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Abstract

In this article, Temperley’s bijection between spanning trees of the square grid
on the one hand, and perfect matchings (also known as dimer coverings) of the
square grid on the other, is extended to the setting of general planar directed (and
undirected) graphs, where edges carry nonnegative weights that induce a weighting
on the set of spanning trees. We show that the weighted, directed spanning trees
(often called arborescences) of any planar graph G can be put into a one-to-one
weight-preserving correspondence with the perfect matchings of a related planar
graph H.

One special case of this result is a bijection between perfect matchings of
the hexagonal honeycomb lattice and directed spanning trees of a triangular lat-
tice. Another special case gives a correspondence between perfect matchings of
the “square-octagon” lattice and directed weighted spanning trees on a directed
weighted version of the cartesian lattice.

In conjunction with results of Kenyon (1997b), our main theorem allows us
to compute the measures of all cylinder events for random spanning trees on any
(directed, weighted) planar graph. Conversely, in cases where the perfect matching
model arises from a tree model, Wilson’s algorithm allows us to quickly generate
random samples of perfect matchings.

1. Introduction

Temperley (1972) observed that asymptotically the m × n rectangular grid has about
as many spanning trees as the 2m × 2n rectangular grid has perfect matchings (dimer
coverings). Soon afterwards he found a bijection between spanning trees of the m × n
grid and perfect matchings in the (2m + 1) × (2n + 1) rectangular grid with a corner
removed (Temperley, 1974). The second author of the present article and, independently,
Burton and Pemantle (1993) generalized this bijection to map spanning trees of general
(undirected unweighted) plane graphs to perfect matchings of a related graph. Here we
extend this bijection to the directed weighted case.

∗Supported by NSA grant MDA904-92-H-3060, NSF grant DMS 92-06374, and a grant from the
MIT class of 1922.
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This generalized bijection can be viewed as a way of “reducing” planar spanning tree
systems to planar dimer systems (though not vice versa in general): for any graph whose
spanning trees we are interested in, there is a related graph whose dimer coverings are
in a natural one-to-one weight-preserving correspondence with the spanning trees of the
original graph. Thus properties of spanning trees on any planar graph can be studied by
considering the related dimer system. However, only certain dimer systems are related
to spanning tree systems in the aforementioned way. Two important examples are per-
fect matchings of finite subgraphs of the hexagonal honeycomb lattice (combinatorially
equivalent to “lozenge” tilings of finite regions; see e.g. Kuperberg (1994)) and per-
fect matchings of finite subgraphs of the “square-octagon” lattice. Both of these dimer
models are in bijection with weighted, directed spanning trees on associated graphs.

There are a number of important applications of our bijection. Some questions
about spanning tree models do not seem to be amenable to direct analysis, but can be
approached if one first translates the problem into one involving the associated dimer
model and then makes use of tools available in that context. Conversely, some problems
involving dimers are most easily handled if one converts them into problems involving
spanning trees (though this can be done only for a limited class of dimer models). We
now describe these applications in greater detail.

One example of a spanning tree property that is easy to study after reducing the
problem to that of dimers is the computation of certain probabilities, such as the prob-
ability that a directed edge e1 is in the tree and the directed dual edge e2 is in the dual
tree. (For a definition of dual tree, see § 2.) The presence or absence of the dual edge e2

in the dual tree is not a local event with respect to the (primal) tree model; that is, the
event is not determined by the presence or absence of a fixed set of edges in the primal
tree. (The fact that e2 is an oriented edge is crucial here.) On the other hand, the
event in question is a local event in the associated matching process, since the matching
directly incorporates both primal and dual directed trees. The probabilities of local
events in either the tree or matching model are easy to compute (Burton and Pemantle
(1993), Kenyon (1997b)), but events of the above type are harder if not impossible to
compute from the point of view of the tree only (Burton and Pemantle, 1993).

Another spanning tree property that can be studied via dimers is the number of
times that the path connecting two points in a spanning tree winds around the two
points. In § 5 we relate these winding numbers to height functions in the dimer model;
the first author has shown in Kenyon (1997b) how to compute properties of these height
functions (and consequently the corresponding winding numbers) such as the variance.

Dimer systems can also be studied via trees, if the given dimer system has a spanning
tree model associated with it. For instance, one can sometimes enumerate the dimer
coverings of a graph by counting the number of spanning trees in the associated tree
model. In § 6 we show a variety of such graphs, together with exact formulas for the
number of dimer coverings, where the easiest (or only) way we know to obtain these
formulas is to count spanning trees. In the dimer model on a bounded region, the
boundary can have an important (long-range) effect on the number of configurations
(Cohn et al., 1998). In this case the regions which arise from the associated spanning
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tree process give the most “natural” boundary conditions for the dimer model, in the
sense that the boundary has the least long-range influence (Kenyon, 1997a).

Another case where a spanning tree model is useful for studying the associated dimer
model is in the generation of random samples. Wilson’s algorithm (Propp and Wilson,
1998) can be used to generate random spanning trees quickly — the expected running
time is given by the sum of two mean hitting times. For the lattice of octagons and
squares, the expected running time is linear in the number of vertices. For the usual
lattice of squares, when a rectangular region has moderate aspect ratio, the running
time is nearly linear, but with a logarithmic correction factor.

Finally, Burton and Pemantle (1993) prove that the uniform measure on spanning
trees of the n × n square grid converges as n → ∞ to the unique translation-invariant
measure of maximal entropy on the set of spanning forests with no finite component.
Consequently the associated dimer model (on Z2) has a unique translation-invariant
measure of maximal entropy. We do not know how to prove this directly from the dimer
model itself, or in any other dimer model except those arising from our construction via
a bijection with undirected (but possibly weighted) spanning trees.

We remark that other combinatorial systems that can also be reduced to dimer
systems in a similarly simple way include the Ising model on planar graphs (Fisher, 1966)
and systems of non-intersecting lattice paths (Lindström, 1973; Gessel and Viennot,
1989).

In § 2 we prove the generalized version of Temperley’s bijection. In the two succeed-
ing sections (§§ 3-4) we illustrate the bijection with two examples: In § 3 we exhibit a
bijection between directed spanning trees on the triangular lattice and perfect match-
ings of the hexagonal honeycomb lattice. Our bijection cannot be applied directly to
matchings on the square-octagon lattice, but in § 4 we show how to locally transform
this lattice so that the bijection can be applied. This transformation enables the rapid
generation of random dimer configurations of the square-octagon lattice. Then in § 5
we show how the winding number of arcs in a spanning tree can be related to the height
function on the corresponding perfect matching. In § 6 we use our generalized bijection
to compute the exact number of perfect matchings of some “locally symmetric” finite
planar graphs, that is, graphs that arise as finite induced subgraphs of highly symmetric
infinite planar graphs. Lastly, in § 7 we give some open problems.

2. Generalized Temperley Bijection

Let G be a finite connected directed graph embedded in the plane, with multiple edges
and self-loops allowed. In general the edges of G will be weighted, that is, each directed
edge from vertex u to vertex v has a nonnegative weight assigned to it, which need not
be the same as the weight of other directed edges from u to v or from v to u. Undirected
graphs can be fit into our framework by thinking of each undirected edge as two directed
edges, one in each direction, embedded in the plane so as to coincide. (We will discuss
issues related to choice of embedding at the end of this section.) Unweighted graphs can
be fit into our framework by assigning each edge weight 1.
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By a directed spanning tree (or arborescence) T of G we mean a connected,
contractible union of (directed) edges such that each vertex of G except one has exactly
one outgoing edge in T . Note that the exceptional vertex necessarily has no outgoing
edges in T ; it is called the root of T . We define the weight of such a tree T to be the
product of the weights of its edges.

