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Abstract

Let Q be a monotone decreasing property of graphs G on n vertices. Erdős, Suen and Winkler [5]
introduced the following natural way of choosing a random maximal graph in Q: start with G the empty
graph on n vertices. Add edges to G one at a time, each time choosing uniformly from all e ∈ Gc

such that G + e ∈ Q. Stop when there are no such edges, so the graph G∞ reached is maximal in Q.
Erdős, Suen and Winkler asked how many edges the resulting graph typically has, giving good bounds
for Q = {bipartite graphs} and Q = {triangle free graphs}. We answer this question for C4-free graphs
and for K4-free graphs, by considering a related question about standard random graphs Gp ∈ G(n, p).

The main technique we use is the ‘step by step’ approach of [3]. We wish to show that Gp has a
certain property with high probability. For example, for K4 free graphs the property is that every ‘large’
set V of vertices contains a triangle not sharing an edge with any K4 in Gp. We would like to apply
a standard Martingale inequality, but the complicated dependence involved is not of the right form.
Instead we examine Gp one step at a time in such a way that the dependence on what has gone before
can be split into ‘positive’ and ‘negative’ parts, using the notions of up-sets and down-sets. The relatively
simple positive part is then estimated directly. The much more complicated negative part can simply be
ignored, as shown in [3].

1 Introduction

A property R of graphs on n vertices is called monotone increasing (monotone decreasing) if it is preserved
by the addition (deletion) of edges. Let V be a fixed set of n vertices, and let N =

(
n
2

)
. A standard random

graph process on V is a random sequence G̃ = (Gt)N0 of graphs on V , where Gt−1 ⊂ Gt, e(Gt) = t, and all
N ! such sequences are taken equally likely. A basic question in the theory of random graphs is when does a
monotone increasing property R arise in such a process. More precisely, one would like to know as much as
possible about the distribution of the hitting time τR(G̃), the minimum t such that Gt ∈ R (see, e.g., [1]).
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Here we shall consider monotone decreasing properties Q, and one could consider similarly the leaving time
σQ(G̃) = τQc(G̃)− 1, and the random graph G = GσQ(G̃) ∈ Q.

We wish to consider random maximal graphs in a monotone decreasing property Q. The maximal graphs
in Q are of interest both from the point of view of extremal combinatorics, and because they may provide a
relatively compact description of the entire property Q. Note that the random G ∈ Q described above does
satisfy G+ e /∈ Q for some edge e, but need not be a maximal element of Q.

At first sight the most natural measure on maximal G ∈ Q is the uniform one. Another natural possibility
would be taking the probability of G proportional to

(
N
e(G)

)−1
. However, both these measures are rather

intractable in general—generating a random sample from either seems difficult, as we do not know how many
G ∈ Q are maximal, or the distribution of the number of edges of such graphs.

In [5] Erdős, Suen and Winkler introduced a rather different measure on the set of maximal G ∈ Q. This
is also very natural, and is defined in terms of the ‘greedy algorithm’ for generating maximal G ∈ Q, and so
is easy to sample in practice. The procedure for constructing a random maximal G∞ ∈ Q with this measure
is as follows. Start with G the empty graph on n vertices. Add edges to G one by one, at each stage choosing
uniformly from among all edges e ∈ Gc such that G∪{e} ∈ Q. Stop when there are no such edges, i.e., when
the graph G∞ reached is a maximal graph in Q. From now on when we refer to a random maximal graph
from Q we are using this definition. Note that it is very different from any of the other models for random
graphs from Q described above.

In [5] Erdős, Suen and Winkler asked the general question of how many edges G∞ has on average. For
the case Q = {bipartite graphs} they gave a very precise answer, and for Q = {triangle free graphs} the
answer to within a logn factor. Here we give answers within powers of logn for the cases of C4-free graphs
and K4-free graphs, using the ‘step by step’ methods of [3].

For convenience we shall not work with the process above, but with an equivalent one, G̃Q = (GQ(t))N0 ,
also used in [5]. Fix a set V of n vertices. Let N =

(
n
2

)
, and let e1, . . . , eN be all elements of V (2), listed in

a uniformly chosen random order. Let GQ(0) = ∅. For 1 ≤ t ≤ N let

GQ(t) =
{
GQ(t− 1) ∪ {et} if GQ(t− 1) ∪ {et} ∈ Q
GQ(t− 1) otherwise,

and let G∞ = GQ(N). This definition is equivalent to the description above, where the edge to be added
was chosen from all e /∈ G such that G+ e ∈ Q. The reason is that if we do not add the edge et at stage t,
we have GQ(s) ∪ {et} /∈ Q for all s ≥ t, so we never need to consider adding the edge et at a later stage.

We shall couple GQ(t) with two processes that are easier to analyze, and which approximate GQ(t). For
0 ≤ t ≤ N let G0(t) = (V, {ei, i ≤ t}), so e(G0(t)) = t, and (G0(t))Nt=0 is a standard random graph process
with GQ(t) ⊂ G0(t). Let M(Qc) consist of all the minimal elements of Qc, so G /∈ Q if and only if G
contains some graph in M(Qc). In the cases we consider, Q is all graphs not containing a copy of some
fixed graph H, so M(Qc) just consists of all copies of H on V . Let G′Q(t) consist of those edges e of G0(t)
which are not contained in some F ⊂ G0(t) with F ∈ M(Qc). Then we have G′Q(t) ⊂ GQ(t)—indeed if
e = es ∈ G0(t) \GQ(t) then because e was not added at stage s, there is a graph F ⊂ GQ(s− 1)∪ {es} with
F ∈M(Qc). But then F ⊂ G0(s) ⊂ G0(t), so e /∈ G′Q(t).

In fact we shall not work with graph processes at all, but rather with a random graph Gp ∈ G(n, p)
chosen by joining each pair of vertices independently with probability p. We obtain a graph G′p from Gp by
deleting any edge contained in some F ⊂ Gp with F ∈ M(Qc). We can couple the random variables Gp,
G′p with the processes above: let T ∼ Bi(N, p). Then the graph G0(T ) is a random graph Gp from G(n, p)
with the correct distribution. Also, the graph G′Q(T ) has the correct distribution for G′p. Since every G′Q(t)
is contained in GQ(t) and thus G∞, we have G′p ⊂ G∞. This is all we shall use from now on, not only for



the electronic journal of combinatorics 7 (2000), #R18 3

lower bounds but, somewhat surprisingly, even to get upper bounds on e(G∞).
In vague terms, as p increases from 0 to 1 the graphs G′p first get larger, and then smaller again. We

shall show that, in the cases we consider, G∞ is not much larger than the largest G′p. We suspect that this
holds in many other cases, though it is not at all true for Q = {bipartite graphs}, for example.

The rest of the paper is organized as follows. In §2 we state our main results, giving probabilistic upper
and lower bounds on e(G∞) for the properties {G is C4-free} and {G is K4-free}. In §3 we give the simple
proof of the lower bound. In §4 we quote two basic lemmas needed in the rest of the paper. In §5 we prove
a lemma concerning the number of copies of a fixed graph H containing some edge xy ∈ Gp. This lemma,
which is used in both the subsequent sections, is likely to be of interest in its own right. In §6 we give the
upper bound for C4-free graphs, and in §7 that for K4-free graphs. In the final section we briefly discuss
possible generalizations.

