutionaryor forward
evolutionaryif it has a backward or forward evolutionary ordering, respectively. Backward
evolutionary families and forward evolutionary families can both be characterised.

Theorem 5 A finite family of subsets of a finite set is backward evolutionary if and only if it
is connected.

Proof: Let S be a finite family of subsets of a finite setS. Suppose first thatS is not
connected. Then there exists a nonempty proper subsetT of S such that

⋃T ∩⋃(S−T ) = ∅.
Let (S1, S2, . . . , Sn) be an ordering ofS. Without loss of generality we may suppose that
S1 ∈ T . SinceS − T 6= ∅, there exists a smallest integeri > 1 such thatSi /∈ T . Then
Si ∩

⋃i−1
j=1 Sj = ∅, so that the ordering, and hence the family, is not backward evolutionary.

If S is connected, we construct a backward evolutionary ordering inductively. First, choose
any elementS1 of S. Next, assume that(S1, S2, . . . , Si) is a backward evolutionary or-
dering of a nonempty proper subfamily ofS. SinceS is connected, there existsSi+1 ∈
S − {S1, S2, . . . , Si} such that

Si+1 ∩
i⋃

j=1

Sj 6= ∅.

Then(S1, S2, . . . , Si+1) is a backward evolutionary ordering of a subfamily ofS. HenceS is
backward evolutionary, by induction.2

Theorem 6 A finite familyS of subsets of a finite setS is forward evolutionary if and only if
each nonempty subfamilyT of S contains an elementT such that

T 6⊆
⋃

(T − {T}).
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Proof: Suppose there is a nonempty subfamilyT of S such that eachT ∈ T is a subset of⋃
(T − {T}). Let (S1, S2, . . . , Sn) be an ordering ofS. There is a largest integeri such that

Si ∈ T . SinceSi ⊆
⋃

(T − {Si}), we haveSi ∩ (S − ⋃i−1
j=1 Sj) = ∅, so that the ordering, and

hence the family, is not forward evolutionary.
Conversely, suppose that every nonempty subfamilyT of S contains a setT such that

T 6⊆ ⋃
(T − {T}). We construct a forward evolutionary ordering inductively. Letn =

|S|, and choose an elementSn of S such thatSn 6⊆
⋃

(S − {Sn}). Next, suppose that
(Sn−i, Sn−i+1, . . . , Sn) is an ordering of a nonempty proper subfamilyT of S and satisfies
the condition that

Sj 6⊆
⋃

(S − {Sj, Sj+1, . . . , Sn}) (4)

for eachj such thatn− i ≤ j ≤ n. By hypothesis there existsSn−i−1 ∈ S − T such that

Sn−i−1 6⊆
⋃

(S − {Sn−i−1, Sn−i, . . . , Sn}).

We now have (4) holding for eachj such thatn− i− 1 ≤ j ≤ n. Proceeding inductively, we
obtain a forward evolutionary ordering(S1, S2, . . . , Sn). 2

Unfortunately a family may be both forward and backward evolutionary without being
evolutionary. For example, the family

{{1}, {2, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}}

has forward evolutionary ordering

({1}, {2, 5}, {1, 2, 3, 5}, {1, 2, 3, 4})

and backward evolutionary ordering

({1}, {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 5})

but is not evolutionary.
A family is said to bepairwise adjacentif any two of its members meet. Clearly any

ordering of a pairwise adjacent family is backward evolutionary. Consequently a pairwise
adjacent family is evolutionary if and only if it is forward evolutionary.

Let S be a finite set andS a family of subsets ofS whose union isS. For eachs ∈ S we
defineiS(s) to be the collection of elements ofS containings. ThusiS is a function fromS
into P(S), the power set ofS. Note also thatiS(s) 6= ∅ for eachs ∈ S, since

⋃S = S. We
defineIS(S) = |iS [S]|. If S is evolutionary then there must be ans ∈ S such that|iS(s)| = 1,
as the last set in an evolutionary ordering must contain such ans. In other words, there exists
a unique setX ∈ S such thats ∈ X. Thus{X} ∈ iS [S]. We infer that ifm is the number of
setsT in S for which{T} ∈ iS [S] thenm > 0.

Theorem 7 LetS be a finite set andS a family ofn subsets ofS whose union isS. Letm be
the number of setsT ∈ S such that{T} ∈ iS [S].