11
00

44
v*

33
22

00
11

11
11

00

22 55

f*f* f*f*

11
00

44
v*

33
22

00
11

11
11

00

22 55

33
22 11

11
11

22 55

11
11 11

11

11
11 11

v*

33
11

11

55

f*f*

v*

f*f*

33
11

11

55

33
11

11

55

11

11

Figure 1: Illustration of the generalized Temperley bijection.

We will make a new weighted graph H(G) based on G, as shown in the top half of
Figure 1. G is shown in the top left-most panel. G⊥, the dual graph of G (second panel),
has vertices, edges, and faces of G⊥ corresponding to faces, edges, and vertices of G,
respectively (including a vertex, here marked f∗, that corresponds to the unbounded,
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external face of G, and is represented in “extended form”, i.e., as a spread-out region
rather than a small dot). We can embed G and G⊥ simultaneously in the plane, such
that an edge e of G crosses the corresponding dual edge e⊥ of G⊥ exactly once and
crosses no other edge of G⊥. If we introduce a new vertex at each such crossing, we get
the graph shown in the third panel. This is the graph H(G). Pictorially, we may derive
H(G) from G by adding a new node on each edge e and a new node on each face f and
joining them by a new edge if e is part of the boundary of f . To avoid confusion, we
will say that H(G) has nodes and links whereas G has vertices and edges.

Here is an alternative, direct definition of H(G) that does not go by way of the dual
graph. Put V = the set of vertices of G, E = the set of edges, F = the set of faces
(including the unbounded face). Define H(G) as the weighted undirected graph with a
node v corresponding to each vertex v of G, a node e corresponding to each edge e of G,
and a node f corresponding to each face f of G, with a link joining two nodes in H(G)
if the corresponding structures in G are either an edge and one of its endpoints or an
edge and one of the faces it bounds.

The weight of a link between a vertex-node v and an edge-node e (where v is an
endpoint of e in G) is the weight of edge e in G directed away from v. The weight of a
link between a face-node f and an edge-node e (where e bounds face f in G) is always
1.

A perfect matching of a graph H is a collection of edges M such that each vertex
is a vertex of exactly one edge of M . The weight of a perfect matching is the product
of the weights of its edges (1 by default in the unweighted case).

In the case of both trees and matchings, the weighting gives rise to a probability
distribution on the objects in question, in which the probability of any particular object
(tree or matching) is proportional to its weight.

Let v∗ be a vertex of G and f ∗ a face of G, and let H = H(v∗, f ∗) be the induced
subgraph of H(G) obtained by deleting the nodes v∗, f ∗ (along with all incident edges
in H(G)), as shown in the fourth panel of the top half of Figure 1). Since by Euler’s
formula (|V | − 1) + (|F | − 1) = |E|, H(v∗, f ∗) is a balanced bipartite graph, so it may
have perfect matchings. (For a nice tree-based proof of Euler’s formula, see (Aigner and
Ziegler, 1998, page 57).)

Theorem 1 If v∗ is incident with f ∗, then there is a weight-preserving bijection between
spanning trees of G rooted at v∗ and perfect matchings of H(v∗, f ∗). If v∗ is not incident
with f ∗, there remains a weight-preserving injection from the spanning trees of G rooted
at v∗ to the perfect matchings of H(v∗, f ∗).

This theorem, along with its proof, is a generalization of a result of Temperley
(1974) which is discussed in problem 4.30 of (Lovász, 1979, pages 34, 104, 243–244).
The unweighted undirected generalization was independently discovered by Burton and
Pemantle (1993), who applied it to infinite graphs, and also by F. Y. Wu, who included
it in lecture notes for a course.



the electronic journal of combinatorics 7 (2000), #R25 6

Note that in the special case when we take all weights of G to be 1, the first part of
the theorem implies that the number of perfect matchings of H(v∗, f ∗) is independent
of v∗ and f ∗, provided that v∗ and f ∗ are incident with one another.

Henceforth, we refer to perfect matchings as simply “matchings,” and directed span-
ning trees of G rooted at v∗ as simply “spanning trees” or occasionally just “trees.”

Proof of theorem: It will be enough to exhibit a weight-preserving injective
mapping from the set of spanning trees of G into the set of matchings of H(v∗, f ∗), and
to show that when v∗ is incident with f ∗, every matching of H(v∗, f ∗) arises from a
spanning tree of G.

Given a spanning tree T of G rooted at V ∗, the set of edges of G⊥ that do not cross
edges of T form a spanning tree of G⊥, called the dual tree and here denoted by T⊥.
Orient the edges of T⊥ so that they point towards f ∗. Then a matching M of H(v∗, f ∗)
can be obtained as shown in the bottom half of Figure 1. Specifically, for each v ∈ V ,
pair v with the unique e such that v is an endpoint of e and e is pointing away from v in
the orientation of T , and for each f ∈ F , pair f with the unique e such that e bounds f
and e⊥ is pointing away from f in the orientation of T⊥. The left panel shows the tree
T ; the second panel shows the dual tree T⊥; the third panel shows both trees; and the
fourth panel shows the matching M , which has the same weight as T .

To verify that this construction always gives a matching M of H(v∗, f ∗), it suffices
to show that no edge-node e is paired twice. But this could only happen if we had e ∈ T
and e⊥ ∈ T⊥, contradicting the definition of a dual tree.

From the matching M we can easily recover T as the set of edges e such that e
is paired with a vertex-node in H(v∗, f ∗) under the matching M . Hence the mapping
T 7→M is injective.

Now suppose v∗ is incident with f ∗, and let M be a matching of H(v∗, f ∗). Let T̃ be
the set of edges e of G such that e is paired with a vertex-node by M . To complete the
proof of the theorem, we must show that T̃ is a spanning tree. Note that T̃ has |V | − 1

edges, so it suffices to prove that T̃ is acyclic.
Suppose T̃ contained a cycle C, say of length n. C divides the plane into two (open)

regions, one of which contains both v∗ and f ∗ and the other of which contains neither.
We claim that each part contains an odd number of nodes of H(G) and hence an odd
number of nodes of the subgraph H(v∗, f ∗) as well. For, suppose we modify G by
replacing either of the two regions by a single face. By Euler’s formula, the number of
vertices, edges, and faces in the resulting graph must be even. Since there are an even
number of these elements on the cycle C (n vertices and n edges) and an odd number
in the modified region (1 face), the unmodified region must have an odd number of
elements as well.

Since the edges of C disconnect H(v∗, f ∗) into parts lying in the two regions, M
must match each region within itself. But this is impossible, since each region has been
shown to contain an odd number of nodes of H(v∗, f ∗). This completes the proof of the
theorem. �
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As was remarked earlier, the theorem implies that when v′ is incident with f ′ and v′′

is incident with f ′′, the matchings M ′ of H(v′, f ′) are equinumerous with the matchings
M ′′ of H(v′′, f ′′); in fact, the proof of the theorem provides a bijection between the
two sets of matchings. This bijection can be understood without reference to spanning
trees, as a process of “sliding edges.” Specifically, one iteratively defines a chain v′′ =
v0, e0, v1, e1, v2, ... such that, for all i, ei is the node that M ′ pairs with vi and vi+1 is
the vertex of ei that is distinct from vi. This chain cannot repeat any vertices, since any
closed loop would encircle an odd number of nodes (see the preceding proof), so it must
terminate by arriving at v′ after some number of steps. That is, the chain must be of
the form

v′′ = v0, e0, v1, e1, v2, ..., er−1, vr = v′

for some r. Once one has found such a chain, one modifies the matching M ′ by pairing
ei with vi+1 instead of vi. One then does the same with a chain of dual-edges joining
the faces f ′′ and f ′, obtaining the desired matching M ′′.