Throughout the paper we shall assume that the number n of vertices is larger than some very large fixed
n0, even when this is not explicitly stated. We shall use the notation f = O(g) to mean that f/g is bounded
for n ≥ n0, f = Θ(g) to mean f = O(g) and g = O(f), and f = O∗(g) to mean that f = O((log n)kg) for
some fixed k.

2 Results

Throughout we take Q to be QH , the set of H-free graphs with vertex set V = [n] = {1, 2, . . . , n}, i.e., the
set of graphs on V not containing a copy (induced or otherwise) of a fixed graph H. We shall consider the
cases H = C4 and H = K4. Parts of the argument are the same for both cases, and work for a much larger
class of graphs, which we now describe.

Let H be a fixed graph. For 0 ≤ v < |H| let eH(v) be the maximum number of edges spanned by v
vertices of H. Let

αH(v) =
e(H)− eH(v)
|H| − v .

We say that H is edge-balanced if H is connected, |H| ≥ 3, and αH(v) > αH(2) for 2 < v < |H|. Writing
aut(H) for the number of automorphisms of H, we shall prove the following lower bound on e(G′p) when G′p
is defined with respect to QH .

Theorem 1. Let H be a fixed edge-balanced graph, λ and ε positive constants, and

p = λn−
|H|−2
e(H)−1 .

Then with G′p defined as above with respect to Q = QH ,

P
(
e(G′p) < (1− ε)

(
λ

2
− λe(H)e(H)

aut(H)

)
n2− |H|−2

e(H)−1

)
= o(1),

as n→∞.

This has the following immediate corollary.

Corollary 2. Let H be a fixed edge-balanced graph, and let G∞ be a random maximal H-free graph. Then
there is a constant c = c(H) > 0 such that

P
(
e(G∞) < cn2− |H|−2

e(H)−1

)
= o(1), (1)

and E e(G∞) ≥ (c/2)n2− |H|−2
e(H)−1 .
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Proof. The second statement follows from the first as e(G∞) ≥ 0. For the first, we have G∞ ⊃ G′p for all p.
Taking ε = 1

2 , say, and λ = (aut(H)/4e(H))1/(e(H)−1), Theorem 1 implies (1) with c = λ/8.

In the other direction we shall prove the following results for H = C4 and H = K4, writing ∆(G) for the
maximum degree of G.

Theorem 3. For G∞ a random maximal C4-free graph we have

P
(

∆(G∞) > 13(logn)3n1/3
)

= o(n−2).

In particular,

P
(
e(G∞) > 7(logn)3n4/3

)
= o(n−2),

and E e(G∞) ≤ 8(logn)3n4/3.

Theorem 4. There is a constant C such that for G∞ a random maximal K4-free graph we have

P
(

∆(G∞) > 2C(logn)n3/5
)

= o(n−2).

In particular,

P
(
e(G∞) > C(logn)n8/5

)
= o(n−2),

and E e(G∞) ≤ 2C(logn)n8/5.

Note that 2− |H|−2
e(H)−1 is equal to 4

3 for H = C4, and to 8
5 for H = K4, so by Corollary 2 in these cases we

have found e(G∞) to within a log factor for almost every G∞. In fact our proofs of Theorems 3 and 4 give
error bounds smaller than n−k for any fixed k, and possibly even n−δ logn for δ > 0 small enough.

In the next section we give the straightforward proof of Theorem 1. The heart of the paper is the proofs
of the upper bounds.

3 Proof of the lower bound

We shall use Janson’s inequality [6] in the following form. Let H be a fixed graph, and V a set of n vertices.
Let H1, . . . ,Hh be all copies of H with vertices in V , so h = (n)|H|/ aut(H). Let X = XH(Gp) be the
number of copies of H present in Gp, so µ = EX = hpe(H), and let

∆ =
∑

e(Hi∩Hj)>0

P(Hi ∪Hj ⊂ Gp).

Then for γ > 0,

P(X ≤ (1− γ)µ) < e−
γ2µ

2+2∆/µ , (2)

and for ε > 0,

P(X ≥ (1 + ε)µ) ≤ γ + e−γ
2µ/(2+2∆/µ)

ε
. (3)

Note that (2) implies (3) as

µ ≥ (1− γ)µP(X ≥ (1− γ)µ) + εµP(X ≥ (1 + ε)µ)).
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Proof of Theorem 1. The graph G′p is formed from Gp by deleting the edges of each copy of H in Gp, so
e(G′p) ≥ e(Gp)− e(H)X , where X = XH(Gp). Writing N for

(
n
2

)
,

E e(Gp) = pN ∼ λ

2
n2− |H|−2

e(H)−1 ,

while

µ = EX ∼
λe(H)

autH
n2− |H|−2

e(H)−1 ,

so it suffices to show that

e(Gp) ≥ (1− o(1))E e(Gp) (4)

and

X ≤ (1 + o(1))µ (5)

hold with probability 1− o(1).
As pN → ∞, (4) is immediate from standard binomial bounds. For (5) we use Janson’s inequality.

Consider one particular copy H1 of H on V . Then by symmetry

∆ ≤ hpe(H)
∑

i:e(Hi∩H1)>0

P(Hi ⊂ Gp | H1 ⊂ Gp).

Writing K for the complete graph on the vertex set of H1 we thus have

∆ ≤ µ
∑

i:V (Hi∩K)≥2

P(Hi ⊂ Gp | K ⊂ Gp).

We can choose Hi by deciding v, the number of vertices to take from K, which v vertices to take from K,
which |H| − v vertices outside K to take, and how to arrange Hi on these |H| vertices. As Hi has at least
e(H)− eH(v) edges outside K, we have

∆ ≤ µ

|H|∑
v=2

(
|H|
v

)(
n

|H| − v

)
|H|!pe(H)−eH(v)

= O

µ |H|∑
v=2

n|H|−vpe(H)−eH (v)

 .

For v = 2 or v = |H| the summand above is O(1). Also, as H is edge-balanced, for 2 < v < |H| we have

(e(H)− eH(v))
|H| − 2
e(H) − 1

> |H| − v,

so the remaining terms of the sum are all o(1). Thus ∆ = O(µ). Now fix ε > 0 and set γ = ε2. Since
∆ = O(µ) and µ→∞, inequality (3) implies that

P(X ≥ (1 + ε)µ) ≤ ε2 + o(1)
ε

,

which is less than 2ε for n large. As ε was arbitrary, (5) holds almost surely, completing the proof.
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Note that Theorem 1 can be strengthened in two ways. We can remove the factor e(H) from the term
λe(H)e(H)/ aut(H) if we define G′p by deleting only one edge from each copy of H in Gp. Choosing this edge
to be the last edge in a random order on V (2), we can still couple this larger G′p with G∞ so that G′p ⊂ G∞.
Independently, we can obtain much smaller error probabilities (for example n−k for any fixed k) by using
the Azuma-Hoeffding inequality together with Lemma 8 from §4.

4 Basic lemmas

In the rest of the paper we shall need the following results: Janson’s inequality (2), some standard bounds
concerning the binomial distribution, and a lemma from [3] concerning up-sets and down-sets. To bound the
tail of the binomial distribution we use the following lemma from [3], itself an immediate consequence of the
Chernoff bounds [4] (see also [1], p.11).

