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Abstract. Utilizing spectral residues of parameterized, recursively defined sequences, we
develop a general method for generating identities of composition sums. Specific results are
obtained by focusing on coefficient sequences of solutions of first and second order, ordinary,
linear differential equations.

Regarding the first class, the corresponding identities amount to a proof of the exponential
formula of labelled counting. The identities in the second class can be used to establish
certain geometric properties of the simplex of bounded, ordered, integer tuples.

We present three theorems that support the conclusion that the inner dimensions of such
an order simplex are, in a certain sense, more ample than the outer dimensions. As well, we
give an algebraic proof of a bijection between two families of subsets in the order simplex,
and inquire as to the possibility of establishing this bijection by combinatorial, rather than
by algebraic methods.

1. Introduction

The present paper is a discussion of composition sum identities that may be obtained by
utilizing spectral residues of parameterized, recursively defined sequences. Here we are using
the term “composition sum” to refer to a sum whose index runs over all ordered lists of
positive integers p1, p2, . . . , pl that such that for a fixed n,

p1 + . . .+ pl = n.

Spectral residues will be discussed in detail below.
Compositions sums are a useful device, and composition sum identities are frequently

encountered in combinatorics. For example the Stirling numbers (of both kinds) have a
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natural representation by means of such sums: [4, §51, §60]:

sln =
n!

l!

∑
p1+...+pl=n

1

p1 p2 . . . pl
; Sl

n =
n!

l!

∑
p1+...+pl=n

1

p1! p2! . . . pl!
.

There are numerous other examples. In general, it is natural to use a composition sum to
represent the value of quantities fn that depend in a linearly recursive manner on quantities
f1, f2, . . . , fn−1. By way of illustration, let us mention that this point of view leads imme-
diately to the interpretation of the nth Fibonacci number as the cardinality of the set of
compositions of n by {1, 2} [1, 2.2.23]

To date, there are few systematic investigations of composition sum identities. The ref-
erences known to the present author are [2] [3] [6]; all of these papers obtain their results
through the use of generating functions. In this article we propose a new technique based
on spectral residues, and apply this method to derive some results of an enumerative nature.
Let us begin by describing one of these results, and then pass to a discussion of spectral
residues.

Let S3(n) denote the discrete simplex of bounded, ordered triples of natural numbers:

S3(n) = {(x, y, z) ∈ N3 : 0 ≤ x < y < z ≤ n}.
In regard to this simplex, we may inquire as to what is more probable: a selection of points
with distinct y coordinates, or a selection of points with distinct x coordinates. The answer
is given by the following.

Theorem 1.1. For every cardinality l between 2 and n − 1, there are more l-element sub-
sets of S3(n) with distinct y coordinates, than there are l-element subsets with distinct x
coordinates.

Let us consider this result from the point of view of generating functions. The number
of points with y = j is j(n − j). Hence the generating function for subsets with distinct
y-values is

Y (t) =
n−1∏
j=1

(1 + j(n− j)t),

where t counts the selected points. The number of points with x = n − j is j(j − 1)/2.
Hence, the generating function for subsets with distinct x-values is

X(t) =
n∏
j=2

(
1 +

j(j − 1)

2
t

)
.

The above theorem is equivalent to the assertion that the coefficients of Y (t) are greater
than the coefficients of X(t). The challenge is to find a way to compare these coefficients.

We will see below this can be accomplished by re-expressing the coefficients in question
as composition sums, and then employing a certain composition sum identity to make the
comparison. We therefore begin by introducing a method for systematically generating such
identities.
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2. The method of spectral residues

Let us consider a sequence of quantities fn, recursively defined by

f0 = 1, (ν − n)fn =
n−1∑
j=0

ajnfj , n = 1, 2, . . . (2.1)

where the ajk, 0 ≤ j < k is a given array of constants, and ν is a parameter. The presence
of the parameter has some interesting consequences.

For instance, it is evident that if ν is a natural number, then there is a possibility that
the relations (2.1) will not admit a solution. To deal with this complication we introduce
the quantities

ρn = Res(fn(ν), ν = n),

and henceforth refer to them as spectral residues. The list ρ1, ρ2, . . . will be called the
spectral residue sequence.

Proposition 2.1. If ν = n then the relations (2.1) do not admit a solution if ρn 6= 0, and
admit multiple solutions if ρn = 0.