We also remark that in addition to one’s having a choice of which vertex-node and
face-node to delete, one often has a choice of how to embed a graph in the plane in
the first place. For instance, in the case where G has a single edge from u to v and a
single edge from v to u, we allowed the two edges to be embedded so as to coincide.
What if we had required the embedding to be proper, so that the two edges could meet
only at their endpoints? Then one would get a slightly enlarged graph H(G) in which a
single edge-node in the original H(G) was replaced by two edge-nodes and a face-node
in between (corresponding to the digon bounded by the two edges). It is easy to see
in this case that perfect matchings of the first H(G; v∗, f ∗) are in bijection with perfect
matchings of the second H(G; v∗, f ∗). When there are multiple directed edges in each
direction, the number of possible embeddings increases rapidly; but our main bijection
theorem guarantees that the number of matchings of H(G; v∗, f ∗) is insensitive to the
choice of embedding.

Moreover, having several directed edges from v to w is in a certain sense equivalent
to having a single edge from v to w whose weight is the sum of the weights of those
directed edges. It is not true that the spanning trees of the former graph are in bijection
with those of the latter graph; however, there is an obvious mapping from the former to
the latter, and this correspondence is weight-preserving, in the sense that the weight of
a spanning tree of the smaller graph is the sum of the weights of the spanning trees in
the larger graph to which it corresponds. It follows that the sum of the weights of all
the spanning trees is the same for both graphs.

Given a graph H, it can be an amusing problem to find a directed graph G such
that H(G; v∗, f ∗) = H. We leave it to the reader to show that this cannot be done with
the square-octagon lattice of Figure 3. (That is, there is a finite subgraph of the lattice,
such that any subregion H of the square-octagon lattice containing this subgraph will
fail to be of the form H(G; v∗, f ∗).)
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3. The Hexagonal Lattice

In this section we illustrate the technique of Theorem 1 by giving a bijection between
spanning trees of a directed graph and matchings in the hexagonal (honeycomb) lattice.

Figure 2: Generalized Temperley bijection for the hexagonal lattice.

Panel (a) of Figure 2 contains the plane graph G, a directed triangular lattice. (Here
and throughout the rest of the article, the upper-left, upper-right, lower-left, and lower-
right panels of a four-panel figure will be denoted by (a), (b), (c), and (d), respectively.)
G contains an “outer vertex” which is represented in extended form, in this case drawn
as a large hexagon. In the examples throughout the rest of the article, either G or G⊥

(or both) will have an outer vertex that is drawn in extended form. Panel (b) shows the
dual of G, a hexagonal lattice. The edges in panel (b) have been drawn bent slightly
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so that the union of G and its dual (panel (c)) can be recognized as a subset of the
hexagonal lattice. The dotted edges in panel (c) have weight zero, and may be omitted;
they are shown only to highlight the connection with panel (a). The graph H(G) can
be read off from panel (c); it is a hexagonal lattice with about three times as many
hexagons as G⊥. Panel (d) shows the graph H(v∗, f ∗), which is obtained from H(G) by
removing v∗ (the outer vertex of G) and f ∗ (the leftmost vertex at the top of G⊥). We
shall apply this correspondence in § 6.9.

4. The Square-Octagon Lattice

Here we illustrate a less direct application of Theorem 1, and give a bijection between
perfect matchings of certain planar graphs and spanning trees on an associated graph.
Consider perfect matchings on the square-octagon lattice, an excerpt of which is shown
in Figure 3. This graph does not arise as H(G) for any graph G, so Theorem 1 does
not apply immediately. Nonetheless, it is possible to generalize the bijection to apply

Figure 3: A portion of the square-octagon lattice.

to this lattice. To do it we need to apply two transformations to the lattice. The
first transformation is called “urban renewal,” a term coined by the second author,
who learned of the method from Greg Kuperberg. In the second transformation, we
adjust the edge weights. At that point, if a square-octagon region has suitable boundary
conditions, the transformed graph can be expressed as H(G) for some graph G.
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4.1. Urban renewal

Tricks such as urban renewal have been used by researchers in the statistical mechanics
literature for decades, but since understanding it is essential for what follows, a descrip-
tion is included here of the special case of urban renewal that we will need. One views
the square-octagon lattice as a set of cities (the squares) that communicate with one
another via the edges that separate octagons. Now the graph of cities (with each city
being thought of as adjacent to the four closest cities) is itself bipartite, so we may say
that every city is either rich or poor, with every poor city having four rich neighbors and
vice versa. The process of urban renewal on a poor city merges each of its four vertices
with its four neighboring vertices, and then changes the weights of the edges of the poor
city from 1 to 1/2, as shown in Figure 4. We will show that the sum of the weights of
the matchings in the “before” graph is twice the sum of the weights of the matchings in
the “after” graph. We will do this by associating with each matching in the before graph
one or two matchings in the after graph, and vice versa. More precisely, we divide the
set of matchings in the before graph into equivalence classes of size 1 or 2, and likewise
with the set of matchings of the after graph, and we create a bijection between these
equivalence classes so that the weight of each class in the before graph (that is, the sum
of the weights of the matchings that constitute that class) is twice the weight of the
associated class in the after graph.

½

½

½ ½

Figure 4: Urban renewal. The poor city is the inner square in the left graph, and is
connected to the rest of the graph (not shown) via only four vertices at the corners,
some of which may actually be absent. The city and its connections are replaced with
weight 1/2 edges, shown as dashed lines. All other edges have weight 1.

Matchings in the “before” graph get mapped via urban renewal to matchings in the
“after” graph by deleting the four vertices of the poor city and its incident edges, and
then pairing up any resulting unpaired vertices. Prior to urban renewal, every matching
will match k of the poor city’s vertices with the rest of the graph, with k equal to 0,
2, or 4; if k = 2, then these vertices are adjacent. If k = 0, then since the city has
two possible matchings, a pair of matchings in the “before” graph get mapped to one
matching (of half their combined weight) in the “after” graph. If k = 2 (two of the
poor city’s vertices match to each other and two match outward), then the matching in
the before graph gets mapped to a matching in the after graph that uses one weight-
1/2 edge. The matchings with k = 4 get mapped to a pair of matchings in the after
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graph, each using two weight-1/2 edges. Thus urban renewal on a poor city will reduce
the weighted sum of matchings by a factor of 1/2. (If one is trying to generate random
matchings rather than merely count them, then, given a random bit, a random matching
in the before graph is readily transformed into a random matching in the after graph,
and conversely, given a random bit, a random matching in the after graph is readily
transformed into a random matching in the before graph.)

The preceding discussion applies to cities in the interior of a finite subgraph of the
infinite square-octagon grid. Along the boundaries, some of the poor cities may not have
four neighbors, but urban renewal can still be done. One way to see this is to adjoin
a pair of connected vertices to the graph for each missing poor city’s neighbor, and
connect one of these vertices to the poor city. This operation won’t affect the number
of matchings or their weights, and after urban renewal, the pair may be deleted again,
again without affecting the matchings — so if some of the poor city’s vertices don’t have
neighbors, these vertices are deleted by urban renewal.

Doing urban renewal on each of the poor cities in the square-octagon lattice will
yield the more familiar Cartesian lattice.

4.2. Weighted directed spanning trees

Consider the finite square-octagon graph shown in Figure 5. It has 3 octagonal bumps
on the left, and four on top, so by convention let’s call it a region of order 3, 4. (In a
region of order L,M , there are 2LM octagons.) An octagonal column and octagonal
row meet at a unique square; these will be the rich cities. The rich cities have been
labeled by their coordinates to enhance clarity. The other (L + 1)(M + 1) squares will
be the poor cities, and we will do urban renewal on them as shown in Figure 5. We
will compute the weighted number of matchings of the resulting graph, and multiply by
2(L+1)(M+1).