(a) If m = n andIS(S) ≥ 2n − 2n−2, thenS is evolutionary.
(b) If 0 < m < n andIS(S) ≥ 2n −min{2n−2, (n−m)2m}, thenS is evolutionary.



THE ELECTRONIC JOURNAL OF COMBINATORICS7 (2000), #R10 7

Proof: Note first that ifIS(S) ≥ 2n − 2n−2 thenS is pairwise adjacent. Indeed, choose
X, Y ∈ S. Of the2n− 1 nonempty subsets ofS, 2n−2 contain bothX andY . The hypothesis
concerningIS(S) shows that at least one of these is the image underiS of somes ∈ S. In
other words,X ∈ iS(s) andY ∈ iS(s). It follows thats ∈ X ∩ Y . HenceS is pairwise
adjacent. It remains only to show thatS is forward evolutionary under the hypotheses of the
theorem.

(a) If m = n then any ordering ofS is forward evolutionary.
(b) Suppose that0 < m < n. Let T be a nonempty subfamily ofS. According to

Theorem 6 we must findT ∈ T such thatT 6⊆ ⋃
(T − {T}). Certainly an elementT of T

satisfies this property if there existss ∈ T such that|iT (s)| = 1, for thens /∈ ⋃(T − {T}).
We may therefore assume that|iT (s)| ≥ 2 for eachs ∈ ⋃ T . ThusT contains none of the
m setsX ∈ S for which {X} ∈ iS [S]. It follows that|T | = n − r for some integerr such
thatm ≤ r < n. Since there are2r subfamilies ofS − T , there are(n − r)2r subfamilies
of S which contain exactly one element ofT . Therefore there are at least(n − m)2m such
subfamilies, as

(n− (r + 1))2r+1 − (n− r)2r = 2r(n− r − 2) ≥ 0

wheneverr ≤ n − 2. The hypothesis concerningIS(S) implies that at least one of these
subfamilies is the image underiS of somes ∈ S, for otherwise

IS(S) ≤ 2n − 1− (n−m)2m.

Thus there is a unique memberT of T containings. Hences /∈ ⋃(T − {T}), so thatT has
the required property.2

The following lemma enables us to derive a corollary of Theorem 7.

Lemma 1 LetS be a finite family{S1, S2, . . . , Sn} of subsets of a finite setS, and letR ⊆ S.
Let

S|R = {S1 ∩R, S2 ∩R, . . . , Sn ∩R}.
If

(S1 ∩R, S2 ∩R, . . . , Sn ∩R)

is an evolutionary ordering ofS|R, then(S1, S2, . . . , Sn) is an evolutionary ordering ofS.

Proof: The result is an immediate consequence of the inclusions

Si ∩R ∩
i−1⋃
j=1

(Sj ∩R) ⊆ Si ∩
i−1⋃
j=1

Sj

and

Si ∩R ∩ (R−
i−1⋃
j=1

(Sj ∩R)) ⊆ Si ∩ (S −
i−1⋃
j=1

Sj)

for all i > 1. 2
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Theorem 8 LetS be a finite set andS a family ofn subsets ofS whose union isS. If n ≥ 3
andIS(S) ≥ 2n − n thenS is evolutionary.

Proof: Suppose first thatn ≥ 4. In the notation of Theorem 7 we then havem > 0 (since
n of the 2n − 1 nonempty subsets ofS are of cardinality 1),2n−2 ≥ n and2m(n − m) ≥
2(n− 1) > n if m < n. In this case the theorem follows immediately from Theorem 7.

Suppose therefore thatn = 3. We must show that ifIS(S) ≥ 5 thenS is evolutionary. Let
S = {X, Y, Z}. Since

⋃S = S we infer thatiS(s) 6= ∅ for eachs ∈ S. In other words, the
members ofiS [S] account for at least five of the seven nonempty subsets ofS. Without losing
generality we may assume that the complement inP(S) − {∅} of iS [S] is a subset of one of
the following:

(a){{X}, {Y }},
(b) {{X}, {X, Y }},
(c) {{X}, {Y, Z}},
(d) {{X}, {X, Y, Z}},
(e){{X, Y }, {Y, Z}},
(f) {{X, Y }, {X, Y, Z}}.
In cases (a) - (c) and (e) we have{{Z}, {X,Z}, {X, Y, Z}} ⊂ iS [S] and so we may

choose:
a ∈ Z − (X ∪ Y ),

b ∈ (X ∩ Z)− Y,
c ∈ X ∩ Y ∩ Z.