Proof. If ν = n, the relations in question admit a solution if and only if

n−1∑
j=1

ajnfj

∣∣∣
ν=n

= 0.

The left-hand side of the above equation is precisely, ρn, the nth spectral residue. It follows
that if ρn = 0, then the value of fn can be freely chosen, and that the solutions are uniquely
determined by this value.

The above proposition is meant to indicate how spectral residues arise naturally in the
context of parameterized, recursively defined sequences. However, our interest in spectral
residues is motivated by the fact that they can be expressed as composition sums. To that
end, let p = (p1, . . . , pl) be an ordered list of natural numbers. We let

sj = p1 + . . .+ pj, j = 1, . . . , l

denote the jth left partial sum and set

|p| = sl = p1 + . . .+ pl.

Let us also define the following abbreviations:

sp =
l−1∏
j=1

sj , ap =
l−1∏
j=1

asjsj+1

Proposition 2.2.

ρn =
∑
|p|=n

ap/sp.
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Composition sum identities arise in this setting because spectral residue sequences enjoy a
certain invariance property.

Let f = (f1, f2, . . . ) and g = (g1, g2, . . . ) be sequences defined, respectively by relation
(2.1) and by

g0 = 1, (ν − n)gn =
n−1∑
j=0

bjngj, n = 1, 2, . . .

Definition 2.3. We will say that f and g are unipotently equivalent if gn = fn plus a ν-
independent linear combination of f1, . . . , fn−1.

The motivation for this terminology is as follows. It is natural to represent the coefficients
aij and bij by infinite, lower nilpotent matrices, call them A and B. Let Dν denote the
diagonal matrix with entry ν −n in position n+ 1. The sequences f and g are then nothing
but generators of the kernels of Dν −A and Dν −B, respectively. The condition that f and
g are unipotently equivalent amounts to the condition that Dν −A and Dν −B are related
by a unipotent matrix factor.

Unipotent equivalence is, evidently, an equivalence relation on the set of sequences of type
(2.1).

Proposition 2.4. The spectral residue sequence is an invariant of the corresponding equiv-
alence classes.

Proof. The recursive nature of the fk ensures that Res(fk; ν = n) vanishes for all k < n. The
proposition now follows by inspection of Definition 2.3.

The application of this result to composition identities is immediate.

Corollary 2.5. If aij and bij are nilpotent arrays of constants such that the corresponding
f and g are unipotently equivalent, then necessarily∑

|p|=n

ap/sp =
∑
|p|=n

bp/sp.

Due to its general nature, the above result does not, by itself, lead to interesting com-
position sum identities. In the search for useful applications we will limit our attention
to recursively defined sequences arising from series solutions of linear differential equations.
Consideration of both first and second order equations in one independent variable will prove
fruitful. Indeed, in the next section we will show that the first-order case naturally leads to
the exponential formula of labelled counting [7, §3]. The second-order case will be considered
after that; it leads naturally to the type of result discussed in the introduction.
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3. Spectral residues of first-order equations.

Let U = U1z + U2z
2 + . . . be a formal power series with zero constant term, and let φ(z)

be the series solution of the following parameterized, first-order, differential equation:

zφ′(z) + [U(z)− ν]φ(z) + ν = 0, φ(0) = 1.

Equivalently, the coefficients of φ(z) must satisfy

φ0 = 1, (ν − n)φn =
n−1∑
j=0

Un−jφj.

In order to obtain a composition sum identity we seek a related equation whose solution
will be unipotently related to φ(z). It is well known that a linear, first-order differential
equation can be integrated by means of a gauge transformation. Indeed, setting

σ(z) =
∞∑
k=1

Uk
zk

k
,

ψ(z) = exp(σ(z))φ(z)

our differential equation is transformed into

zψ′(z)− νψ(z) + ν exp(σ(z)) = 0.

Evidently, the coefficients of φ and ψ are unipotently related, and hence we obtain the
following composition sum identity.

