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Abstract. We construct examples of nonnegative harmonic functions on certain
graded graphs: the Young lattice and its generalizations. Such functions first emerged
in harmonic analysis on the infinite symmetric group. Our method relies on multi-
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Jack symmetric functions. As a by–product, we compute certain Selberg–type inte-
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§0. Introduction

Let Y denote the lattice of Young diagrams ordered by inclusion. For µ, λ ∈ Y,
we write λ↘ µ if λ covers µ, i.e., λ differs from µ by adding a box. We consider Y
as a graph whose vertices are arbitrary Young diagrams µ and the edges are couples
(µ, λ) such that λ↘ µ. We shall call Y the Young graph. A function ϕ(µ) is called
a harmonic function on the Young graph [VK] if it satisfies the condition

ϕ(µ) =
∑

λ:λ↘µ
ϕ(λ), ∀µ ∈ Y. (0.1)

We are interested in nonnegative harmonic functions ϕ normalized at the empty
diagram: ϕ(∅) = 1. Such functions form a convex set denoted as H+

1 (Y).
The functions ϕ ∈ H+

1 (Y) have an important representation–theoretic meaning:
they are in a natural bijective correspondence with central, positive definite, nor-
malized functions on the infinite symmetric group S(∞), see [VK], [KV2]. Thoma’s
description of characters on S(∞) means that the extreme points of H+

1 (Y) form an
infinite–dimensional simplex Ω (called the Thoma simplex), see [T], [VK], [KV2],
[W]. For general elements ϕ ∈ H+

1 (Y), there is a (unique) Poisson–type integral
representation,

ϕ(λ) =
∫

Ω

K(λ, ω)P (dω), ∀λ ∈ Y, (0.2)

where P is a probability measure on Ω (the ‘boundary measure’ for ϕ) and K(λ, ω)
is a positive function on Y × Ω (the ‘Poisson kernel’ or ‘Martin kernel’ for Y), see
[KOO]. Note that any probability measure P on Ω gives rise to an element ofH+

1 (Y);
in particular, the extreme ϕ’s are exactly the functions K(·, ω) corresponding to
Dirac measures on Ω.

This abstract result shows how large H+
1 (Y) is but it does not explain how

to construct explicitly nonextreme functions ϕ or what nonextreme ϕ’s could be
interesting for applications.

Concrete examples of nonextreme functions ϕ first emerged in [KOV] in connec-
tion with a problem of harmonic analysis on the infinite symmetric group S(∞).
These functions, denoted as ϕzz′ , depend on two parameters, and the correspond-
ing ‘boundary measures’ Pzz′ govern the spectral decomposition of certain natural
unitary representations.1

1The measures Pzz′ are very interesting objects. They are studied in detail in our papers [P.I]
– [P.V], [BO1], [BO2].
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The explicit expression of the functions ϕzz′ (see formula (2.4) below) has an
interesting combinatorial structure which raises a number of questions. For instance,
one can ask whether there exist similar families of harmonic functions for other
graphs. The answer is affirmative: [B1], [Ke5].2

The paper [B1] concerns the graph S of shifted Young diagrams which is related
to projective representations of the symmetric groups.

The paper [Ke5] contains a generalization in another direction: a deformation
of the family {ϕzz′}, which is consistent with a deformation of the basic equation
(0.1):

ϕ(µ) =
∑

λ:λ↘µ
κθ(µ, λ)ϕ(λ), ∀µ. (0.3)

Here θ > 0 is the deformation parameter and κθ(µ, λ) > 0 are the coefficients
that arise in (the simplest case of) Pieri’s rule for Jack symmetric functions with
parameter θ. The initial situation corresponds to the particular value θ = 1, when
Jack symmetric functions coincide with Schur’s S–functions.

Note that in the limit as θ → 0, the harmonicity condition (0.3) essentially coin-
cides with the relation which defines partition structures in the sense of Kingman
[Ki1], [Ki2], while the two-parameter family of harmonic functions constructed in
[Ke5] degenerates to the famous Ewens partition structures [Ew] and its general-
ization due to Pitman, see [Pi], [PY], [Ke4].