Thus ifR = {a, b, c} we find that

({c}, {b, c}, {a, b, c})

is an evolutionary ordering of the family{X ∩R, Y ∩R,Z ∩R}. Similarly in the remaining
cases we have{{Y }, {Y, Z}, {X,Z}} ⊂ iS [S] and may choose:

a ∈ Y − (X ∪ Z),

b ∈ (Y ∩ Z)−X,
c ∈ (X ∩ Z)− Y.

Once again, puttingR = {a, b, c} we obtain the evolutionary ordering

({c}, {b, c}, {a, b})

of the family{X ∩R, Y ∩R,Z ∩R}. In all cases an appeal to Lemma 1 therefore completes
the proof.2

Theorem 8 does not hold forn = 2. For example, letS = {x, y} andS = {{x}, {y}},
which is not evolutionary. HoweveriS(x) = {{x}} and iS(y) = {{y}}. HenceiS [S] =
{{{x}}, {{y}}}, so thatIS(S) = 2.
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Observe also that Theorem 8 is the best possible result of this sort. Indeed, ifIS(S) =
2n − n− 1 then it may be thatm = 0. If so,S cannot be evolutionary.

As an example, we use Theorem 8 to confirm that the Petersen graph satisfies the theorem
of Carvalho, Lucchesi and Murty. LetP denote the Petersen graph, takeS = EP and letS
be a basis forA(P ). Thus|S| = 4. We can verify thatS is evolutionary by showing that
IS(S) ≥ 12. In fact it is easy to show thatIS(S) = |EP | = 15. Observe that for any two
distinct edgese andf there is an alternating circuit that containse but notf . (This fact is easy
to check, as any alternating circuit passing throughe misses some edges at a distance of 1, 2
and 3 frome.) Consequently distinct edges have distinct images underiS , and so this function
is injective. HenceIS(S) = |EP |, as claimed. It follows by Theorem 8 that any basis for
A(P ) is evolutionary. ThusP indeed satisfies Theorem 2.

3 Dendritic Families

In this section we introduce a special kind of family which we describe as dendritic, and we
show that this property is sufficient for the family to be evolutionary.

Let S be a finite family of subsets of a finite setS, and leta, b ∈ S. (Recall our earlier
assumption that∅ /∈ S.) An evolutionary pathin S betweena andb is defined as a minimal
connected subset ofS whose union containsa andb.

Theorem 9 A finite familyS of subsets of a finite setS whose union isS is connected if and
only if there is an evolutionary path inS between any two members ofS.

Proof: If S is a finite connected family of subsets of a finite setS whose union isS and
a, b ∈ S, then there is certainly an evolutionary path inS betweena andb.

Conversely let us suppose thatS is a finite family of subsets of a finite setS whose union
is S and that there exists an evolutionary path inS between any two members ofS. LetA
be a nonempty proper subset ofS, and suppose that

⋃A ∩ ⋃(S − A) = ∅. Choosea ∈ ⋃A
andb ∈ ⋃(S − A). By hypothesis there is an evolutionary pathP in S betweena andb. Let
T = P ∩ A. Note thatT 6= ∅, sincea belongs to a set inA and therefore not to a set in
S − A. Similarly T 6= P. SinceP is connected,

⋃T ∩ ⋃(P − T ) 6= ∅. But
⋃ T ⊆ ⋃A and⋃

(P − T ) ⊆ ⋃(S −A), and so we reach the contradiction that
⋃A∩⋃(S −A) 6= ∅. Hence

S is connected.2

Lemma 2 Let S be a finite family of subsets of a finite setS, and leta, b, c ∈ S. If there
exist an evolutionary path inS betweena andb and another betweenb andc, then there is an
evolutionary path inS betweena andc.