Now for any vertex, we may re-weight all the edges incident to the vertex (multi-
plying them all by the same constant) without affecting the probability distribution on
matchings: this has the effect of multiplying the weight of any matching by that same
constant. Re-weight the edges as follows: for the rich city (complete or incomplete) with
coordinates i, j (0 ≤ i ≤ M , 0 ≤ j ≤ N), multiply the weights of the edges incident to
the top left and lower right corners by 2−i−j, the other two corners by 2i+j.

Edges that are internal to the rich cities remain weighted by 2i+j2−i−j = 1. The
long edges come in pairs. The lower or right edge of the pair gets its weight doubled, to
become 1, while the upper or left edges of the pair gets its weight halved to become 1/4.

The next thing we need to do is interpret this graph as a plane graph and its dual
(see Figure 6). The upper left vertices of the small squares represent vertices, the lower
right vertices represent faces, and the other two vertices represent edges. The result is
the graph F shown in Figure 6, which has LM + 1 vertices — LM of them on a grid,
and one “outer vertex” (not in the original graph) that all the open edges connect to. A
random spanning tree on the vertices of this graph rooted at the outer vertex determines
a dual tree on the faces of this graph, rooted at the upper left face, and the two together
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ur ur ur ur ur

ur ur ur ur ur

ur ur ur ur ur

ur ur ur ur ur

0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

Figure 5: Region of order 3, 4 before and after urban renewal. The poor cities on
which urban renewal is done are labeled with “ur,” the rich cities are labeled with their
coordinates. Dashed edges have weight 1/2.
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0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

Figure 6: The region from Figure 5 after re-weighting. Dashed edges have weight 1/4.
A distinguished vertex and distinguished outer face have been adjoined to give a graph
H which nicely decomposes into a graph G and a weighted directed graph F .

determine a matching of the graph in Figure 5. The weight of the matching equals the
weight of the primal tree, since the re-weighting left every dual tree with weight one.

4.3. Random generation in linear expected time

Using the loop-erased random-walk spanning tree generator (Propp and Wilson, 1998),
and the bijection derived above between spanning trees of a weighted graph and match-
ings of the square-octagon regions, we can sample random matchings in linear time. The
tree generator builds the tree by doing a sequence of loop-erased random walks on the
underlying graph. (From any vertex v, the probability of moving to a particular neigh-
boring vertex w is proportional to the weight of the edge from v to w; this determines a
random walk on the graph. For details on loop-erasure, see (Propp and Wilson, 1998).)
It has been shown that the expected running time (or rather, number of random-walk
steps) of the tree algorithm is given precisely by∑

v

E

[
# times a that random walk started
at v visits v before hitting the root

]
.

For our random walk, the moves are right or down with probability 4/10 and up or
left with probability 1/10, since in the face graph the links going to the left or up have
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1/4 the weight of the other links. For large graphs, the random walk drifts to the right
and down, so we consider this biased random walk on Z2. Starting at the origin, with
probability 1 the origin is visited finitely many times. Let R be the expected number of
times the random walk returns to its starting location, counting the “return” at time 0,
before drifting off to infinity. The first expression below for R is not hard to check, and
the remaining two can be found in (Beyer, 1981, p. 408):

R =
∞∑
k=0

(
2k

k

)2

(1/5)2k

=

∫ 1

0

∫ 1

0

1

1− (2/5) cos(πx)− (2/5) cos(πy)
dx dy

= (2/π)K(4/5)

with K(k) denoting Legendre’s complete elliptic integral of the first kind. The expected
number of steps to create the random spanning tree is bounded by R

.
= 1.27025 times

the number of vertices, and the remaining steps are readily done deterministically in
linear time.

5. Height Functions and Winding Numbers

In this section we describe the connection between the winding number of a spanning
tree on a planar graph G and a height function on its corresponding matching graph
H. The result, Theorem 3 below, answers a question posed to the first author by Itai
Benjamini.

5.1. Height function definition

We assume that G is connected and that H(G) is embedded in the plane with straight
edges. The straight-line embedding is not necessary for the definition (see below) but
the construction is more geometric in this case. Moreover, we assume that H(G) is
embedded so that one of f ∗ or v∗ is the outer node (as in Figure 7), or else both f∗ and
v∗ are on the outer facet (as in Figure 8).

Recall that each facet of H(G) is a quadrilateral containing a node v̄, a node f̄ , and
two nodes ē1, ē2. The nodes v̄ and f̄ are opposite each other. Let d be the diagonal of
the quadrilateral facet directed from v̄ to f̄ . Let arg(d) ∈ [0, 2π) denote the angle of the
vector d with respect to the x-axis.

Let M be a perfect matching of H(v∗, f ∗) and T, T⊥ respectively the associated
spanning tree and its dual. Let D be the set of the diagonals of facets of H(G). We will
define a real-valued height function h : D → R associated with matching M (refer to
Figure 7 and Figure 8).

Remark In many of our examples in § 6, one or more vertex or face nodes are drawn
in an extended format. In these cases, the “diagonals” incident to an extended node may
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be drawn from any point in the node. In many situations it is natural to draw more than
one diagonal on a facet if one of the nodes bounding it is drawn in an extended fashion
(as in Figure 8), and then each of the diagonals gets its own height. For instance, to
recover the standard definition of height function for matchings of subgraphs of Z2, it is
necessary to draw multiple diagonals (see Figure 8). It is thus more natural to view the
heights as being defined on the diagonals of the facets rather than the facets themselves.

π/12π/125π/65π/6

5π/45π/4

π/2π/2

3π/23π/2

π/6π/6

7π/47π/4

11π/1211π/12

π/4π/4

5π/45π/4

3π/43π/4

7π/47π/4

(+2π)(+2π)
v*

f*f*

Figure 7: The height function for the perfect matching in Figure 1. Since v∗ and f ∗ are
unmatched, the height drops by 2π on the facet containing v∗ and f ∗.

We first cut the plane along the links in the perfect matching M . We need every
vertex-node and face-node to be at the end of one cut, and since neither v∗ nor f ∗ is in
the matching M , we make one additional cut, from v∗ to f ∗. If both v∗ and f ∗ border
the outer facet, then we make the cut between them pass through ∞. If one of v∗ or f ∗

is the outer node, then we view the outer node as being at ∞, so that the cut still goes
to ∞. It is convenient to make this cut split the diagonal from v∗ to f ∗, so that there
are two diagonals in D from v∗ to f ∗, one on either side of the cut.

We require the height function h to satisfy the following local constraint. Suppose
d and d′ are two diagonals that share a vertex node or face node x. Let θ be the angle
required to rotate d to d′ around x. Either the counterclockwise (positive) rotation or
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11

22

11

-2-2

11

00

-1-1
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-1-1

00

f*f*

v*

Figure 8: The height function associated with a perfect matching of another graph. For
backwards compatibility with previous definitions of the height function associated with
dimers on the square lattice, we have (1) measured the heights in quarter-turns rather
than in radians, which introduces a scale factor of π/2, and (2) drawn multiple diagonals
(each with its own height) on facets bounded by an extended node.

the clockwise (negative) rotation will encounter the cut containing x; we take θ to be
the rotation which avoids the cut. The local constraint is

h(d′) = h(d) + θ.
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Lemma 2 Up to a global additive constant, there is a unique height function which
satisfies the local constraints. The additive constant can be chosen so that for each
diagonal d, h(d) ≡ arg(d) mod 2π.