In the present paper, we propose a simple combinatorial construction, which
allows us to get, in a unified way, all these concrete examples of harmonic functions
as well as some new ones. In the new examples, the ‘boundary measures’ P are
supported by finite–dimensional simplices, and the Poisson integral representation
leads to certain Selberg–type integrals.3

Our construction relies on the so–called shifted (or factorial) versions of Schur’s
S and P functions and of Jack symmetric functions. These new combinatorial
functions arise in different topics, see, e.g., [S], [KS], [OO], [OO2], [Ok1], [Ok2].
They are also called interpolation polynomials, because they give solutions to certain
multivariate interpolation problems.

The paper is organized as follows. In §1, we expose the general formalism. In §2,
it is applied to the Young graph to derive the family {ϕzz′}. In §§3–5, we apply it
to the Young graph with Jack edge multiplicities J(θ), next to the Kingman graph
K, and then to the Schur graph S; the arguments are quite similar. Section 6 is
devoted to constructing harmonic functions of a different sort — those with finite–
dimensional ‘boundary measures’; here we also evaluate Selberg–type integrals. The
final §7 is an appendix on the Poisson integral representation.

2Another question, a characterization of the functions of type ϕzz′ , was examined in [B1], [Ro].
3A connection between Poisson integral representation of type (0.2) and Selberg integrals was

first exploited in [Ke3].
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§1. The general formalism

In this section, we deal with an abstract graph G satisfying certain conditions
listed below. In the next sections, concrete examples of G will be considered.

Our assumptions and conventions concerning G are as follows:
• To simplify the notation, we identify the graph with its set of vertices.
• The vertices are partitioned into levels, G = G0 t G1 t G2 t . . . , so that the

endpoints of any edge lie on consecutive levels. That is, G is a graded graph.
• The level of a vertex µ is denoted as |µ|. If two vertices µ, λ form an edge,

|λ| = |µ|+ 1, then we write λ↘ µ or µ↗ λ.
• All the levels Gn are finite.
• The lowest level G0 consists of a single vertex denoted as ∅.
• For any vertex µ there exists at least one vertex λ ↘ µ and for any vertex

λ 6= ∅ there exists at least one vertex µ ↗ λ. This implies that the graph is
connected.

(Our main example is the Young graph, see §2. )
• Finally, assume that we are given an edge multiplicity function which assigns

to any edge µ ↗ λ a strictly positive number κ(µ, λ) — its formal multiplicity. It
should be emphasized that these numbers are not necessarily integers.

(For the Young graph, all the formal multiplicities are equal to 1; graphs with
nontrivial multiplicities are considered in §3 and §4.)

A complex function ϕ(µ) on G is called a harmonic function on the graph G if
it satisfies the relation

ϕ(µ) =
∑

λ:λ↘µ
κ(µ, λ)ϕ(λ) (1.1)

for any vertex µ (the sum in the right–hand side is finite, because all the levels
are finite). Let H(G) denote the space of all harmonic functions endowed with
the topology of pointwise convergence. Let H+(G) be the subset of nonnegative
harmonic functions and H+

1 (G) be the subset of the functions ϕ ∈ H+(G) with the
normalization ϕ(∅) = 1.

Clearly,H+
1 (G) is a convex subset ofH(G). Moreover, it is a compact measurable

space (here we again employ the finiteness assumption). We shall use some well–
known general theorems about convex compact measurable sets which can be found,
e.g., in [Ph].

Let Ω(G) denote the set of extreme points in H+
1 (G). This is a set of type

Gδ, hence, a Borel measurable set. Given ω ∈ Ω(G), let us denote by K( · , ω)
the corresponding extreme harmonic function on G. Note that K(µ, · ) is a Borel
measurable function on Ω(G) for any fixed µ ∈ G.