Lemma 5. Let X be a Bi(n, p) random variable, with 0 < p ≤ 1
2 . Then

(a) P(X <
1
2
pn) <

(
2
e

) pn
2

< e−
pn
8 ,

and if k ≥ 1 and pn
k < e−2 then

(b) P(X > k) <
(epn
k

)k
< e−k.

The main tool in the proofs of Theorems 3 and 4 will be the ‘step by step’ approach of [3], making use
of up-sets and down-sets. An up-set U on a set W is a collection of subsets of W such that A ∈ U and
A ⊂ B ⊂ W imply B ∈ U . A down-set D is one where A ∈ D and B ⊂ A imply B ∈ D. In the graph
context, W is just the set V (2) of possible edges.

We wish to check that Gp satisfies a certain rather complicated condition with very high probability. We
do this by considering a (completely impractical) algorithm which checks whether Gp satisfies this condition
‘a bit at a time’. At each stage the algorithm tests whether the edges in a certain set E are all present in Gp,
basing its subsequent behaviour on the yes/no answer. We design the algorithm so that the event A that the
algorithm reaches any particular state has the form A = U ∩ D, where U is a very simple up-set, and D is
some down-set. We can then bound the probability that E ⊂ Gp given A using the following lemma from [3],
itself a simple consequence of Kleitman’s Lemma [7], which states that up-sets are positively correlated (see
also [2], §19).

Lemma 6. Let p = (p1, . . . , pN), where each pi lies between 0 and 1. Let Qp be the weighted cube, i.e.,
the probability space with underlying set P([N ]) where a random subset X ⊂ W = [N ] is obtained by
selecting elements of W independently, with P(i ∈ X) = pi, i = 1, . . . , N . Let U1 and U2 be up-sets with
P(U1 ∩ U2) = P(U1)P(U2) and let D be a down-set. Then

P(U1 ∩ U2 ∩ D) ≤ P(U1)P(U2 ∩ D).

For the rest of the paper we work with the probability space G(n, p) of graphs on a fixed vertex set V . In
this context an up-set (down-set) is just a monotone increasing (decreasing) property of graphs on V . Note
that we shall not distinguish sets A of graphs on V from the corresponding events {Gp ∈ A}. With this
notation the most convenient form of Lemma 6 is the following.
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Lemma 7. Let Gp be a random graph from G(n, p), let A, B be fixed graphs on V and let D be a down-set.
Then

P(Gp ⊃ B | {Gp ⊃ A} ∩ D) ≤ pe(B\A).

Proof. We identify G(n, p) with the weighted cube Qp, where W = [N ], N =
(
n
2

)
, and all pi are equal to p.

Let U1 = {Gp ⊃ B \A}, U2 = {Gp ⊃ A}, so U1, U2 are independent up-sets. From Lemma 6 we have

P(Gp ⊃ B | {Gp ⊃ A} ∩ D) = P(Gp ⊃ B \A | {Gp ⊃ A} ∩ D)

≤ P(Gp ⊃ B \A) = pe(B\A),

as required.

In the next section we present an application of this lemma common to the cases H = C4 and H = K4,
and in fact much more general.

5 Subgraphs containing a given edge

In this section we shall show that if H is edge-balanced, then copies of H containing a particular edge of Gp
arise ‘more or less independently’.

For x, y ∈ V (Gp), let H(x, y) be the set of graphs S on V such that xy /∈ S and S ∪ {xy} is isomorphic
to H. Let UH(Gp, x, y) be the union of all subgraphs S of Gp with S ∈ H(x, y), and let XH(Gp, x, y) be the
number of such subgraphs S. Thus for H = C4, the graph UH(Gp, x, y) is the union of all x-y paths of length
three in Gp, and XH(Gp, x, y) is the number of such paths; if the edge xy is present in Gp, then UH(Gp, x, y)
is the union of all C4s in Gp containing xy, and XH(Gp, x, y) the number of such C4s. As before we write
XH(Gp) for the total number of copies of H in Gp, and N for

(
n
2

)
.

Lemma 8. Let H be a fixed edge-balanced graph. Suppose that p = p(n) is chosen such that

E(XH(Gp)) = λpN,

with λ = λ(n) bounded as n tends to infinity. Then with probability 1− o(n−2) we have
(i) e(UH(Gp, x, y)) ≤ logn for all x, y ∈ V (Gp), and
(ii) XH(Gp, x, y) ≤ logn for all x, y ∈ V (Gp).

Proof. Fix distinct vertices x, y ∈ V , and consider H = H(x, y). Note that we shall never consider graphs
with isolated vertices, so we may identify a graph S with the set E of its edges.

The idea of the proof is as follows. It is easy to bound the maximum number X0 of disjoint E ∈ H present
in Gp. We consider an algorithm for finding UH(Gp, x, y) that proceeds as follows. First find H0 ⊂ Gp,
where H0 is a union of X0 disjoint E ∈ H, E ⊂ Gp. We will define a random variable Mt ⊂ Gp, the set of
‘marked edges’, starting with M0 = H0. The variable Mt will represent the set of edges known to be present
in Gp after t steps of the algorithm. At each step the algorithm considers an E ∈ H not yet considered, and
tests whether E ⊂ Gp. If so, the edges of E are also marked. Thus UH(Gp, x, y) is the set of edges marked
when we have considered all E ∈ H. The key point is that the event that the algorithm reaches a particular
state will be such that we can apply Lemma 7. This will give an upper bound on the conditional probability
that E ⊂ Gp at each stage.

Note that we expect H0 to be almost all of UH(Gp, x, y). The reason is that H is edge-balanced. This
means that the increase in the conditional probability that E ⊂ Gp due to E containing marked edges is
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outweighed by the reduction in the number of choices for such E ∈ H—such E must share at least three
vertices (including x and y) with the marked edges.

In what follows we often consider both a random subgraph of Gp, and possible values of this subgraph.
We shall use bold type for the former, and italics for the latter. Thus H0 ⊂ Gp will be a random variable,
and H0 will represent any possible value of this random variable. We now turn to the proof itself.

As described above we first consider disjoint sets E ∈ H. For each E ∈ H the probability that E ⊂ Gp
is pe(H)−1. Thus, counting the expectation of e(H)XH(Gp) in two different ways, we have e(H)λpN =
e(H)EXH(Gp) = pN |H|pe(H)−1. Writing X0 = X0(Gp, x, y) for the maximum number of disjoint E ∈ H
contained in Gp, we have

P(X0 ≥ C) ≤
(
|H|
C

)
pC(e(H)−1)

≤
(
e|H|pe(H)−1

C

)C
=
(
eλe(H)
C

)C
= o(n−4),

if C ≥ logn/2e(H), since then eλe(H)/C ≤ e−9e(H), for n large. We thus have

P(X0 ≥ logn/2e(H)) = o(n−4). (6)

In order to start the algorithm described above we need an event to condition on which is in a suitable
form for Lemma 7. Let A1, A2, . . . , Ak = ∅ be all edge sets that are disjoint unions of sets E ∈ H. We
order the Ai so that their sizes decrease, but otherwise arbitrarily. Let H0 = H0(Gp) be the subgraph of
Gp defined by E(H0) = Ai for i = min{j : Aj ⊂ Gp}. Then E(H0) is the union of a largest collection of
disjoint E ∈ H, E ⊂ Gp, so e(H0) = X0(e(H)− 1). Thus, from (6),

P(|H0| > logn) = o(n−4). (7)

Note that the event {H0 = Ai} is of the form {Ai ⊂ Gp} ∩ D, where D =
⋂
j<i{Aj 6⊂ Gp} is a down-set.