Proof: If two diagonals share the same vertex node or face node, then their height
difference is determined by the local constraints. Suppose that vertices v1 and v2 of G are
connected by an edge, and that f is a face bounded by this edge. The height difference
between the diagonal from v1 to f and the diagonal from v2 to f is determined, and
consequently, the local constraints determine the height difference between any diagonal
with v1 as vertex node and any other diagonal with v2 as vertex node. Since G is
connected, there can be at most one height function (up to global additive constant).

We next check that the local constraints do not overconstrain the height function,
i.e. that there is a height function satisfying them. Between any two diagonals for which
there is a local constraint, one can draw a path connecting the diagonals but which
avoids the cuts. If the local constraints were inconsistent, then there would be a closed
loop in the plane, which avoids the cuts, such that the local constraints on the diagonals
crossed by the loop are inconsistent. Since the cut from v∗ to f ∗ passes through ∞,
the interior of this loop does not contain v∗ or f ∗. Consider such a contradictory loop
surrounding a minimal number of links in the matching M . The loop must cross at least
one diagonal between a vertex node and a face node, and one of these nodes must be in
the interior of the loop. Call this node x. Since x is not v∗ or f ∗, it is paired with an
edge node y in the matching. Since the loop avoids cuts, y is also in the interior of the
loop.

Since x is a vertex node or a face node, the local constraints on the diagonals incident
to x involve rotations that avoid the cut from x to y, and they are evidently consistent.
Since y is an edge node, there are four facets ofH(G) incident to y, and the four diagonals
in these facets form a quadrilateral containing y. The total height change going clockwise
around y is then the sum of the interior angles of this quadrilateral, excluding the angle
at the node x. Since the sum of the interior angles of a quadrilateral is 2π, the total
height change around y is 2π minus the angle at x. Thus the total height change going
around the cut from x to y is constrained to be zero. Therefore the contradictory loop
can be deformed to exclude x and y from its interior, contradicting are assumption that
it surrounds a minimal number of links from the matching M . We conclude that there
are no such contradictory loops, and that the height function is well-defined (up to a
global additive constant).

The second statement of the lemma follows by noting that if for some diagonal d,
h(d) ≡ arg(d) mod 2π, then this relation holds for the neighboring diagonals as well. �

Note that in the case of a matching of Z2, this definition of height function is 2π/4
times the standard definition due to Thurston (1990) (see Figure 8). It is also essentially
equivalent to, but more geometrical than, the definition due to Propp (1993).

When H(G) is embedded in the plane but not with straight edges, one can still
assign to each diagonal d an angle which is the argument of the vector representing the
difference in its endpoints. The orientation of the triple d, `, d′ is a topological condition
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and so does not depend on the fact that the edges of H(G) are straight. Thus it is
possible to define the height for any embedding of H(G).

5.2. Turning and heights

Let γ be a simple path (in topological terms, a “directed arc”) in the spanning tree T
from v′ to v′′; specifically γ is the link path

v′ = v0, e0, v1, e1, . . . , vr−1, er−1, vr = v′′.

Note that the matching of H(v∗, f ∗) that corresponds to T matches node vi with node
ei for all 0 ≤ i ≤ r− 1. Let er be an edge-node (adjacent to vr) towards which the path
can be continued.

Let f1, . . . fk be the chain of facets of H(G) which share a node with γ and lie to
the left of γ, where f1 contains the first link v0e0 and fk contains the link er−1vr. Then
for i ∈ [1, k − 1] the facets fi and fi+1 are adjacent along a single link of H(G), which
furthermore is an unmatched link (this is a link which shares a node with γ but is not
in γ; therefore it is unmatched).

The winding number of γ is defined to be the total angle of the left turns minus the
total angle of right turns, from v0 to vr (the “initial” angle of γ is the direction of v0e0

and the “final” angle of γ is the direction of vrer).

Theorem 3 The winding number of γ is equal to (h(fk) − ck) − (h(f1) − c1), where
c1 is the counterclockwise angle from the vector v0e0 to the diagonal d1, and ck is the
counterclockwise angle from the vector vrer to the diagonal dk.

Here we may view the heights as being defined on the facets, since even if facet fj
has more than one diagonal, h(fj)− cj has the same value no matter which diagonal is
used.

Proof of theorem: Without loss of generality we may assume that the height
at facet f1 is h(f1) = arg(d1). Then h(f1)− c1 is the angle that the initial direction of
γ makes with the x-axis. Let fj be a facet adjacent to v`. Then similarly h(fj) − cj is
equal modulo 2π to the angle that v`e` makes with the x-axis.

If fj is the last facet adjacent to v`, so that fj+1 is adjacent to v`+1, then the difference
(h(fj+1)− cj+1)− (h(fj)− cj) equals the increase in angle from vjej to vj+1ej+1 (which
is negative at a right turn). The proof follows. �

6. Explicit Formulas

Here we use the generalized Temperley bijection to count perfect matchings of certain
finite subgraphs of the infinite square grid and infinite square-octagon grid, making use
of spanning trees. The enumeration techniques closely follow the derivation of the exact
formula for the number of domino tilings of the (2n+ 1)× (2n+ 1) square with a corner
removed; see Lovász (1979) and Propp (1995).
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One motivation for some of these calculations is that they can be used to compute
asymptotic formulas for the number of dimer configurations on more general regions, via
techniques developed in Kenyon (1998). For example, using the exact formula for the
triangular or diamond regions in §§6.5–6.8, one should be able to extend the asymptotic
formula in Kenyon (1998) to polygonal regions whose boundary edges have slopes in
{0, 1,−1,∞}. Using the example in 6.9 should give rise to a similar asymptotic formula
for regions of the hexagonal lattice. Other formulas corroborate refinements of the
entropy formula that predict how the the lower-order asymptotics of the number of
spanning trees should reflect the geometry of the boundary of the graph (see Duplantier
and David (1988) and Kenyon (1998)).

To enumerate the spanning trees of a graph, we make use of the well-known Matrix
Tree Theorem (see e.g. Biggs (1993)), as illustrated below. Given a directed graph G
with n vertices, the negative Laplacian of G is the n × n matrix L(G), where L(G)v,w
(v 6= w) equals the negative of the weight of the edge from vertex v to vertex w, and
L(G)v,v is the weighted sum of the arcs emanating from v. The determinant of the
submatrix obtained by deleting row r and column r from L(G) gives the (weighted)
number of the spanning trees rooted at r.

1
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4
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1

0

2

3

1

2

1

1

1

1

1

1

1

3 -2 0 0 0 0 0 0 0 0 -1 0 0 0
-1 5 -2 0 0 0 0 0 0 0 0 -2 0 0
0 -3 5 -1 0 0 0 0 0 0 0 0 -1 0
0 0 -1 6 -3 0 0 0 0 0 0 0 0 -2
0 0 0 -1 6 -2 0 0 0 0 0 0 0 -3
0 0 0 0 -1 6 -1 0 0 0 0 0 0 -4
0 0 0 0 0 -3 6 -2 0 0 0 0 0 -1
0 0 0 0 0 0 -2 4 -1 -1 0 0 0 0
0 0 0 0 0 0 0 -1 5 0 0 -4 0 0
0 0 0 0 0 0 0 -2 -1 5 -2 0 0 0
-1 0 0 0 0 0 0 0 0 -3 5 -1 0 0
0 -1 0 0 0 0 0 0 -2 0 0 6 -3 0
0 0 -1 0 0 0 0 0 -2 0 0 -1 5 -1
0 0 0 -1 -1 -1 -1 0 0 0 0 0 -1 5