Theorem 1.1. For each element ϕ ∈ H+
1 (G) there exists a unique probability mea-

sure P on Ω(G) such that

ϕ(µ) =
∫

Ω(G)

K(µ, ω)P (dω), ∀µ ∈ G. (1.2)
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Proof. See §7. �
We call (1.2) the Poisson integral representation of the function ϕ.
To any path τ going from a vertex µ to a vertex λ with |λ| > |µ|,

τ = (µ = λ0 ↗ λ1 ↗ · · · ↗ λk = λ), k = |λ| − |µ|,

we assign its weight

w(τ) =
k∏
i=1

κ(λi−1, λi)

and then set
dimG(µ, λ) =

∑
τ

w(τ), (1.3)

summed over all paths from µ to λ. We extend this definition to all couples (µ, λ)
by agreeing that dimG(µ, µ) = 1 and dim(µ, λ) = 0 if µ 6= λ are such that there is
no path from µ to λ. Next, we set dimG λ = dimG(∅, λ).

In all examples of the graphs G considered in the present paper one can embed
(the vertices of) G into Ω(G) in such a way that any point ω ∈ Ω(G) can be
approximated by a sequence of vertices {λ(n) ∈ Gn}n=1,2,..., and for any such
sequence

K(µ, ω) = lim
n→∞

dimG(µ, λ(n))
dimG λ(n)

.

Given a function ϕ ∈ H+
1 (G), we set for each n

Mn(λ) = dimG λ · ϕ(λ), λ ∈ Gn. (1.4)

Using the harmonicity relation (1.1) and induction on n one readily verifies that∑
λ∈GnMn(λ) = 1. Thus, each Mn is a probability distribution on Gn.
For all examples of the graphs G considered in this paper one can transfer the

measure Mn to Ω(G) via the embedding G ↪→ Ω(G) mentioned above. Then the
measure P appearing in the integral representation (1.2) is the weak limit of the
measures Mn as n→∞.

We say that (G,κ( · , · )) is a multiplicative graph [KV1], [KV2], if the following
conditions are satisfied. First, the 1st floor G1 consists of a single vertex denoted by
the symbol “(1)”. Next, there exists a graded commutative unital algebra A over
R, A = A0 +A1 + . . . , and a homogeneous basis {Pµ} in A indexed by the vertices
µ ∈ G, such that P∅ = 1 and degPµ = |µ|. Finally, for any µ,

PµP(1) =
∑

λ: λ↘µ
κ(µ, λ)Pλ . (1.5)

Note that this implies κ(∅, (1)) = 1. (All the graphs considered in the present
paper are multiplicative. For instance, in the case of the Young graph, the algebra
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A is the algebra of symmetric functions and the basis {Pµ} is formed by the Schur
functions.)

Iterating the relation (1.5) we get the expansion

Pn(1) =
∑
λ∈Gn

dimG λ · Pλ , (1.6)

which is a useful tool for computing the dimensions dimG λ. More generally, given
µ ∈ Gm and n > m,

PµPn−m(1) =
∑
λ∈Gn

dimG(µ, λ) · Pλ . (1.7)

Theorem 1.2 [KV1]. Let G be a multiplicative graph and let A be the corresponding
algebra. Given ϕ ∈ H+

1 (G), let π : A→ C be the linear functional sending each Pµ
to ϕ(µ). Then ϕ is extreme if and only if π is multiplicative.

Note that a linear functional π : A→ C corresponds to a function ϕ ∈ H+
1 (G) if

and only if π(1) = 1, π(Pµ) ≥ 0 for any µ, and π factors through A/(P(1) − 1)A.
Now we shall explain our method of producing harmonic functions. Assume A∗ is

a commutative algebra4, {P∗µ} is a family of elements in A∗ indexed by the vertices
µ ∈ G, P∗∅ = 1. We assume that these data obey the following condition which is
a generalization of (1.5):

P∗µP∗(1) = anP∗µ +
∑

λ:λ↘µ
κ(µ, λ)P∗λ , n = |µ|, (1.8)

for any µ, where a0 = 0, a1, a2, . . . is a sequence of numbers.