This is needed in the analysis of the algorithm outlined at the start of the proof, which we now describe
precisely.

Enumerate the sets E ∈ H in an arbitrary way, so H = {E1, E2, . . . , Eh}. Set M0 = H0, n0 = 0, and for
1 ≤ t ≤ h define Mt, nt by

Mt =
{

Mt−1 if Et 6⊂ Gp
Mt−1 ∪Et if Et ⊂ Gp

nt =
{
nt−1 if Mt = Mt−1

nt−1 + 1 otherwise.

Thus nt = nt−1 unless Et ⊂ Gp and Et 6⊂ Mt−1. Now the event that H0 = Ai and Mt = M ⊃ Ai is the
event

{M ⊂ Gp} ∩
⋂
j<i

{Aj 6⊂ Gp} ∩
⋂

s<t:Es 6⊂M
{Es 6⊂ Gp},

which is of the form {M ⊂ Gp} ∩D, where D is a down-set. Lemma 7 thus tells us that for any possible H0

and M , and any E ⊂ V (2), we have

P(E ⊂ Gp | H0 = H0,Mt = M) ≤ pe(E\M).
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Considering the first t for which nt ≥ s shows that the event that H0 = H0 and nh ≥ s is a disjoint
union of events of the form

A = {H0 = H0,Mt = M},
where 0 ≤ t ≤ h, and M is a union of H0 and s sets E ∈ H, so e(M) ≤ e(H0) + se(H). Given such an A,
we have nh ≥ s+ 1 if and only if there is some E ⊂ Gp with E ∈ H and E 6⊂ M . Any such E must meet
H0 ⊂M , from the definition of H0. We thus have

ps,A = P(nh ≥ s+ 1 | A) ≤
∑

P(E ⊂ Gp | A) ≤
∑

pe(E\M),

where the sums are over E ∈ H with E 6⊂ M and E ∩M 6= ∅. We split this sum according to the number
v of vertices that E shares with M , noting that e(E \M) ≥ e(H) − eH(v) if v < |H|, while in any case
e(E \M) ≥ 1. This gives, being very generous,

ps,A ≤ |M ||H|p+
|H|−1∑
v=3

|M |vn|H|−vpe(H)−eH (v).

Suppose that |M | = no(1). Since n|H|−2pe(H)−1 = Θ(λ) ≤ no(1), and αH(v) > αH(2) for 2 < v < |H|, there
is a positive ε such that every term in the above sum is bounded by n−2ε, say, taking n sufficiently large.
Thus ps,A < n−ε. Since this holds for every A we are almost done: for every H0 with |H0| = no(1) we have
for s = no(1) that

P(nh ≥ s+ 1 | nh ≥ s,H0 = H0) ≤ n−ε,
and hence that

P(nh ≥ 5/ε | H0 = H0) = o(n−4).

Now this holds for every H0 with |H0| = no(1), so using (7) we obtain

P(nh ≥ 5/ε) = o(n−4). (8)

Recalling that UH(Gp, x, y) is the union of H0 and nh sets E ∈ H we have

e(UH(Gp, x, y)) ≤ (e(H)− 1)(X0 + nh),

and from (6) and (8),
P(e(UH(Gp, x, y)) ≥ logn) = o(n−4).

As this holds for all x and y ∈ V (Gp), we have proved part (i) of the lemma.
For the second part we decompose H0 as H1 ∪H2, where H1 is the union of those E ∈ H, E ⊂ H0 that

share no edge with any other E ∈ H, E ⊂ Gp, and H2 = H0 \H1. Thus the sets E ∈ H, E ⊂ H0 are
all disjoint from each other, but those contained in H2 each meet some E′ ∈ H with E′ ⊂ Gp. Since any
E′ ∈ H, E′ ⊂ Gp is by definition contained in UH(Gp, x, y), we have that each of the E ∈ H, E ⊂ H2 shares
an edge with UH(Gp, x, y) \H0, which consists of at most nh(e(H) − 1) edges. Since the sets E are edge
disjoint, we have e(H2) ≤ nh(e(H)− 1)2. Now any E ∈ H, E ⊂ Gp is either one of at most X0 disjoint such
sets in H1 ⊂ H0, or is formed from edges of UH(Gp, x, y) \H1 = H2 ∪ (UH(Gp, x, y) \H0). Thus,

XH(Gp, x, y) ≤ X0 +
(
nh(e(H)− 1)2 + nh(e(H)− 1)

e(H)

)
,

which, with probability 1− o(n−4), is at most X0 plus a large constant depending on H. Together with (6)
this completes the proof of the lemma.
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Remarks. (i) In the particular cases H = C4 and H = K4, Lemma 8 can be proved much more simply.
We give the proof above for two reasons: it is much more general, and it gives a simple illustration of the
techniques used in the rest of the paper.

(ii) The same proof works with EXH(Gp) = λpN where λ→∞, as long as λ < nε for some ε > 0 depending
on H. Also, the probability that e(UH(Gp, x, y)) exceeds its expectation by a factor C can be bounded by
2
(
e
C

)C for C up to nε. Thus copies of H containing xy do arise ‘almost independently’ in a rather strong
sense.

(iii) Essentially the same proof can be applied to copies of H ⊂ Gp containing a particular set of k vertices,
with 0 ≤ k < |H|. The edge-balanced condition must be replaced by αH(v) > αH(k) for |H| > v > k. A
weak form of the special case H = Kr was Lemma 13 of [3]. Note that the condition on αH is necessary,
otherwise once we find a suitable Kk+1 in Gp we find many more copies of H than expected.

6 The upper bound for C4-free graphs

In this section we prove Theorem 3. Throughout the section we take p = 1
2n
−2/3, m = bn1/3(logn)3c, and

Gp a random graph from G(n, p). As before, the graph G′p is formed from Gp by deleting any edge contained
in a C4 in Gp. Recall that we shall always assume that n is larger than some very large fixed n0, even when
this is not explicitly stated. The result we shall actually prove is the following.

Lemma 9. With probability 1−o(n−2) the graph Gp is such that every C4-free graph G′′ ⊃ G′p has maximum
degree at most 13m.

This implies Theorem 3 since, using the coupling described in the introduction, G∞ is a C4-free graph
containing G′p.

The condition described in Lemma 9 is rather complicated when we express it in terms of Gp, which we
need to do in order to calculate. We start by establishing some global properties of Gp that hold almost
surely. Then we shall finish with the ‘step by step’ approach described in §4. Most of the time we shall work
with Gp itself, rather than with G′p. Thus, any graph theoretic notation we use, such as Γ(x) for the set of
neighbours of x, or d(x) for the degree of x, will refer to the graph Gp unless explicitly stated otherwise.

As before, we write V for V (Gp), a fixed set of n vertices. Let B1 be the event that some set X ⊂ V
with 100 ≤ k = |X | ≤ n2/5 spans at least 3k edges of Gp. Then we have

P(B1) ≤
n2/5∑
k=100

(
n

k

)((k
2

)
3k

)
p3k

≤
n2/5∑
k=100

(ne
k

)k (ke
6

)3k

p3k

≤
n2/5∑
k=100

(e4nk2p3)k.