Proof: Let P be an evolutionary path betweena andb and letQ be an evolutionary path
betweenb andc. We may assume thatc /∈ ⋃P, for otherwise the lemma holds. LetT = P∪Q.
It suffices to proveT connected. Choose a nonempty proper subsetA of T . LetR = P∩A. If
∅ ⊂ R ⊂ P, then the connectedness ofP implies that

⋃R∩⋃(P −R) 6= ∅. But
⋃R ⊆ ⋃A
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sinceR ⊆ A, and similarly
⋃

(P −R) ⊆ ⋃(T −A). Hence
⋃A∩⋃(T −A) 6= ∅. Similarly⋃A ∩ ⋃(T − A) 6= ∅ if Q ∩A is a nonempty proper subset ofQ. We may therefore assume

without loss of generality thatA = P. Then eitherb ∈ ⋃A ∩ ⋃(T − A) or b belongs to a
member ofP ∩Q. In the latter case we have∅ ⊂ Q ∩ P ⊂ Q sincec ∈ ⋃Q− ⋃P. In both
cases we conclude thatT is connected.2

We say that a finite familyD of subsets of a finite setS is dendritic if the following
conditions hold:

1. |D| > 1 for eachD ∈ D;

2. any two distinct elements of
⋃D have a unique evolutionary path inD between them.

Theorem 10 LetD be a member of a dendritic familyD. ThenD has an evolutionary order-
ing whose first component isD.

Proof: Let E be a largest subset ofD that has an evolutionary ordering whose first com-
ponent isD. We must show thatE = D.

Suppose thatE ⊂ D. By condition 2 and Theorem 9 we see thatD is connected. Therefore⋃ E ∩ ⋃(D − E) 6= ∅. Hence there exists a setE ∈ D − E which meets a setA ∈ E . Thus
we may choosea ∈ A ∩ E. Suppose thatE − {a}, which is nonempty by condition 1, also
meets a setB ∈ E , and chooseb ∈ B ∩ (E − {a}). Note that{E} is an evolutionary path
betweena andb. But sinceE is evolutionary and therefore connected, some subset ofE is
also an evolutionary path betweena andb. As these evolutionary paths are distinct, we have
a contradiction to condition 2. ThereforeE − {a} does not meet any set inE . We deduce
thatE ∪ {E} is an evolutionary family. This contradiction to the choice ofE completes the
proof.2

A family
A = {A1, A2, . . . , An}

is called anancestorof a family

S = {S1, S2, . . . , Sn}

if ∅ ⊂ Ai ⊆ Si for eachi. For eachi we say thatAi is theancestorof Si. If Ai ⊂ Si for at
least onei, then the ancestorA is proper. A family is said to beradical with respect to a given
property if no proper ancestor also satisfies the property.

Theorem 11 Let S be a backward and forward evolutionary family of subsets of a finite set
S. Suppose that each set inS has cardinality greater than 1. ThenS has a dendritic ancestor.

Proof: If |S| = 1 thenS is dendritic. We may therefore assume that|S| > 1 and that the
theorem holds for all forward and backward evolutionary families, of cardinality less than|S|,
whose elements are sets of cardinality greater than 1. We must find a dendritic ancestor forS.

SinceS is forward evolutionary, it has a forward evolutionary ordering whose last compo-
nentE necessarily contains an element belonging to no set inS − {E}. Choose a backward
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evolutionary ordering forS in whichE appears as late as possible. Then the setR of elements
of S appearing beforeE constitutes a maximal connected subfamily ofS −{E}. CertainlyR
is backward evolutionary. SinceS is forward evolutionary, so isR. As |R| < |S| it follows
thatR has a dendritic ancestor,C.

SinceS, being backward evolutionary, is connected butR is a maximal connected sub-
family of S − {E}, it follows that

⋃R∩ E 6= ∅. (Suppose
⋃R ∩ E = ∅. SinceR ⊂ S and

S is connected, there must existS ∈ S −R such that
⋃R∩ S 6= ∅. ThusS 6= E. Moreover

R ∪ {S} is backward evolutionary and hence a connected subfamily ofS − {E}, in contra-
diction to the maximality ofR.) Choosee ∈ ⋃R ∩ E, and defineE′ = (E − ⋃R) ∪ {e}.
ThusE′ ∩⋃R 6= ∅, and|E′| > 1 sinceE has an element belonging to no other member ofS.
MoreoverE′ ⊆ E.

Let S ′ = (S − {E}) ∪ {E′}. SinceE′ ∩ ⋃R 6= ∅ andE − E′ ⊂ ⋃R, it follows that
S ′ has a backward evolutionary ordering obtained by replacingE with E′, and is therefore
connected.

We show next thatS ′ −R is connected. Choose a nonempty proper subsetT of S ′ −R.
Without loss of generality we may assume thatE′ /∈ T . We must show that⋃

T ∩
⋃

(S ′ − (R∪ T )) 6= ∅.