Proposition 1.3. Under the above assumptions, let π : A∗ → C be a multiplicative
linear functional, and let

s = π(P∗(1)), t = −s = −π(P∗(1)). (1.9)

Assume that
s 6= 0, a1, a2, . . . , i.e., t 6= 0,−a1,−a2, . . . . (1.10)

Then the function

ϕ(µ) =
π(P∗µ)

s(s− a1) . . . (s− an−1)
=

(−1)nπ(P∗µ)
t(t+ a1) . . . (t+ an−1)

, n = |µ|, (1.11)

is harmonic on G.

We agree that the denominator in (1.11) equals 1 for µ = ∅, so that ϕ(∅) = 1.

4The superscript ∗ does not mean the passage to a dual space.
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Proof. Applying π to the relation (1.8) we get

π(P∗µ)(s− an) =
∑

λ: λ↘µ
κ(µ, λ)π(P∗λ).

Dividing the both sides by s(s− a1) . . . (s− an) (which is possible thanks to (1.10))
we get exactly the harmonicity relation (1.1) for ϕ. �

A trivial example is A∗ = A, P∗µ = Pµ, an ≡ 0. Then, by Theorem 1.2, ϕ
is extreme provided that it is nonnegative. As we aim to construct interesting
examples of nonextreme harmonic functions, we shall deal either with an algebra
A∗ distinct from A or, for A∗ = A, with a family {P∗µ} distinct from {Pµ}.

In all the examples below, A∗ is a filtered algebra such that the associated graded
algebra grA∗ is canonically isomorphic to A. Thus, with any element of A∗ of degree
≤ n one can associate its highest term which is a homogeneous element ofA of degree
n. In our examples, the highest term of P∗µ coincides with Pµ. Furthermore, the
algebra A∗ can be interpreted, in a certain natural way, as an algebra of functions
on the vertices of G. Thus, for any f ∈ A∗ and λ ∈ G, the value f(λ) is well–defined.
It turns out that the elements P∗µ can be characterized by the following

Interpolation Property. Given µ ∈ G, µ 6= ∅, P∗µ is the only (up to a scalar
factor) element of degree |µ| such that P∗µ(λ) = 0 for any λ 6= µ with |λ| ≤ |µ|.

The fact that the highest term of an element P∗µ defined in this way turns out
to be proportional to Pµ seems to be rather surprising. We normalize P∗µ in such a
way that its highest term is exactly equal to Pµ.

Next, it turns out that P∗(1)(µ) = |µ|. Then a simple formal argument shows that
(1.8) holds with an = n for any n = 0, 1, . . . . Moreover,

dimG(µ, λ)
dimG λ

=
P∗µ(λ)

N(N − 1) . . . (N − n+ 1)
, µ ∈ Gn, λ ∈ GN , n ≤ N.

(1.12)
The argument is due to Okounkov [Ok1]; it is also reproduced in [OO].

From now on we shall assume that an = n. Then the denominator in the right–
hand side of (1.11) will be equal to (t)n = t(t + 1) · · · (t + n − 1), and (1.11) will
take the form

ϕ(µ) =
(−1)n π(P∗µ)

(t)n
, t = −π(P∗(1)), n = |µ|. (1.13)

Similarly, the formula (1.12) can be rewritten as follows

dimG(µ, λ)
dimG λ

=
(−1)n P∗µ(λ)

(−N)n
, µ ∈ Gn, λ ∈ GN , n ≤ N. (1.14)
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Note that, for any fixed λ, the left–hand side of (1.14) satisfies the harmonicity
relation (1.1) provided that n < N : this easily follows from the very definition of the
dimension function (for n > N the denominator in the right–hand side vanishes).
On the other hand, the expression in the right–hand side of (1.14) is a particular
case of that in the right–hand side of (1.13): here π is the evaluation functional
πλ : f 7→ f(λ) and t = −N . This makes it possible to interpret the construction
of Proposition 1.3 as follows: we extrapolate the relation (1.14) from the points
λ ∈ G, which we identify with the corresponding evaluation functionals πλ, to
abstract multiplicative functionals.