For k ≤ n2/5 we have nk2p3 = O(n1+4/5−6/3) = O(n−1/5), so P(B1) = o(n−2).
For a set X ⊂ V let Γ2(X) be the set of vertices y /∈ X with |Γ(y) ∩ X | ≥ 2, recalling that Γ(y) is

the set of neighbours of y in the graph Gp. For X ⊂ V with |X | = 2m, each y /∈ X has probability
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p0 ≤
(

2m
2

)
p2 ≤ 2m2p2 of sending at least two edges to X . These events are independent, so

|Γ2(X)| ∼ Bi(n− 2m, p0)

with mean at most np0 ≤ 2m2p2n = O∗(m). Thus by Lemma 5(b) we have

P(|Γ2(X)| > mn1/100) ≤ e−mn1/100
.

Let B2 be the event that some set X ⊂ V with |X | = 2m has |Γ2(X)| > mn1/100. Then

P(B2) ≤
(
n

2m

)
e−mn

1/100 ≤ e2m logn−mn1/100
= o(n−2).

If neither B1 nor B2 holds, then every set X with |X | = 13m contains a set of m vertices that is rather
well behaved. To formulate this precisely call a set X ⊂ V good if it is an independent set (in Gp), and every
x ∈ X sends at most n1/50 edges (of Gp) to Γ2(X).

Lemma 10. Suppose that neither B1 nor B2 holds, X0 ⊂ V and |X0| = 13m. Then X0 contains a good set
X with |X | = m.

Proof. As B1 does not hold, every Y ⊂ X0 with 100 ≤ |Y | ≤ n2/5 induces a graph Gp[Y ] with minimum
degree less than 6. We may thus number the vertices of X0 as x1, x2, . . . so that each of the first 13m−100 ≥
12m vertices xi sends at most 5 edges to later xj . We can properly colour Gp[X0] as follows: colour the last
m vertices arbitrarily, and proceed backwards, colouring xi with one of the colours 1 to 6 which does not
appear among its later neighbours. One of the colour classes 1 to 6 in this colouring has at least 12m/6 = 2m
vertices, so we have found X1 ⊂ X0 spanning no edges of Gp, with |X1| = 2m.

We claim that there is a set X ⊂ X1 with |X | = m, such that each x ∈ X sends at most n1/50 edges
to Γ2(X). Such an X would be a suitable good set. Suppose that the claim is false. For any X ⊂ X1 we
have Γ2(X) ⊂ Z = X1 ∪ Γ2(X1). More than m vertices of X1 must have degree at least n1/50 in Gp[Z], as
we could otherwise take m other vertices of X1 to form X . Thus Z spans at least 1

2mn
1/50 edges of Gp. As

B2 does not hold, we have |Z| ≤ 2m+mn1/100 ≤ 2mn1/100. But then Z spans more than 3|Z| edges, while
100 ≤ 2m ≤ |Z| ≤ n2/5, contradicting the assumption that B1 does not hold, and proving the claim, and
hence the lemma.

We shall define two further ‘bad’ events, B3 and B4. Let B3 be the event that for some edge e =
xy ∈ E(Gp) the graph UC4(Gp, x, y) defined in §4 has more than logn edges. Then by Lemma 8 we have
P(B3) = o(n−2).

Given X ⊂ V we shall consider paths xyz ⊂ Gp with x, z ∈ X , y /∈ X . We shall need these paths not
to share more vertices than necessary; we say that a set A of such paths is independent (with respect to X)
if any two paths in A have distinct midpoints, and share at most one endpoint. We write a(X) for the
maximum number of paths in such a set A. Let X have size m. We can find a set A as above in the following
way: start with A = ∅ and consider each y /∈ X in turn. If y is joined to exactly two vertices x, z of X , and
x, z are not the endpoints of a path in A, add xyz to A and continue to the next y /∈ X . Otherwise just
continue. Having found a paths, for each vertex y considered the probability of adding a new path is exactly((

m

2

)
− a
)
p2(1− p)m−2.
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If a < c0 = nm2p2/8 then a�
(
m
2

)
, and as mp = o(1) this probability is at least m2p2/3. As we have n−m

vertices to consider, the probability that a(X) < c0 is at most the probability that a Bi(n − m,m2p2/3)
random variable is less than c0. By Lemma 5(a) this is at most e−nm

2p2/32.
Let B4 be the event that some set X ⊂ V with |X | = m has a(X) < c0. Then

P(B4) ≤
(
n

m

)
e−nm

2p2/32 ≤ em logn−nm2p2/32 = o(n−2),

as nmp2 � logn.
The significance of the paths counted by a(X) is shown by the next definition. We say that a set X ⊂ V

is unusable if G′p contains two paths x1y1z1, x2y2z2 with xi, zi ∈ X and y1 6= y2. We say that X is usable if
it is not unusable. If G′′ ⊃ G′p is C4-free and x ∈ V , then X = ΓG′′(x) must be usable—otherwise there are
paths as above in G′p ⊂ G′′ with at least one yi distinct from x. But then xxiyizi is a C4 in G′′. To prove
Lemma 9 it thus suffices to show that, with high probability, every set of 13m vertices is unusable.

Recall that a set X ⊂ V is good if X spans no edges of Gp, and every x ∈ X sends at most n1/50 edges
to Γ2(X). We shall show that for a fixed X ⊂ V , |X | = m, we have

P(X is good and usable,
4⋂
i=1

Bci ) = o(n−m). (9)

The events Bci , 1 ≤ i ≤ 3, and the event that X is good are all down-sets, so we are happy to condition on
these events. The event Bc4 is not a down-set, however, so we must treat this event differently. In particular,
instead of (9) we prove the stronger statement

P(X is usable,Bc4 | X is good ∩
3⋂
i=1

Bci ) = o(n−m). (10)

Before turning to the proof of (10) we show that (9), and hence (10), does indeed imply Lemma 9.
Suppose that (9) holds, and let B5 be the event that there is some X ⊂ V with |X | = m which is good
and usable. Then (9) implies that P(B5 \ (

⋃4
i=1 Bi)) = o(

(
n
m

)
n−m) = o(n−2). We have already shown that

P(Bi) = o(n−2) for i = 1, . . . , 4, so we have P(
⋃5
i=1 Bi) = o(n−2). Suppose now that no Bi holds. If X0 is

a set of 13m vertices, then X0 contains a good set X with |X | = m by Lemma 10. If X0 is usable, then
X is good and usable, contradicting the assumption that B5 does not hold. Hence, if no Bi holds, no set
of 13m vertices is usable. As described above, if G′′ ⊃ G′p is C4-free, then the neighbourhood in G′′ of any
vertex x is usable. In summary, if (10) holds, so does (9). Then P(

⋃5
i=1 Bi) = o(n−2), and with probability

1− o(n−2) any C4-free graph G′′ ⊃ G′p has maximum degree less than 13m. To prove Lemma 9, and hence
Theorem 3, it thus suffices to prove (10).