Proposition 3.1. Setting Up =
∏

i Upi for p = (p1, . . . , pl) we have∑
n

∑
|p|=n

Up

sp

zn

n
= exp

(∑
k

Uk
zk

k

)
. (3.2)

The above identity has an interesting interpretation in the context of labelled counting,
e.g. the enumeration of labelled graphs. In our discussion we will adopt the terminology
introduced in H. Wilf’s book [7]. For each natural number k ≥ 1 let Dk be a set — we will
call it a deck — whose elements we will refer to as pictures of weight k. A card of weight k
is a pair consisting of a picture of weight k and a k-element subset of N that we will call the
label set of the card. A hand of weight n and size l is a set of l cards whose weights add up
to n and whose label sets form a partition of {1, 2, . . . , n} into l disjoint groups. The goal of
labelled counting is to establish a relation between the cardinality of the sets of hands and
the cardinality of the decks.

For example, when dealing with labelled graphs, Dk is the set of all connected k-graphs
whose vertices are labelled by 1, 2, . . . , k. A card of weight k is a connected k-graph labelled
by any k natural numbers. Equivalently, a card can be specified as a picture and a set of
natural number labels. To construct the card we label vertex 1 in the picture by the smallest
label, vertex 2 by the next smallest label, etc. Finally, a hand of weight n is an n-graph (not
necessarily connected) whose vertices are labelled by 1, 2, . . . , n.
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Let dk denote the cardinality of Dk and set

d(z) =
∑
k

dk
zk

k!

Similarly let hnl denote the cardinality of the set of hands of weight n and size l, and set

h(y, z) =
∑
nl

hnl y
l z

n

n!
.

The exponential formula of labelled counting is an identity that relates the above generating
functions. Here it is:

h(y, z) = exp(y d(z)). (3.3)

To establish the equivalence of (3.2) and (3.3) we need to introduce some extra terminology.
Consider a list of l cards with weights p1, . . . , pl and label sets S1, . . . , Sl. We will say that
such a list forms an ordered hand if

min(Si) < min(Si+1), for all i = 1, . . . , l − 1.

Evidently, each hand (a set of cards) corresponds to a unique ordered hand (an ordered list
of the same cards), and hence we seek a way to enumerate the set of all ordered hands of
weight n and size l.

Let us fix a composition p = (p1, . . . , pl) of a natural number n, and consider a permutation
π = (π1, . . . , πn) of {1, . . . , n}. Let us sort π according to the following scheme. Exchange π1

and 1 and then sort π2, . . . , πp1 into ascending order. Next exchange πp1+1 and the minimum
of πp1+1, . . . , πn and then sort πp1+2, . . . , πp2 into ascending order. Continue in an analogous
fashion l − 2 more times. The resulting permutation will describe a division of {1, . . . , n}
into l ordered blocks, with the blocks themselves being ordered according to their smallest
elements. Call such a permutation p-ordered. Evidently, each p-ordered permutation can
be obtained by sorting

sp × n×
∏
i

(pi − 1)!

different permutations.
Next, let us note that an ordered hand can be specified in terms of the following ingredients:

a composition p of n, one of
∏

i dpi choices of pictures of weights p1, . . . , pl, and a p-ordered
permutation. It follows that

hnl =
∑
|p|=n

p=(p1,... ,pl)

n!

sp × n×
∏

i(pi − 1)!

∏
i

dpi.

Finally, we can establish the equivalence of (3.2) and (3.3) by setting

Uk =
dk

(k − 1)!
y.
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4. Spectral residues of second-order equations.

Let U = U1z + U2z
2 + . . . be a formal power series with zero constant term, and let φ(z)

be the series solution of the following second-order, linear differential equation:

z2φ′′(z) + (1− ν)zφ′z + U(z)φ(z) = 0, φ(0) = 1. (4.4)

Equivalently, the coefficients of φ(z) are determined by

φ0 = 1, n(ν − n)φn =
n−1∑
j=0

Un−jφj.

Two remarks are in order at this point. First, the class of equations described by (4.4)
is closely related to the class of self-adjoint second-order equations. Indeed, conjugation by
a gauge factor zν/2 transforms (4.4) into self-adjoint form with potential U(z) and energy
ν2/4. The solutions of the self-adjoint form are formal series multiplied by zν/2, so nothing
is lost by working with the “nearly” self-adjoint form (4.4).

Second, there is no loss of generality in restricting our focus to the self-adjoint equations.
Every second-order linear equation can be gauge-transformed into self-adjoint form, and as
we saw above, spectral residue sequences are invariant with respect to gauge transformations.
Indeed, as we shall demonstrate shortly, the potential U(z) is uniquely determined by its
corresponding residue sequence.