A function ϕ ∈ H+
1 (G) will be called nondegenerate if ϕ(µ) 6= 0 for all µ ∈ G;

otherwise it will be called degenerate.

§2. The Young graph

The fundamental example of a graded graph G is the Young graph Y [VK], [KV2].
By definition, the vertices of Y are the Young diagrams including the empty diagram
∅, the n-th floor Yn consists of the diagrams with n boxes, and µ↗ λ means that
λ is obtained from µ by adding a single box. The numbers κ(µ, λ) are all equal to
1. In this section the symbols µ, λ are used to denote Young diagrams.

The graph Y is multiplicative in the sense of the definition given in §1: here the
algebra A is the algebra Λ of symmetric functions, the basis elements Pµ are the
Schur functions sµ, and the relation (1.5) turns into a special case of the Pieri rule
for the Schur functions,

sµs(1) =
∑

λ: λ↘µ
sλ , (2.1)

which is equivalent (under the characteristic map, see [M, I.7]) to the Young branch-
ing rule for irreducible characters of symmetric groups. For the Young graph, the
expansion (1.6) takes the form

sn(1) =
∑

λ: |λ|=n
dimλ · sλ, (2.2)

where dimλ = dimY λ is the number of standard Young tableaux of shape λ.
Let b = (i, j) be a box of µ; here i, j are the row number and the column number

of b. Recall the definition of the content , the arm–length and the leg–length of b:

c(b) = j − i, a(b) = µi − j, l(b) = µ′j − i, (2.3)

where µ′ is the transposed diagram.

Theorem 2.1. Let z, z′ be arbitrary complex numbers and t = zz′. Assume that
t 6= 0,−1,−2, . . . . Then the following expression is a harmonic function on the
Young graph:

ϕzz′(µ) =
1

(t)n

∏
b∈µ

(z + c(b))(z′ + c(b))
a(b) + l(b) + 1

, n = |µ|. (2.4)
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The harmonic functions (2.4) fit into the general scheme of Proposition 1.3 with
the algebra A∗ and the family {P∗µ} as specified below.

The first claim of the theorem (harmonicity of ϕzz′) follows from the computation
of a spherical function in [KOV]. Various direct combinatorial proofs for this claim
were given by Kerov, Postnikov, and Borodin. Kerov’s approach is explained in
[Ke5]; actually, in that paper a more general result is obtained, see Theorem 3.1
below. Postnikov’s argument was not published. Borodin’s argument is, perhaps,
the most direct and elementary; it was given in the appendix to [P.I]; actually, the
present paper originated from our discussion of that argument.

For the proof we need some preparations. First, we specify the algebra A∗.
Denote by Λ∗(n) the subalgebra in C[x1, . . . , xn] formed by the polynomials which

are symmetric in ‘shifted’ variables x′j = xj − j, j = 1, . . . , n. Define the projection
map Λθ(n)→ Λθ(n− 1) as the specialization xn = 0 and note that this projection
preserves the filtration defined by ordinary degree of polynomials. Now we take the
projective limit of Λ∗(n)’s in the category of filtered algebras as n→∞. The result
is a filtered algebra which is called the algebra of shifted symmetric functions and
denoted by Λ∗.

The algebra Λ∗ will be taken as the algebra A∗. As the elements P∗µ we shall
take the shifted Schur functions s∗µ as defined in [OO].

By the definition of Λ∗, each element f ∈ Λ∗ can be evaluated at any sequence
x = (x1, x2, . . . ) with finitely many nonzero terms. In particular, we can evaluate
shifted symmetric functions at any λ = (λ1, λ2, . . . ) ∈ Y, which allows one to
interpret Λ∗ as a certain algebra of functions on the Young diagrams. This point of
view was developed in [KO]. The shifted Schur functions s∗µ possess the Interpolation
Property of §1, see [Ok1], [OO].