SinceS ′ is connected, we may choosex ∈ ⋃T ∩ ⋃(S ′ − T ). If x /∈ ⋃R thenx ∈ ⋃ T ∩⋃
(S ′ − (R ∪ T )), as required. Suppose therefore thatx ∈ ⋃R. Sincex ∈ ⋃ T , we also

havex ∈ ⋃(S ′ −R), and it suffices to show thatx ∈ ⋃(S ′ − (R∪ T )). ButR is a maximal
connected subfamily ofS ′ − {E′}, and so

⋃R ∩ ⋃(S ′ − R) ⊆ E′. Hencex ∈ E′, so that
x ∈ ⋃(S ′ − (R∪ T )), as required.

ThusS ′ − R is backward evolutionary. It is also forward evolutionary, forS − R has
a forward evolutionary ordering with last componentE sinceS − R ⊂ S, and a forward
evolutionary ordering forS ′ − R is obtained by replacingE with E′. Since|E′| > 1 and
|S ′ − R| = |S − R| < |S|, we may apply the inductive hypothesis to obtain a dendritic
ancestorD of S ′ −R. Note also that⋃

R∩
⋃

(S ′ −R) = {e}.

We now introduce three cases, defining an ancestorA of S in each.
Case I: Ife ∈ ⋃ C ∩ ⋃D, let C′ = C,D′ = D andA = C′ ∪ D′.
Case II: Suppose that only one of

⋃C,⋃D containse. Without loss of generality suppose
thate ∈ ⋃D. ChooseC ∈ C such thatC is the ancestor of a member ofR that containse,
and defineC ′ = C ∪ {e} andC′ = (C − {C}) ∪ {C ′}. LetD′ = D andA = C′ ∪ D′.

Case III: Suppose that neither
⋃C nor

⋃D containse. ChooseC ∈ C such thatC is the
ancestor of a member ofR that containse, and defineC ′ = C∪{e} andC′ = (C−{C})∪{C ′}.
Similarly chooseD ∈ D such thatD is the ancestor of a member ofS ′ −R that containse,
and defineD′ = D ∪ {e} andD′ = (D − {D}) ∪ {D′}. LetA = C′ ∪ D′.

In every caseA is an ancestor ofS whose elements are sets of cardinality greater than 1.
It remains to prove that any two distinct elementsa andb in

⋃A have a unique evolutionary
path inA between them. Again we divide the argument into cases.
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Case I: Suppose first that{a, b} ⊆ ⋃ C. Then there is a unique evolutionary pathP in C
betweena andb. If C ∈ P then we defineP ′ = (P − {C}) ∪ {C ′}; otherwise letP ′ = P.
ThenP ′ is an evolutionary path inC′ betweena andb. (Suppose that some proper subsetQ
of P ′ were to satisfy the conditions thata ∈ ⋃Q, b ∈ ⋃Q andQ is backward evolutionary.
The minimality ofP would imply thatC ′ ∈ Q, so thatC ′ ∈ P ′ andC ∈ P. But then
(Q − {C ′}) ∪ {C} would be backward evolutionary sincee /∈ ⋃

(Q − {C ′}). This result
would contradict the minimality ofP.)

Now letQ′ be any evolutionary path inA betweena andb. Since
⋃D′ ∩ ⋃C′ = {e}, we

haveQ′ ⊆ C′ by the minimality ofQ′. If C ′ /∈ P ′∪Q′ thenP ′ = Q′ = P by the uniqueness of
P. Without loss of generality we may therefore assume thatC ′ ∈ Q′. It follows thatC /∈ C′.
Moreover(Q′ − {C ′}) ∪ {C} is backward evolutionary sincee /∈ ⋃(Q′ − {C ′}). Suppose
some proper subsetT of (Q′ − {C ′}) ∪ {C} were to satisfy the conditions thata ∈ ⋃ T ,
b ∈ ⋃ T andT is backward evolutionary. The minimality ofQ′ would imply thatC ∈ T , but
then(T − {C}) ∪ {C ′} would be backward evolutionary, in contradiction to the minimality
of Q′. We infer that(Q′ − {C ′}) ∪ {C} is an evolutionary path betweena and b.Hence
(Q′−{C ′})∪{C} = P by the uniqueness ofP, so thatQ′ = (P−{C})∪{C ′}. SinceC /∈ C′
we haveP ′ 6= P, and soC ′ ∈ P ′ by the uniqueness ofP. ThusP ′ = (P−{C})∪{C ′} = Q′.
HenceP ′ is unique, as required.