Proposition 4.1. The spectral residues corresponding to (4.4) are

ρn =
1

n

∑
|p|=n

Up

sp sp′
,

where as before, for p = (p1, . . . , pl), we write Up for
∏

i Upi, and write p′ for the reversed
composition (pl, pl−1, . . . , p1).

Since ρn = Un/n plus a polynomial of U1, . . . , Un−1, it is evident that the spectral residue
sequence completely determines the potential U(z). An explicit formula for the inverse
relation is given in [5].

Interesting composition sum identities will appear in the present context when we consider
exactly-solvable differential equations. We present three such examples below, and discuss
the enumerative interpretations in the next section. In each case the exact solvability comes
about because the equation is gauge-equivalent to either the hypergeometric, or the confluent
hypergeometric equation. Let us also remark — see [5] for the details — that these equations
occupy an important place within the canon of classical quantum mechanics, where they
correspond to various well-known exactly solvable one-dimensional models.

Proposition 4.2. ∑
p=(p1,... ,pl)

|p|=n

(n− 1)!

sp

(n− 1)!

sp′

(∏
i

pi

)
tl =

n∏
j=1

{t+ j(j − 1)}
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Proof. By Proposition 4.1, the left hand side of the above identity is n!(n− 1)! times the nth

spectral residue corresponding to the potential

U(z) =
tz

(z − 1)2
= t
∑
k

kzk.

Setting

t = α(1− α)

and making a change of gauge

φ(z) = (1− z)αψ(z)

transforms (4.4) into

z2ψ′′(z) + (1− ν)ψ′(z)− z

1− z {2αz ψ
′(z) + α(α− ν)ψ(z)} = 0.

Multiplying through by (1− z)/z and setting

γ = 1− ν, β = α− ν,

we recover the usual hypergeometric equation

z(1− z)ψ′′(z) + {γ + (1− α− β)z}ψ′(z)− αβ ψ(z) = 0.

It follows that

ψn =
(α)n(α− ν)n
n!(1− ν)n

,

and hence the nth spectral residue is given by

ρn = (−1)n
∏n

j=1(α− j)(α+ j − 1)

n!(n− 1)!
,

or equivalently by

ρn =

∏n
j=1(t+ j(j − 1))

n!(n− 1)!
.

The asserted identity now follows from the fundamental invariance property of spectral
residues.

Proposition 4.3. ∑
p=(p1,... ,pl)

pi∈{1,2}
|p|=n

(n− 1)!

sp

(n− 1)!

sp′
tn−l =

∏
k

(1 + k2t),

where the right hand index k varies over all positive integers n− 1, n− 3, n− 5, . . . .
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Proof. As in the preceding proof, Proposition 4.1 shows that the left hand side of the present
identity is n!(n− 1)! times the nth spectral residue corresponding to the potential

U(z) = z + tz2.

Setting

t = −ω2,

and making a change of gauge

φ(z) = exp(ωz)ψ(z)

transforms (4.4) into

z2ψ′′(z) + (1− ν)zψ′(z) + 2ωz2ψ′(z) + z (ω(1− ν) + 1)ψ(z) = 0.

Dividing through by z and setting

γ = 1− ν, 1 = ω(2α+ ν − 1),

we obtain the following scaled variation of the confluent hypergeometric equation:

zψ′′(z) + (γ + 2ωz)ψ′(z) + 2ωαψ(z) = 0.

It follows that

ψn =
(−2ω)2(α)n
n!(γ)n

,

and hence that

ρn =

∏n−1
k=0(1 + ω(2k + 1− n))

n!(n− 1)!

=

∏bn−1
2
c

k=0 (1 + t(n− 1− 2k)2)

n!(n− 1)!
.

The asserted identity now follows from the fundamental invariance property of spectral
residues.

Proposition 4.4.∑
p=(p1,... ,pl)

pi odd

|p|=n

(n− 1)!

sp

(n− 1)!

sp′

(∏
i

pi

)
t
n−l

2 =
∏
k

{
1 + (k4 − k2)t

}
,

where the right hand index k ranges over all positive integers n− 1, n− 3, n− 5, . . . .