det  = 17716630

We will make use of two ways to evaluate this determinant. We can exhibit n − 1
orthogonal nonzero eigenvectors of the matrix obtained from L(G) by deleting row and
column r, and multiply their eigenvalues. In the case where the graph is undirected,
so that the matrix is symmetric, an alternate procedure is available: we can exhibit
n orthogonal nonzero eigenvectors of L(G), multiply their eigenvalues except the zero
eigenvalue, and divide by n. (A more accurate general description of this procedure is
that the multiplicity of the eigenvalue zero is to be reduced by 1. When zero is a multiple
eigenvalue, the procedure gives rise to the product 0. However, in all our examples, zero
is a simple eigenvalue, corresponding to the fact that the graph is connected and hence
possesses one or more spanning trees.) This second method can be viewed as a variation
on the first method, in which an auxiliary vertex is added to the graph, the edges from
every other vertex to it are given weight ε, the trees rooted at the auxiliary vertex are
counted, ε is sent to 0, and the result is divided by n, corresponding to the fact that
any of the n vertices of the original graph could become the unique vertex joined to the
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extra vertex in a spanning tree in the new graph. (The details are left to the reader.)
Every graph considered in the examples below either is a finite induced subgraph of

an infinite square grid or else is obtained from such a graph by adding a single additional
vertex. In each case we give an explicit formulas for the eigenfunctions. We hasten to
say that for a general planar graph an explicit diagonalization would be much more
difficult. The tractability of our chosen examples arises from their connection with the
negative Laplacian of the infinite square grid Z2. A function f on Z2 is an eigenfunction
of the negative Laplacian if it satisfies the equation

4f(x, y)− f(x− 1, y)− f(x+ 1, y)− f(x, y − 1)− f(x, y + 1) = λf(x, y)

for all integers x, y, in which case λ is the associated eigenvalue. For each pair of complex
numbers ζ, ζ ′ satisfying |ζ| = |ζ ′| = 1, we can construct such an eigenfunction by putting
f(x, y) = ζxζ ′y and λ = 4− ζ − ζ−1 − ζ ′ − ζ ′−1. In many cases, the restriction of such
a function f(x, y) to points x, y lying in some finite region in Z2 is an eigenfunction of
the matrix associated with that region by the Matrix Tree Theorem.

As a preparatory example, we briefly mention here the trivial case of counting span-
ning trees of an undirected chain C consisting of n vertices and n−1 edges. The space of
complex-valued functions on the vertices of C can be identified with the n-dimensional
space W of odd periodic functions of period 2n + 2, i.e. functions f : Z 7→ C that
satisfy f(−x) = f(2n + 2 − x) = −f(x) for all x in Z (and that consequently satisfy
f(0) = f(n + 1) = · · · = 0). Under this identification, the negative Laplacian of C is
carried over to the negative Laplacian of Z, giving rise to an eigenbasis for W of the
form fk(x) = sin kxπ

n+1
(1 ≤ k ≤ n).

We draw each graph (see Figures 9 through 17) so that the non-root vertices are
located at points of the lattice, and so that every edge of the graph connects nearest
neighbors in the lattice. With high-degree root vertices it is necessary to draw the root
vertex in an extended fashion, covering multiple points of the lattice, to ensure that all
the edges incident to the root are drawn between neighboring points in the lattice.

Generally the requisite eigenvectors of the matrix L(G) (either with or without the
root row and column deleted) will be eigenvectors of the negative Laplacian of the
infinite lattice that also satisfy certain boundary conditions (analogous to the conditions
f(0) = f(n + 1) = 0 in the preparatory example). Usually the infinite lattice will be
Z2 although sometimes it will be (Z+ 1

2
)2 = {(x, y) : x− 1

2
, y − 1

2
∈ Z}. There are two

types of boundary conditions. Suppose that v and w are nearest neighbors in the lattice,
and v is a non-root vertex of the graph. If w is not in the graph, then we require that
f(v) = f(w). If the root vertex is drawn so as to contain the point w, and the root row
and column are deleted from L(G), then we require that f(w) = 0. We leave it to the
reader to check that if f satisfies these boundary conditions, then the restriction of f to
G is an eigenvector of the matrix with eigenvalue λ.

For certain subgraphs of the square-octagon graph, exact formulas for the number of
perfect matchings can be found by doing urban renewal to get a weighted version of one
of the graphs shown below. In each case the eigenvectors of the weighted version can
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be obtained from the eigenvectors of the unweighted version by multiplying by weights
2i+j and 2−i−j as in § 4. The eigenvalue in the weighted version is obtained from the
unweighted eigenvalue by adding 1.

In the rest of this section we give a number of graphs G, their duals G⊥, the graphs
H(v∗, f ∗), the eigenvectors of L(G) (possibly with root row and column removed), and
the corresponding formula for the number of perfect matchings of H(v∗, f ∗). When G is
undirected, we can also enumerate the matchings of H(v∗, f ∗) by counting the spanning
trees of the dual of G.

6.1. Temperley’s bijection

Temperley’s original bijection involved computing the number of perfect matchings of
a 2` − 1 by 2m − 1 subgraph of the square grid with a corner removed. By the main
theorem, this is the number of spanning trees of an ` ×m rectangle. The eigenvectors

Figure 9: Temperley’s original bijection, for the odd-by-odd rectangular region with a
corner removed. ` = 5, m = 4.

of the negative Laplacian are of the form

f(x, y) = fj,k(x, y) = cos
πjx

`
cos

πky

m
,

where x runs from 1
2

to `− 1
2

by integer steps and y from 1
2

to m − 1
2

by integer steps,
j is an integer in [0, ` − 1] and k is an integer in [0,m − 1]. (The lower left vertex is
(x, y) = (1

2
, 1

2
) and the upper right vertex is (x, y) = (` − 1

2
,m − 1

2
.) The eigenvalue of

fj,k is 4 − 2 cos πj
`
− 2 cos πk

m
, which is zero when k = ` = 0. The number of spanning

trees is
1

`m

∏[
4− 2 cos

πj

`
− 2 cos

πk

m

]
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where the product is taken over all pairs (j, k) with 0 ≤ j ≤ `−1, 0 ≤ k ≤ m−1 except
(0, 0).

Using panel (b) of Figure 9, we can compute the number of spanning trees in a
different way. In this case we take the negative Laplacian of the graph in panel (b) and
remove a row and column corresponding to the outer vertex. The eigenvectors of the
resulting graph are as follows.

fj,k(x, y) = sin
πjx

`
sin

πky

m
,

where this time x runs from 0 to ` by integer steps and y from 0 to m by integer steps,
j is an integer in [1, `− 1] and k an integer in [1,m− 1]. Note that the x, y coordinates
correspond to the centers of the faces in the coordinates of panel (a). The corresponding
eigenvalue is 4− 2 cos πj

`
− 2 cos πk

m
. The number of spanning trees is

`−1∏
j=1

m−1∏
k=1

[
4− 2 cos

πj

`
− 2 cos

πk

m

]
.

In this case there is no zero eigenvalue since we have removed a row and column of the
negative Laplacian. The equivalence of these two formulas follows from the well-known
identity for ` =

∏`−1
j=1(2− 2 cos πj

`
).

6.2. Dimers on an even-by-odd rectangle

Figure 10: The even-by-odd rectangular region. ` = 5, m = 4.

See Figure 10. In this case we again remove the row and column from the negative
Laplacian corresponding to the “extended” vertex. The eigenvectors of the negative
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Laplacian are of the form

fj,k(x, y) = cos
π(2j + 1)x

2`+ 1
cos

πky

m
,

where x runs from 1
2

to `+ 1
2

and y from 1
2

to m− 1
2
, j is an integer in [0, `− 1] and k is

an integer in [0,m− 1]. The corresponding eigenvalue is 4− 2 cos π(2j+1)
2`+1

− 2 cos πk
m

. The
number of spanning trees is

`−1∏
j=0

m−1∏
k=0

[
4− 2 cos

π(2j + 1)

2`+ 1
− 2 cos

πk

m

]
.