Proof of Lemma 9. Fix X ⊂ V with |X | = m. We consider all possible sets A ⊂ X× (V \X) that are unions
of independent paths as described in the definition of a(X). Let A1, A2, . . . be these sets listed in decreasing
order of size, and define a random variable A by A = Ai where i = min{j : Aj ⊂ Gp}. Then A is a largest
such set present in Gp, and by definition A consists of a(X) independent paths. Our goal is to prove (10);
since the event that X is good and

⋂3
i=1 Bci holds is a disjoint union of events E of the form

E = {A = A,X is good,
3⋂
i=1

Bci},
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it suffices to show that

P(X is usable,Bc4 | E) = o(n−m) (11)

separately for each E . Note that as

{A = A} = {A ⊂ Gp} ∩
⋂
j<i

{Aj 6⊂ Gp}

when A = Ai, and the events {X is good} and Bci , i ≤ 3 are down-sets, each event E is of the form

E = {A ⊂ Gp} ∩ D, (12)

with D a down-set.
We must prove (11) for each possible event E . Suppose first that the set A that defines E consists of

fewer than c0 = nm2p2/8 paths. Then E implies that a(X) < c0 and hence that B4 holds, so (11) holds in
this case—the conditional probability is actually zero.

From now on we suppose that A consists of at least c0 paths, and that E holds. Let P1, . . . , Pc0 be the
first c0 paths in A in some fixed order. We shall examine each Pt in turn, looking for a C4 in Gp sharing
an edge with Pt; whenever there is no such C4, the path Pt is present in G′p. As before we inductively
define a set of ‘marked’ edges, and examine the graph in such a way that at each stage the information we
have is that the marked edges are present, and some other ‘negative’ information. This will allow us to use
Lemma 7. We now make this precise.

Suppose that the event E holds. Let M0 = A. At stage t, 1 ≤ t ≤ c0, we define Mt as follows.

1. If Mt−1 contains a C4 sharing an edge with Pt, set Mt = Mt−1; otherwise continue to step 2.
2. If the midvertex of Pt lies in n1/50 edges of Mt−1, set Mt = Mt−1; otherwise continue to step 3.
3. Form a list Et,1, . . . , Et,`t of all edge sets E ⊂ V (2) that satisfy E ∼= C4, E 6⊂Mt−1 and E ∩Pt 6= ∅. If

one of these sets is present in Gp, set Mt = Mt−1 ∪ Et,it , with it = min{i : Et,i ⊂ Gp}; otherwise continue
to step 4.

4. Set Mt = Mt−1 and continue to stage t+ 1, noting that Pt ⊂ G′p.
We shall show that when running this procedure we reach step 3 at least c0/(5 logn) times, and that each
time we do, we have at least a 50% chance of proceeding to step 4. This will show that, almost certainly,
many Pt are present in G′p.

Let ni, i = 1, . . . , 4, be the number of times we reach step i above, so n1 = c0 and there are at least
n4 paths Pt in G′p. Suppose that for some particular t we stop at step 1. Then there must be a four-cycle
C ⊂Mt−1 sharing an edge with Pt. As there are no C4s in M0 = A (using the independence of the paths),
C shares an edge with Es,is for some s for which we reached step 3. In other words, there is an edge in

Pt ∩
⋃

xy∈Es,is

UC4(Gp, x, y).

But as we assume B3 does not hold, each UC4(Gp, x, y) has at most log n edges. As the Pt are edge disjoint,
we stop at step 1 at most 4 logn times for each of the n3 possible s, so

n2 ≥ c0 − 4(logn)n3.
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Suppose now that for some particular t we stop at step 2. Then the midpoint yt of Pt lies on n1/50 edges
of Mt−1 ⊂Mc0 . As the yt are distinct this happens at most 2e(Mc0)/n1/50 times. Now as B2 does not hold

e(M0) = 2a(X) ≤ 2|Γ2(X)| ≤ 2mn1/100.

Hence, as e(Ms \Ms−1) ≤ 3 for all s, we have e(Mc0) ≤ 2mn1/100 + 3c0 = O∗(c0n1/100). Thus n2 − n3 =
O∗(c0n−1/100) = o(c0), and we have

n3 ≥ c0 − 4(logn)n3 − o(c0),

so
n3 ≥

c0
5 logn

,

completing the first part of the argument.
To show that each time we reach step 3 we have a reasonable chance of continuing to step 4 we need to

know a little more about the set Mt.
For x ∈ X let

S1 = {xy ∈ E(Mc0) : y ∈ Γ2(X)},
S2 = {xy ∈ E(Mc0) : y /∈ Γ2(X)}.

We are assuming that X is good, so |S1| ≤ n1/50. For xy ∈ S2 the vertex y necessarily has only the one
neighbour x in X . This means that xy /∈M0, so there is a unique t, 1 ≤ t ≤ c0, with xy ∈Mt \Mt−1. For
this t we have xy ∈ E = Et,it ⊂ Gp. Using the assumption that X spans no edges of Gp we see that E must
be of the form xyzw with y, z, w /∈ X . Now E shares an edge with Pt, which must be the edge xw. Thus
|S2| is at most the number of t for which Pt contains x. As X is good, this is at most n1/50. We thus have
that for every x and t

dMt(x) ≤ dMc0
(x) ≤ |S1|+ |S2| ≤ 2n1/50.

Suppose that when considering Pt we reach step 3. We claim that the probability that some Et,i is in
Gp is at most 1/2, given everything we know at that stage. More precisely, let

pt = pt(A,M1, . . . ,Mt−1) = P(∃i : Et,i ⊂ Gp | E ,Ms = Ms for all s < t).

Then for any possible sequence M1, . . . ,Mt−1,

pt ≤
`t∑
i=1

P(Et,i ⊂ Gp | E ,Ms = Ms for all s < t).

If we know Ms for s < t then we know which sets Es,i were considered by the algorithm, and which
ones are present in Gp. In particular we know that Mt−1 ⊂ Gp, and that certain other sets of edges are not
contained in Gp. Thus from (12) the event E ∩ {Ms = Ms, s < t} is of the form {Mt−1 ⊂ Gp} ∩ D′, where
D′ is a down-set. Hence, from Lemma 7,

pt ≤
`t∑
i=1

pe(Et,i\Mt−1). (13)
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We split the sum above according to the relationship between Et,i and Mt−1, noting that by definition
we have Et,i 6⊂Mt−1. We write E = Et,i as xyzw with x ∈ X and xy an edge of Pt.

For E with E ∩Mt−1 = {xy} we have two choices for the edge xy of Pt, then at most n choices for each
vertex z, w. As e(E \Mt−1) = 3, such terms contribute at most 2n2p3 ≤ 1/4 to the sum in (13). As we
shall see, this is actually the main term. In fact almost all the work in the proof is to show that the other
terms are insignificant.

For E with zw ∈ Mt−1 we have two choices for the edge xy, at most e(Mt−1) = O∗(n1/3+1/100)
choices for zw, two ways of completing the C4, and e(E \ Mt−1) ≥ 1. Such terms thus contribute at
most O∗(n1/3+1/100p) = o(1) to the sum.

For E with E ∩Mt−1 = {xy, xw} we have two choices for xy, at most dMt−1(x) ≤ 2n1/50 choices for w,
and n choices for z. We have e(E \Mt−1) = 2, so such terms contribute at most 4n1+1/50p2 = o(1).

For E with E ∩Mt−1 = {xy, yz}, since we reached step 3 we have dMt−1(y) ≤ n1/50. Thus such terms
contribute at most 2n1+1/50p2 = o(1).