For the one–row shifted Schur functions there is a special notation: h∗m = s∗(m).
A useful tool is the following generating series for the h∗ functions:

H∗(u) = 1 +
∞∑
m=1

h∗m
u(u− 1) . . . (u−m+ 1)

. (2.5)

Here u is a formal indeterminate and the series is viewed as an element of Λ∗[[ 1
u ]].

Since the elements h∗m are algebraically independent generators of Λ∗, a multiplica-
tive functional π : Λ∗ → C can be uniquely defined by assigning to H∗(u) an
arbitrary formal power series in 1

u with constant term 1. We shall use this fact
below.

Note a useful formula

H∗(u)(x1, x2, . . . ) =
∞∏
i=1

u+ i

u+ i− xi
, (2.6)
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see [OO, Theorem 12.1]. Here, by definition,

H∗(u)(x1, x2, . . . ) = 1 +
∞∑
m=1

h∗m(x1, x2, . . . )
u(u− 1) . . . (u−m+ 1)

. (2.7)

The equality (2.6) can be understood as follows. We assume that only finitely
many of xi’s are distinct from zero. Then the left–hand side, which is the series
(2.7), converges in a left half–plane <u < const� 0 and equals the right–hand side
of (2.6).

For an element f of Λ or Λ∗, we shall abbreviate

f(x1, . . . , xk) = f(x1, . . . , xk, 0, 0, . . . ).

Recall the combinatorial formula for the Schur functions:

sµ(x1, . . . , xk) =
∑
T

∏
b∈µ

xT (b) , (2.8)

where T ranges over the set of Young tableaux of shape µ with entries in {1, . . . , k},
see [M, I.5]. It will be convenient for us to employ here the reverse tableaux (i.e.,
the entries T (b) decrease from left to right along the rows and down the columns).
Since sµ is symmetric, (2.8) also holds if the sum in the right–hand side is taken
over all reverse tableaux of shape µ with entries in {1, . . . , k}.

We shall need a similar formula for the shifted Schur functions:

s∗µ(x1, . . . , xk) =
∑
T

∏
b∈µ

(xT (b) − c(b)) , (2.9)

where T ranges over reverse tableaux of shape µ with entries in {1, . . . , k}, see [OO,
Theorem 11.1].

Proposition 2.2. Let k = 1, 2, . . . and z′ ∈ C. The following specialization for-
mula holds

s∗µ(−z′, . . . ,−z′︸ ︷︷ ︸
k

) = (−1)n
∏
b∈µ

(k + c(b))(z′ + c(b))
a(b) + l(b) + 1

, n = |µ|. (2.10)

Proof. Compare the combinatorial formulas (2.8) and (2.9). If x1 = · · · = xk = −z′
then the product in (2.9) does not depend on T and is equal to∏

b∈µ
(−z′ − c(b)) = (−1)n

∏
b∈µ

(z′ + c(b)).
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It follows that

s∗µ(−z′, . . . ,−z′︸ ︷︷ ︸
k

) = (−1)n
∏
b∈µ

(z′ + c(b)) · sµ(1, . . . , 1︸ ︷︷ ︸
k

).

Now we apply the well–known specialization formula

sµ(1, . . . , 1︸ ︷︷ ︸
k

) =
∏
b∈µ

k + c(b)
a(b) + l(b) + 1

,

see [M, I.3, Ex.4], which implies (2.10). �

The argument used in the proof is borrowed from Okounkov’s paper [Ok4], the
derivation of formula (1.9); see also Proposition 3.2 below.

Corollary 2.3. For any z, z′ ∈ C, the linear functional πzz′ : Λ∗ → C given by

πzz′(s∗µ) = (−1)n
∏
b∈µ

(z + c(b))(z′ + c(b))
a(b) + l(b) + 1

, n = |µ|, (2.11)

is multiplicative.

Proof. Indeed, this expression depends polynomially on z. So, it suffices to prove
the multiplicativity of πzz′ in the case z = k, where k = 1, 2, . . . . By Proposition
2.2, in this case our functional is the evaluation at the point

x = (−z′, . . . ,−z′︸ ︷︷ ︸
k

, 0, 0, . . . ).