Proof. By Proposition 4.1, the left hand side of the present identity is n!(n − 1)! tn/2 times
the nth spectral residue corresponding to the potential

U(z) =
1

2
√
t

(
z

(1− z)2
+

z

(1 + z)2

)
=

1√
t

∑
k odd

kzk.
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The rest of the proof is similar to, but somewhat more involved than the proofs of the
preceding two Propositions. Suffice it to say that with the above potential, equation (4.4)
can be integrated by means of a hypergeometric function. This fact, in turn, serves to
establish the identity in question. The details of this argument are to be found in [5].

5. Distribution of coordinate values in a discrete simplex

In this section we consider enumerative interpretations of the composition sum identi-
ties derived in Proposition 4.2, 4.3, 4.4. Let us begin with some general remarks about
compositions.

There is a natural bijective correspondence between the set of compositions of n and
the powerset of {1, . . . , n − 1}. The correspondence works by mapping a composition p =
(p1, . . . , pl) to the set of left partial sums {s1, . . . , sl−1}, henceforth to be denoted by Lp.
It may be useful to visualize this correspondence it terms of a “walk” from 0 to n: the
composition specifies a sequence of displacements, and Lp is the set of points visited along the
way. One final item of terminology: we will call two compositions p, q of n complimentary,
whenever Lp and Lq disjointly partition {1, . . . , n− 1}.

Now let us turn to the proof of Theorem 1.1. As was mentioned in the introduction, this
Theorem is equivalent to the assertion that the coefficients of

Y (t) =
n−1∏
j=1

(1 + j(n− j)t)

are greater than the corresponding coefficients of

X(t) =
n∏
j=2

(
1 +

j(j − 1)

2
t

)
.

Rewriting the former function as a composition sum we have

Y (t) =
∑

p=(p1,... ,pl)

|p|=n

sp sp′ t
l,

or equivalently

Y (t) =
∑

p=(p1,... ,pl)

|p|=n

(n− 1)!

sp

(n− 1)!

sp′
tn−l.

On the other hand, Proposition 4.2 allows us to write

X(t) =
∑

p=(p1,... ,pl)

|p|=n

(n− 1)!

sp

(n− 1)!

sp′

(∏
i

pi
2pi−1

)
tn−l.
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It now becomes a straightforward matter to compare the coefficients of Y (t) to those of X(t).
Indeed the desired conclusion follows from the rather obvious inequality:

k ≤ 2k−1, k = 1, 2, 3 . . . ,

the inequality being strict for k ≥ 3.
Let us now turn to an enumerative interpretation of the composition sum identity featured

in Proposition 4.3. In order to state the upcoming result we need to define two notions of
sparseness for subsets of S3(n). Let us call a multiset M of integers sparse if M does not
contain duplicates, and if

|a− b| ≥ 2

for all distinct a, b ∈M . Let us also say that a multiset M is 2-sparse if M does not contain
duplicates, and if there do not exist distinct a, b ∈M such that

ba/2c = bb/2c.

It isn’t hard to see that sparseness is a more restrictive notion than 2-sparseness, i.e. if M
is sparse, then it is necessarily 2-sparse, but not the other way around. For example, the set

{1, 3, 4, 7}

is not sparse, but it is 2-sparse.
We require one other item of notation. For A ⊂ S3(n) we let πx(A) denote the multiset

of x-coordinates of points in A, and let πy(A) denote the multiset of y-coordinates. We are
now ready to state

Theorem 5.1. For every cardinality l between 2 and n−1, there are more l-element subsets
A of S3(n) such that πy(A) is sparse, than there are l-element subsets A such that πx(A) is
sparse. Indeed, the number of l-element subsets A of S3(n) such that πy(A) is sparse is equal
to the number of l-element subsets A of S3(n) such that πx(A) is merely 2-sparse.

Proof. Let p be a composition of n. Let us begin by noting that the corresponding Lp is
sparse if and only if the complimentary composition consists of 1’s and 2’s only. It therefore
follows that the enumerating function for A ⊂ S3(n) such that πy(A) is sparse is∑

p=(p1,... ,pl)

pi∈{1,2}
|p|=n

(n− 1)!

sp

(n− 1)!

sp′
tn−l.

On the other hand the number of (x, y, z) ∈ S3(n) such that x ∈ {2k, 2k + 1} for any given
k is precisely (

n− 2k

2

)
+

(
n− 2k − 1

2

)
= (n− 2k − 1)2.
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Hence the enumerating function for A ⊂ S3(n) such that πx(A) is 2-sparse is

b(n−1)/2c∏
k=0

(
1 + (n− 2k − 1)2t

)
.