The argument is similar if{a, b} ⊆ ⋃D.
Case II: Next, suppose thata ∈ ⋃ C andb = e. We may assume thate ∈ C ′, for otherwise

Case I applies. Since|C| > 1, there existsc ∈ C − {a}. There is a unique evolutionary
pathP in C betweena andc, andc belongs to a unique setP in P by the minimality ofP.
DefineP ′ = (P − {C}) ∪ {C ′} if P = C, and letP ′ = P ∪ {C ′} otherwise. ThenP ′
is an evolutionary path inC′ betweena ande. (Suppose that some proper subsetQ of P ′
were to satisfy the conditions thata ∈ ⋃Q, e ∈ ⋃Q andQ is backward evolutionary. Then
C ′ ∈ Q sincee ∈ ⋃Q, so that(Q − {C ′}) ∪ {C} would be backward evolutionary. This
result would contradict the minimality ofP if C ∈ P, and the uniqueness ofP otherwise
since|Q| ≤ |P ′| − 1 = |P|.)

Now letQ′ be any evolutionary path inA betweena ande. ThenQ′ ⊆ C′ by the minimality
of Q′. MoreoverQ′ − {C ′} and(Q′ − {C ′}) ∪ {C} are backward evolutionary. In fact, if
c ∈ ⋃(Q′−{C ′}) then it follows from the minimality ofQ′ thatQ′−{C ′} is an evolutionary
path inC betweena and c. In this caseQ′ − {C ′} = P by the uniqueness ofP, so that
Q′ = P∪{C ′}. Suppose therefore thatc /∈ ⋃(Q′−{C ′}). Then(T −{C})∪{C ′} is backward
evolutionary for any backward evolutionary, proper subsetT of (Q′ − {C ′}) ∪ {C} such that
{a, c} ⊆ ⋃ T . This contradiction to the minimality ofQ′ shows that(Q′ − {C ′})∪ {C} is an
evolutionary path inC betweena andc. Hence(Q′ − {C ′})∪ {C} = P by the uniqueness of
P, so thatQ′ = (P − {C}) ∪ {C ′}. In both casesQ′ is unique.

The argument is similar ifa ∈ ⋃D andb = e.
Case III: Without loss of generality we may now assume thata ∈ ⋃ C − {e} and b ∈⋃D − {e}. By Case II there exist a unique evolutionary pathP in C′ betweena ande and a

unique evolutionary pathQ in D′ betweene andb. ThenP ∪ Q is the unique evolutionary
path inA betweena andb, since

⋃ C′ ∩ ⋃D′ = {e}.
We have now confirmed thatA is the required dendritic ancestor ofS. 2
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Corollary 1 Let S be a finite family which is radical with respect to the property of being
forward and backward evolutionary. Suppose also that each member ofS is of cardinality
greater than 1. ThenS is dendritic.

Proof: OtherwiseS has a dendritic ancestor, by Theorem 11. Being evolutionary by
Theorem 10, this ancestor contradicts the assumption thatS is radical.2

Corollary 2 Let S be a finite family of nonempty sets that is forward and backward evolu-
tionary and contains at most one set of cardinality 1. ThenS has an evolutionary ancestor.

Proof: The corollary follows immediately if no set inS is of cardinality 1. In the remaining
case, letX be the set inS of cardinality 1, and letE = S − {X} andX = {x}. ThenE is
forward and backward evolutionary and each set inE is of cardinality greater than 1. Thus, by
Theorem 11,E has a dendritic ancestorA.

Case I: Ifx ∈ ⋃A, then by Theorem 10 there is an evolutionary ordering ofA whose first
component containsx. It follows that{X} ∪ A is an evolutionary ancestor ofS.

Case II: Ifx /∈ ⋃A, then there is a setY in A which is a subset of a setS in S containing
x. DefineY ′ = Y ∪ {x} and letA′ = (A−{Y })∪ {Y ′}. ThenA′ is an ancestor ofS − {X}
with an evolutionary ordering whose first component isY ′. It follows thatA′ ∪ {X} is an
ancestor ofS with an evolutionary ordering whose first two components areX andY ′.2

For example, the family{{1}, {2, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}}, which we have shown to be
forward and backward evolutionary, has an ancestor with evolutionary ordering
({1}, {1, 2}, {2, 3}, {2, 5}).
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