Similarly, in panel (b) with the extended vertex removed the eigenvectors are

fj,k(x, y) = sin
π(2j + 1)x

2`+ 1
sin

πky

m
,

where x runs from 0 to ` and y from 0 to m, j is an integer in [0, ` − 1] and k is an

integer in [1,m− 1]. The corresponding eigenvalue is 4− 2 cos π(2j+1)
2`+1

− 2 cos πk
m

.

6.3. Dimers on an even-by-even rectangle

Figure 11: The even-by-even rectangular region. ` = 5, m = 4.

See Figure 11. In panel (a) the eigenvectors of the negative Laplacian after removal of
the extended vertex are

fj,k(x, y) = cos
π(2j + 1)x

2`+ 1
cos

π(2k + 1)y

2m+ 1
,
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Figure 12: The odd-by-odd rectangular region with an extra vertex connecting every
other vertex on the left side. ` = 5, m = 4.

where x runs from 1
2

to ` + 1
2

and y from 1
2

to m+ 1
2
, j is an integer in [0, `− 1] and k

is an integer in [0,m− 1]. The number of spanning trees is

`−1∏
j=0

m−1∏
k=0

[
4− 2 cos

π(2j + 1)

2`+ 1
− 2 cos

π(2k + 1)

2m+ 1

]
.

For eigenvectors in panel (b) replace the cosines with sines, the x range to 0 to `,
and the y range 0 to m. The formula for the determinant is identical.

6.4. Dimers on an odd-by-odd rectangle with an extra vertex

See Figure 12. In panel (a) the eigenvectors of the negative Laplacian after removal of
the extended vertex are

fj,k(x, y) = cos
πjx

`
sin

πky

m
,

where x runs from 1
2

to `− 1
2

and y from 0 to m, j is an integer in [0, `− 1] and k is an
integer in [1,m− 1]. The number of spanning trees is

`−1∏
j=0

m−1∏
k=1

[
4− 2 cos

πj

`
− 2 cos

πk

m

]
.

The eigenvectors in panel (b) are more complicated.

Remark The formula for this region can also be derived by multiplying m (the number
of ways the extra vertex can be paired) by Temperley’s formula for the odd-by-odd
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Figure 13: A diamond-shaped region with ` = 4,m = 3.

region with a corner removed, since Temperley’s formula still holds with other perimeter
vertices of the right parity removed instead of the corner.

6.5. A diamond-shaped region

See Figure 13. In panel (a) the eigenvectors of the negative Laplacian after removal of
the extended vertex are

fj,k(x, y) = sin
πj(x+ y)

2`
sin

πk(x− y)

2m
,

where the origin (x, y) = (0, 0) is in the center bottom part of the extended outer vertex
of G, x ∈ [−m, `], and y ∈ [0, ` + m], with 0 ≤ x + y ≤ 2` and 0 ≤ y − x ≤ 2m. The
indices (j, k) ∈ [1, 2`− 1]× [1,m− 1] ∪ [1, `]× {m}. The number of spanning trees is∏

j,k

[
4− 4 cos

πj

2`
cos

πk

2m

]
,

where (j, k) runs over this range.

6.6. Another diamond-shaped region

See Figure 14. In panel (a) the eigenvectors of the negative Laplacian after removal of
the extended vertex are

fj,k(xy) = sin
πj(x+ y)

2`
sin

πk(x− y)

2m
,
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Figure 14: Another diamond-shaped region, with ` = 4,m = 3.

where the origin (x, y) = (0, 0) is at the bottom vertex of G⊥, x ∈ [−m, `], and y ∈
[0, ` + m], with 0 ≤ x + y ≤ 2` and 0 ≤ y − x ≤ 2m. The indices (j, k) ∈ [1, 2`− 1] ×
[1,m− 1] ∪ [1, `− 1]× {m}. The number of spanning trees is∏

j,k

[
4− 4 cos

πj

2`
cos

πk

2m

]
,

where (j, k) runs over this range. Note that this is exactly the formula of the previous
section, except for the index (j, k) = (`,m) whose eigenvalue is 4. As a consequence the
number of spanning trees of this diamond is exactly one-fourth the number of spanning
trees of the previous diamond. This fact was first observed by Stanley (1996) (when
` = m), and was first proved by Knuth (1997) and Ciucu (1998) (without assuming
` = m); a generalization was stated and proved by Chow (1997).

Again we cannot compute the eigenvectors in panel (b).
Similar formulas hold for two additional diamond-shaped regions with boundaries

intermediate between those shown in Figures 13 and 14.

6.7. A triangular region

See Figure 15. In panel (a) the eigenvectors of the negative Laplacian after removal of
the extended vertex are

fj,k(x, y) = sin
π(2j + 1)x

2m+ 1
sin

π(2k + 1)y

2m+ 1
− sin

π(2k + 1)x

2m+ 1
sin

π(2j + 1)y

2m+ 1
,

where the origin (x, y) = (0, 0) is the lower-bottom-most part of the extended external
vertex, x and y run from 0 to m, with x ≥ y, and j and k are integers in [0,m− 1] with
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Figure 15: A triangular region. m = 6.

j < k. The number of spanning trees is∏
0≤j<k<n

[
4− 2 cos

π(2j + 1)

2m+ 1
− 2 cos

π(2k + 1)

2m+ 1

]
.

We don’t know how to compute the eigenvectors of the negative Laplacian of the
graph in panel (b).

Remark This family of regions has been studied by Mihai Ciucu and Lior Pachter.
Ciucu (1997) showed combinatorially that the number of domino tilings of the 2n× 2n
square equals 2n times the square of the number of domino tilings of a particular region
Hn, so one way to prove the claim (not the one given here!) is to hitch a ride on the
formula for the number of domino tilings of the square — or you could turn this around
and derive the formula for the number of tilings of the square as a corollary of the above
formula. Also, Pachter (1997) gave a purely combinatorial proof that the number of
domino tilings of Hn is odd. A different way to see this uses 2-adic analysis of the
factors in the double product (Cohn, 1999).

6.8. Another triangular region, and the quartered Aztec diamond

See Figure 16.
In panel (a) the eigenvectors of the negative Laplacian after removal of the extended

vertex are

fj,k(x, y) = sin
πjx

m
sin

πky

m
− sin

πkx

m
sin

πjy

m
,
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Figure 16: Another triangular region. G⊥ in panel (b) is the “quartered Aztec diamond.”
m = 6.

where the origin (x, y) = (0, 0) is the lower-bottom-most part of the extended external
vertex, x and y run from 0 to m, with x ≥ y, and j and k are integers in [1,m− 1] with
j < k. The number of spanning trees is∏

0<j<k<m

[
4− 2 cos

πj

m
− 2 cos

πk

m

]
.

We don’t know how to compute the eigenvectors of the negative Laplacian of the
graph in panel (b).

Remark A formula for the number of spanning trees of the “quartered Aztec dia-
mond” (G⊥ here) had been an open problem for some years before Mihai Ciucu found
an expression for it (in work that has not yet been written up). Here we effectively get
a formula for it by doing Fourier analysis on the dual graph. The equivalence of Ciucu’s
formula and ours does not appear to be an effortless identity.

6.9. A subregion of the hexagonal lattice

Let ω = e2πi/3 and Z[ω] be the lattice of Eisenstein integers. Let G be the directed
graph whose vertices are Z[ω], each vertex v having an edge directed towards the three
vertices v + 1, v + ω, v + ω−1, as in Figures 2a and 17a.