The two enumerating functions are equal by Proposition 4.3.

Finally, let us consider an enumerative interpretation of the composition sum identity
featured in Proposition 4.3. The setting for this result will be S5(n), the discrete simplex of all
bounded, ordered 5-tuples (x1, x2, x3, x4, x5). For A ⊂ S5(n) we will use πi(A), i = 1, . . . , 5
to denote the corresponding multiset of xi coordinate values.

Theorem 5.2. For every cardinality l between 2 and n−3, there are more l-element subsets
A of S5(n) such that π3(A) is sparse, than there are l-element subsets A such that π1(A) is
2-sparse.

Proof. Let us note that the number of points in S5(n) such that x3 = j + 1 is given by(
j + 1

2

)(
n− j − 1

2

)
.

Hence, the enumerating function for the first class of subsets is given by

X3(t) =
∑

p=(p1,... ,pl)

pi∈{1,2}
|p|=n−2

∏
j 6∈Lp

j(j + 1)(n− j − 1)(n− j − 2)

4

 tn−2−l.

Now there is a natural bijection between the set of compositions of n− 2 by {1, 2} and the
set of compositions of n − 1 by odd numbers. The bijection works by prepending a 1 to a
composition of the former type, and then performing substitutions of the form

(. . . , k, 2, . . . ) 7→ (. . . , k + 2, . . . ), k odd.

Consequently, we can write

X3(t) =
∑

p=(p1,... ,pl)

pi odd

|p|=n−1

n!

sp

n!

sp′

(
t

4

)(n−1−l)/2
. (5.5)

Turning to the other class of subsets, the number of points (x1, . . . , x5) that satisfy

x1 ∈ {2j, 2j + 1}
is given by (

n− 2j

4

)
+

(
n− 2j − 1

4

)
=

(n− 2j − 2)4 − (n− 2j − 2)2

12
.
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Consequently the enumerating function for subsets A such that π1(A) is 2-sparse is given by

X1(t) =
∏
k

(
1 + (k4 − k2)

t

12

)
,

where k ranges over all positive integers n− 2, n− 4, . . . . Next, using the identity in Propo-
sition 4.4 we have

X1(t) =
∑

p=(p1,... ,pl)

pi odd

|p|=n−1

(n− 1)!

sp

(n− 1)!

sp′

(∏
i

pi
3(pi−1)/2

)(
t

4

)(n−1−l)/2
.

Using (5.5) it now becomes a straightforward matter to compare X1(t) to X3(t). Indeed, the
desired conclusion follows from the following evident inequality:

k ≤ 3(k−1)/2, k = 1, 3, 5, . . . ,

the inequality being strict for k ≥ 5.

6. Conclusion

The above discussion centers around two major themes: spectral residues, and the dis-
tribution of coordinate values in a simplex of bounded, ordered integer tuples. In the first
case, we have demonstrated that the method of spectral residues leads to composition sum
identities with interesting interpretations. We have considered here parameterized recursive
relations corresponding to first and second-order linear differential equations in one inde-
pendent variable. The next step in this line of inquiry would be to consider other classes
of parameterized recursive relations — perhaps non-linear, perhaps corresponding to partial
differential equations — in the hope that new and useful composition sum identities would
follow.

In the second case, we have uncovered an interesting geometrical property of the order
simplex. Theorems 1.1, 5.1, 5.2 support the conclusion that the middle dimensions of an
order simplex are more “ample” then the outer dimensions. However the 3 results we have
been able to establish all depend on very specific identities, and do not provide a general
tool for the investigation of this phenomenon. To put it another way, our results suggest the
following

Conjecture 6.1. Let N be a natural number greater than 2 and d a natural number strictly
less than N/2 − 1. Let n ≥ N be another natural number. For every sufficiently small
cardinality l, there are more l-element subsets of SN(n) with distinct xd+1 coordinates, than
there are l-element subsets with distinct xd coordinates.

It would also be interesting to see whether this conjecture holds if we consider subsets of
points with sparse, rather than distinct sets of coordinate values.
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Finally, Theorem (5.1) deserves closer scrutiny, because it describes a bijection of sets,
rather than a mere comparison. It is tempting to conjecture that this bijection has an
enumerative explanation based on some combinatorial algorithm.
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