Finally for E with E ∩Mt−1 = {xy, yz, xw} we have at most 4n1/25 choices, so such terms contribute at
most 4n1/25p = o(1) to the sum in (13).

Putting all this together, we have that if n is large enough, then pt ≤ 1/2. Thus for each of the
n3 ≥ c0/(5 logn) times we reach step 3 we have a chance of at least 1/2 of proceeding to step 4. Thus, given
E , the distribution of n4 stochastically dominates a Bi(dc0/(5 logn)e, 1/2) distribution. From Lemma 5(a)
we have

P(n4 < 2 | E) ≤ ec0/(80 logn) = o(n−m),

as c0 � m(log n)2. As X usable implies n4 < 2, we have thus proved (11). As this holds for all E we have
proved (10), and thus (9), completing the proof of the lemma, and hence of Theorem 3.

We now turn to the proof of Theorem 4, which is slightly simpler, but uses many of the same ideas.

7 The upper bound for K4-free graphs

Throughout this section we consider the probability space G(n, p) with p = 1
2n
−2/5, and write m for

bC(log n)n3/5c, for some large constant C. As in the previous section we take n larger than some very
large fixed n0, even when this is not explicitly stated. We shall redefine the concepts of ‘usable’ and ‘good’,
as well B1 to B4, keeping a close correspondence with the previous section whenever possible. We first pre-
pare the ground, showing that certain ‘bad’ events have small probability. Then we shall prove Theorem 4
by the ‘step by step’ method.

Let B0 be the event that some set X ⊂ V with |X | = m contains 2m edge disjoint K4s. For a fixed X

there are
(
m
4

)
≤ m4 possible K4s, and so at most

(
m4

2m

)
≤ (em3)2m choices for the union of 2m edge disjoint

ones. Each such union has 12m edges, so the probability that one is present is at most

(em3)2mp12m = (em3p6)2m = o(n−m),

as m3p6 = O∗(n−3/5) = o(n−1/2). Thus

P(B0) ≤
(
n

m

)
n−m = o(n−2).

By a k-book we mean k triangles sharing a common edge e, the spine of the book. Such a graph has k+ 2
vertices and 2k + 1 edges. Let B1 be the event that some set X ⊂ V with |X | = 4m contains m 25-books
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with vertex disjoint spines. Since books with vertex disjoint spines are edge disjoint we have

P(B1) ≤
(
n

4m

)
(4m)27mp51m

≤
(
O(n4m27p51)

)m
=

(
O(n−1/5)

)m
= o(n−2).

For a set X ⊂ V let dt(X) be the maximum number of edge disjoint triangles in Gp[X ]. For X with
|X | = 2m we have

P(dt(X) ≥ k) ≤
((2m

3

)
k

)
p3k

≤
(

8m3

k

)
p3k ≤

(
8em3p3

k

)k
.

As m3p3 = O(m(log n)2), taking k = m(logn)3 we have

P(dt(X) ≥ m(logn)3) ≤ e−m(logn)3 ≤ n−2m.

Let B2 be the event that some set X ⊂ V with |X | = 2m has dt(X) ≥ m(logn)3. Then

P(B2) ≤
(
n

2m

)
n−2m = o(n−2).

This time we say that a set X ⊂ V is good if X contains no 25-book, and no vertex of X lies in (log n)4

triangles in X .

Lemma 11. Suppose that B1, B2 do not hold, X0 ⊂ V and |X0| = 4m. Then X0 contains a good set X
with |X | = m.

Proof. We claim that some set X1 ⊂ X0 with |X1| = 2m contains no 25-book. If this is not the case, then
X0 contains a 25-book with spine {x1, y1}, say. As |X0 \ {x1, y1}| > 2m, the set X0 \ {x1, y1} contains a
25-book with spine {x2, y2} disjoint from {x1, y1}. Continuing in this way we find m 25-books in X0 with
disjoint spines, contradicting the assumption that B1 does not hold.

Fix a set X1 ⊂ X0 with |X1| = 2m that contains no 25-book. We are done unless m vertices of X1 each
lie in (logn)4 triangles in X1. But then X1 contains m(logn)4/3 triangles. As X1 contains no 25-book, each
of these triangles shares an edge with at most 3 × 23 = 69 others, and using the greedy algorithm we can
find at least m(logn)4/210 > m(logn)3 edge disjoint triangles in X1, contradicting the assumption that B2

does not hold, and completing the proof.

Continuing our preparation for the proof of Theorem 4, we shall define two further ‘bad’ events. Let B3

be the event that for some edge e = xy ∈ E(Gp) the graph UK4(Gp, x, y) defined in §4 has more than logn
edges. Then by Lemma 8 we have P(B3) = o(n−2).

Let B4 be the event that some set X ⊂ V with |X | = m does not contain bµ/2c triangles, where

µ =
(
m

3

)
p3 = Θ(n3/5(log n)3).
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Fixing an m-set X and considering all possible triangles Ti ∈ X(3) we have

∆ =
∑

e(Ti∩Tj)>0

P(Ti ∪ Tj ⊂ Gp)

=
(
m

2

)(
m− 2

2

)
p5

= O∗(m4p5) = O∗(n2/5) = o(µ).

Thus applying (2) with γ = 1/2 we have

P(B4) ≤
(
n

m

)
e−µ/10

= eO(n3/5(logn)2)−Θ(n3/5(logn)3)

= o(n−2).

This time we say that a set X ⊂ V is unusable if X contains a triangle in G′p, and that X is usable if it
is not unusable. If G′′ ⊃ G′p is K4-free and x ∈ V , then X = ΓG′′(x) must be usable—otherwise there is a
triangle in G′p[X ] ⊂ G′′[X ], and hence a K4 in G′′.

Proof of Theorem 4. Fix a set X ⊂ V with |X | = m. We claim that

P(X is good and usable,
4⋂
i=0

Bci ) = o(n−m) (14)

implies Theorem 4. The argument is exactly analogous to that following equation (10) in the previous
section. Indeed, let us write B5 for the event that there is some X ⊂ V with |X | = m which is good and
usable. Then (14) implies that P(B5 \ (

⋃4
i=0 Bi)) = o(

(
n
m

)
n−m) = o(n−2), so P(

⋃5
i=0 Bi) = o(n−2). If no

Bi holds, then every set X0 of 4m vertices is unusable, since a usable set of this size would contain a good,
usable m-set by Lemma 11, contradicting the assumption that B5 does not hold. Thus G∞, which is a K4

free graph containing G′p, has maximum degree at most 4m ≤ 4C(logn)n3/5. This proves Theorem 4 with
C replaced by 2C.