Here we obtain an exact formula for the number of directed spanning trees on the
triangular region Tm in G whose vertices are 0,m,−mω−1, with “wired” boundary con-
ditions (Figure 17).
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Figure 17: A triangular region of the hexagonal lattice. Here n = 5, and m = n−2 = 3.

Let n = m + 2. Let Λn be the sublattice of Z[ω] generated by n(1 − ω−1) and
n(ω − ω−1). A fundamental domain for Λn is given by the hexagon whose vertices
are 0, n, n(1 − ω−1),−2nω−1, n(ω − ω−1), nω. This fundamental domain is tiled with
six copies of the equilateral triangle whose vertices are 0, n,−nω−1. The graph Tm is
embedded in this triangle as the set of vertices not touching the boundary.

Let fα,β,γ be the function on Z[ω] such that fα,β,γ(x+ yω + zω−1) = αxβyγz; single-
valuedness implies αβγ = 1. The function fα,β,γ is an eigenvector of the negative Lapla-
cian of G, and has eigenvalue 3− α− β − γ. In order for fα,β,γ to be a function on the
torus G/Λn, the relations (α/γ)n = 1 and (β/γ)n = 1 must also hold. If α is a 3nth
root of unity, and α/γ is an nth root of unity, then β/γ = 1/(αγ2) is also an nth root of
unity, so that fα,β,γ is an eigenvector of the torus G/Λn with eigenvalue 3− α − β − γ.
The various fα,β,γ’s formed in this way are orthogonal on the torus, and since there are
3n2 of them, the same as the number of vertices in the torus, they form an eigenbasis of
the negative Laplacian of the torus.

Let L1, L2, L3 be the three lines of symmetry of the lattice Z[w] defined by L1 = R,
L2 = ωR, and L3 = ω−1R. Orthogonal reflection in each of these lines is not only
a symmetry of the lattice but preserves Λn and the edge directions. Therefore these
reflections are symmetries of the underlying graph on the torus. The lines L1, L2, L3

project to the torus, cutting it into 6 equilateral triangles. Say that a function on the
torus is skew symmetric if reflecting it through any of the lines L1, L2, L3 is equivalent
to negating the function. Since reflection in a line of symmetry L1, L2, or L3 sends the
eigenvector fα,β,γ on the torus to the eigenvector fα,γ,β, fγ,β,α, or fβ,α,γ respectively (in
each case two subscripts have been transposed), when we express any skew symmetric
function as a linear combination of the fα,γ,β’s, we find that it is a linear combination of
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the gα,γ,β’s, which are defined by

gα,β,γ =
∑
σ∈S3

(−1)σfσ(α,β,γ) = fα,β,γ − fα,γ,β + fγ,α,β − fγ,β,α + fβ,γ,α − fβ,α,γ.

gα,β,γ is an eigenvector of the torus G/Λn with eigenvalue 3− α − β − γ. If we restrict
our attention to triples (α, β, γ) satisfying α < β < γ under some arbitrary ordering
of the roots of unity, then the gα,β,γ’s still span the space of skew symmetric functions;
furthermore a nontrivial linear relation among them would imply a nontrivial linear
relation among the fα,β,γ’s, so the gα,β,γ’s such that α < β < γ form an eigenbasis of the
space of skew symmetric functions.

Since the gα,β,γ’s are zero on the lines of symmetry L1, L2, L3, when we restrict
the gα,β,γ’s to one of the 6 equilateral triangles, they form an eigenbasis of the matrix
obtained from the negative Laplacian of the triangular subgraph by deleting the vertices
on the boundary. Thus multiplying their eigenvalues gives the number of spanning trees
of the triangular region with wired boundary conditions, rooted at the wired boundary:∏

α,β,γ
αβγ=1
α3n=1

(α/β)n=1
α, β, γ distinct

(3− α− β − γ)1/6.

The prime factors of the numbers given by this formula exhibit some rather nice
patterns.

7. Open Problems

Our work suggests (or might be useful in the solution of) a number of different problems.
First, there is the natural question of extending the correspondence between spanning

trees and matchings so that it applies to matchings of more general planar graphs (or
perhaps even some non-planar ones). An intriguing example is the “12-6-4 lattice” (the
infinite graph obtained by taking the 1-skeleton of the Archimedean tiling of the plane
by dodecagons, hexagons, and squares) shown in Figure 18. In a matching, each vertex
is paired to another vertex via one of three types of edges: a 6/4 edge (bordering a
hexagon and square), a 12/4 edge (bordering a dodecagon and square), or a 12/6 edge
(bordering a dodecagon and hexagon). In random perfect matchings of suitably defined
subgraphs (chosen so as to minimize the effect of the boundary), the probabilities of
these three events are respectively 1/6 + (19/78)R, 1/3 + (1/39)R, and 1/2− (7/26)R,
where R is given by

R =
∞∑
n=0

n∑
k=0

(
2n

n

)(
n

k

)2
14k

132n
.

Curiously, these probabilities also turn up in the random spanning trees of a certain
directed weighted cartesian lattice. In this lattice each leftward edge has weight 25, each
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Figure 18: A portion of the “12-6-4 lattice” of dodecagons, hexagons, and squares.

upward edge has weight 25, each rightward edge has weight 14, and each downward edge
has weight 1. The probability that in the tree the parent of a vertex is to the left is the
same as the probability of a 12/4 edge in the 12-6-4 lattice, and the probability that the
parent is above the given vertex is the same as the probability of a 6/4 edge in the 12-6-4
lattice. These “coincidences” suggest a weighted bijective correspondence analogous to
the one for the lattice of octagons and squares, but we have been unable to find one.

One side-issue of a number-theoretic nature concerns the formula given at the end
of § 6.9. As was mentioned, there are some interesting patterns governing the prime
factors of these numbers; for instance, it appears that most of the large prime factors,
including the very largest, are congruent to 1 mod n. It would be good to know why
this is true.

Turning to entropy, it would also be desirable to have a more general understanding
of asymptotics. In all the examples considered in § 6, the logarithm of the number
of spanning trees, divided by the size of the system, tends to a single limit that is
independent of the shape of the boundary, but is a numerical characteristic of the infinite
square grid. One might ask the same question for more general grids. For example,
suppose we have some locally finite infinite planar graph G that admits an adjacency-
preserving action of Z2 that has only finitely many vertex-orbits and edge-orbits. What
is the limit of the normalized logarithm of the number of spanning trees of large finite
subgraphs of G, as the subgraphs grow to fill G? It is not too hard to guess the shape
of the answer, using the spectrum of the negative Laplacian, but justifying this answer
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would require some care.
There is also the issue of uniqueness of the measure of maximum entropy. In the case

of the square grid, Burton and Pemantle (1993) proved that there is a unique translation-
invariant measure on spanning trees of the infinite square grid that achieves the entropy
bound. This yields an analogous result on domino tilings of the plane. It is natural to
ask the question for lozenge tilings of the plane; by the theorems of this article, this
is closely related to the problem of determining whether there is a unique measure of
maximum entropy for directed spanning trees in the directed triangular lattice.

The Ising partition function and the number of spanning trees of a graph are both
evaluations of the Tutte polynomial of the graph at special points; see Welsh (1993) for
background on the Tutte polynomial. Evaluating the Tutte polynomial at most points is
#P-complete, but at special points the polynomial can be evaluated in polynomial time.
For planar graphs these special points include the values for the Ising partition function
and the number of spanning trees. For planar graphs there are bijective connections
between Ising systems and perfect matchings (Fisher, 1966), and between spanning
trees and perfect matchings. Thus it is natural to search for connections between perfect
matchings and the other special points of the Tutte polynomial.
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