As before we wish to condition on a simple up-set U intersected with some down-set D. The events Bci ,
0 ≤ i ≤ 3 are all down-sets, but Bc4 is not, so we treat B4 differently. We shall show that

P(X is usable,Bc4 | X is good,
3⋂
i=0

Bci ) = o(n−m),

which implies (14).
Let c0 = bµ/4c, where µ =

(
m
3

)
p3 as above. We consider all possible sets A ⊂ X(2) that are unions of at

most c0 triangles in X(3) and contain no K4. Let A1, A2, . . . be these sets listed in decreasing order of size,
and define a random variable A by A = Ai where i = min{j : Aj ⊂ Gp}. The event that X is good and⋂3
i=0 Bci holds is a disjoint union of events E of the form

E = {A = A,X is good,
3⋂
i=0

Bci},
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so it suffices to show that

P(X is usable,Bc4 | E) = o(n−m) (15)

separately for each E .
As before, each event E is of the form

E = {A ⊂ Gp} ∩ D,

with D a down-set.
All that remains is to prove (15) for each possible event E . We assume from now on that E holds.
Suppose first that the set A that defines E contains fewer than c0 triangles. We claim that in this case

B4 holds, proving (15). Indeed, suppose B4 does not hold, so X contains 2c0 triangles. As we are assuming
that B0 does not hold, X does not contain 2m edge disjoint K4s, and there is a set of at most 12m edges
in X meeting every K4 in X . As X is good, these edges together meet at most 24× 12m = o(c0) triangles,
so there is some set Ai ⊂ Gp containing at least c0 triangles and no K4. Thus A must contain at least c0
triangles, contradicting our assumption.

From now on we suppose that A contains at least c0 triangles, and is hence the union of exactly c0 distinct
triangles T1, . . . , Tc0. We shall examine each Tt in turn, looking for a K4 in Gp sharing an edge with Tt;
whenever there is no such K4, the triangle Tt is present in G′p.

Let M0 = A. At stage t, 1 ≤ t ≤ c0, we define Mt as follows.

1. If Mt−1 contains a K4 sharing an edge with Tt, set Mt = Mt−1; otherwise continue to step 2.
2. Form a list Et,1, . . . , Et,`t of all edge sets E ⊂ V (2) that satisfy E ∼= K4, E 6⊂Mt−1 and E ∩ Tt 6= ∅.

If one of these sets is present in Gp, set Mt = Mt−1∪Et,it , with it = min{i : Et,i ⊂ Gp}; otherwise continue
to step 3.

3. Set Mt = Mt−1 and continue to stage t+ 1, noting that Tt ⊂ G′p, so X is unusable.

As before let ni, i = 1, . . . , 3, be the number of times we reach step i above, so n1 = c0 and there are n3

triangles Tt in G′p. Suppose that for some particular t we stop at step 1. Then there must be a K4 in Mt−1

sharing an edge with Tt. As there are no K4s in M0 = A (by definition of A), this K4 is in the union
of UK4(Gp, x, y) over xy ∈ Es,is for all s such that we reach step 2. Since we are assuming B3 does not
hold, this union has at most 6(logn)n2 edges. As X is good, each edge is in at most 24 triangles Tt, so
n1 − n2 ≤ 150(logn)n2, and

n2 ≥
c0

151 logn
.

We have shown that we reach step 2 a reasonable number of times. It only remains to show that each
time we have probability at least 1/2 of continuing to step 3. Again we need to bound both the total size of
Mt and the degrees in Mt of vertices in X . Now

e(Mc0) ≤ e(A) + 5c0 ≤ 8c0 = O∗(n3/5), (16)

using the fact that A is the union of c0 triangles. Fix x ∈ X . As X is good, there are at most 2(logn)4

edges xy contained in triangles in X . We count the number of edges xy ∈Mc0 not contained in a triangle
in X . Each such edge must be in one of the Et,it . If the edge zw that Et,it shares with Tt does not contain
x, then xzw is a triangle in X—this can happen at for at most (logn)4 values of t, as X is good. On the
other hand, if one of z, w is equal to x, then x is a vertex of Tt. Again this can happen for at most (log n)4

values of t. As each Et,it contributes at most 3 to the degree of x in Mc0 we have

dMs(x) ≤ dMc0
(x) ≤ 2(logn)4 + 3(logn)4 + 3(logn)4,
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so the degree of x in Ms is at most 8(logn)4 = no(1) for all s.
As in the previous section, if we reach step 2 for Tt with Mt−1 = Mt−1, the probability pt that we find

some Et,i in Gp satisfies

pt ≤
`t∑
i=1

pe(Et,i\Mt−1). (17)

We split the sum above according to the relationship between Et,i and Mt−1, noting that by definition
we have Et,i 6⊂ Mt−1. We label the vertices of E = Et,i as x, y, z, w, with x, y ∈ X and xy an edge of Tt.
We say that an edge is marked if it is in Mt−1.

For E with E ∩Mt−1 = {xy} we have three choices for the edge xy of Tt, then at most n choices for each
vertex z, w. As e(E \Mt−1) = 5, such terms contribute at most 3n2p5 ≤ 1/4 to the sum in (17). As before
this will be the main term.

For E with zw ∈ Mt−1 we have three choices for xy, and, from (16), at most e(Mt−1) = O∗(n3/5)
choices for zw. Such terms with at least two unmarked edges thus contribute o(1) to the sum. With only
one unmarked edge, say xz, then as yw and yz are marked and the number of marked edges from y is at
most no(1), there are only no(1) choices for E. The single factor of p ensures that such terms contribute o(1)
to (17).

For E with zw not marked, suppose first that one or more of xz, yz is marked, and one or more of xw,
yw. Then we again have no(1) choices, so such terms contribute o(1). Otherwise, one or more of xz, yz is
marked, say, and none of xw, yw. We then have no(1) choices for z, n choices for w, and at least 3 factors
of p, from the edges xw, yw, zw. Such terms thus contribute o(1) to (17).

The above case checking shows that pt ≤ 1/2 for n large. Thus

P(n3 = 0,Bc4 | E) ≤
(

1
2

)c0/(151 logn)

≤ e−c0/(300 logn). (18)

Now c0 = bµ/4c ∼ C3(logn)3n3/5/192. Since n−m = e−C(logn)2n3/5
, and X usable implies n3 = 0, we have

that (18) implies (15) for C = 1000, completing the proof of Theorem 4.

8 Conclusions

Theorems 3 and 4 have a very natural interpretation in vague terms. These results show that for H = C4

and H = K4 a random maximal H-free graph G∞ has roughly the number of edges at which a random graph
would be expected to contain an average of one copy of H per edge. Erdős, Suen and Winkler [5] showed
that this is also the case for H = C3. Thus, in these cases, the random process constructing G∞ proceeds
by adding edges more or less uniformly at random until a significant number of possible conflicts (copies
of H) arise, and beyond this point not very many more edges are added. In other words, the constrained
random process does not ‘organize’ itself significantly as the set of possible edges to add becomes smaller.
This contrasts strongly with the case of bipartite graphs, where the graph G∞ is highly ‘organized’—it is a
complete bipartite graph with nearly equal class sizes, as shown in [5]. It is thus natural to ask for which
properties these two kinds of behaviour arise, and what happens in between.

On the one hand, it should be fairly straightforward to show that a random maximal k-colourable graph
will be almost as large as it can be. On the other hand, we would expect results like Theorems 3 and 4
for H-free graphs, for many fixed graphs H. When H is edge-balanced, a case which includes complete
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graphs, cycles and complete bipartite graphs, the basic method used here may well be applicable. However,
this application may not be easy: in the proof of Lemma 8, which applies to all edge-balanced H, the
configurations Mt found by the algorithm had no(1) edges. This meant that ‘new’ copies of H would almost
always share at most one edge with Mt, as H is edge-balanced. In the proofs of Theorems 3 and 4, however,
configurations with nα edges were considered, for some fixed α > 0. This meant that separate arguments
were needed in each case to deal with ‘new’ copies of H sharing more than one edge with Mt, so it may not
be so easy to extend these proofs to all edge-balanced H.
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