Consequently, the functional is multiplicative. �

Proof of Theorem 2.1. We apply Proposition 1.3 by taking A∗ = Λ∗ and P∗µ = s∗µ.
The Pieri–type formula for s∗–functions ([OO, Theorem 9.1]) shows that the relation
(1.8) holds with the sequence an = n. We take as π the multiplicative functional
πzz′ afforded by Corollary 2.3. It follows from (2.11) that

−πzz′(s∗(1)) = zz′ = t,

so that we may substitute t into (1.11). Finally, the condition (1.10) is just the
assumption on t given in Theorem 2.1. Thus, the expression (2.4) is a special case
of (1.11), which concludes the proof. �
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Remark 2.4. In terms of the generating series (2.5) for the h∗ functions, the
multiplicative functional πzz′ can be described as follows:

πzz′(H∗(u)) = 1 +
∞∑
m=1

(z)m(z′)m
(−u)mm!

= 2F1(z, z′;−u; 1) =
Γ(−u)Γ(−u− z − z′)
Γ(−u− z)Γ(−u − z′) ,

(2.12)

where we assume <u� 0; the last equality follows from Gauss’ summation formula.

Proposition 2.5. The function ϕzz′ afforded by Theorem 2.1 is a nondegenerate
function from H+

1 (Y) if and only if the parameters satisfy one of the following two
conditions:
• either z′ = z̄ where z ∈ C \ Z,
• or z, z′ are real and there exists m ∈ Z such that m < z, z′ < m+ 1.

The proof is easy, see [P.I].
Let us explain the significance of the set H+

1 (G) for the Young graph. Let S(∞)
be the infinite symmetric group, which is defined as the inductive limit lim−→S(n)
of the finite symmetric groups. In other words, S(∞) consists of the finite per-
mutations of the set {1, 2, . . .}. There is a natural bijective correspondence ϕ↔ χ
between functions ϕ ∈ H(Y) and central functions χ on S(∞). Specifically, given χ,
we define the values of ϕ on Yn from the expansion of the central function χ ↓ S(n)
on the group S(n) into a linear combination of the irreducible characters χλ,

χ ↓ S(n) =
∑

λ: |λ|=n
ϕ(λ)χλ , n = 1, 2, . . . . (2.13)

The harmonicity of the function ϕ follows from the Young branching rule for the
irreducible characters [JK], [OV]:

χλ ↓ S(n− 1) =
∑

µ:µ↗λ
χµ , n = |λ|. (2.14)

Under the bijection ϕ ↔ χ, the nonnegativity of ϕ means that the function χ is
positive definite on the group S(∞), and the normalization ϕ(∅) = 1 means that
χ(e) = 1, where e ∈ S(∞) is the trivial permutation. Thus, the elements of H+

1 (Y)
correspond to the central, positive definite, normalized functions on S(∞). Such
functions form a convex set, its extreme points are called the characters of the group
S(∞) (in the sense of von Neumann). According to §1, we shall denote the set of
the characters by Ω(Y).

Thoma proved [T] that the characters of S(∞) can be parametrized by the points
of an infinite–dimensional simplex:

Ω(Y) = {α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0 |
∑
i

(αi + βi) ≤ 1} (2.15)
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called the Thoma simplex. It is equipped with the weakest topology in which the
coordinates αi’s and βi’s are continuous functions.

Via Gelfand–Naimark–Segal construction, characters generate finite factor repre-
sentations of the group S(∞). They also correspond to irreducible unitary spherical
representations of the Gelfand pair (G,K) where G is the “bisymmetric group”
S(∞)× S(∞), and K is the diagonal subgroup of G [Ol], [Ok3].

The Poisson kernel K(µ, ω) (see Theorem 1.1) for the Young graph is given by
the image of the Schur function sµ under a certain specialization of Λ depending
on ω. Namely, for ω = (α, β) ∈ Ω(Y) we specialize the power sums as follows

(xk1 + xk2 + . . . ) 7→
{

1, k = 1,∑∞
i=1 α

k
i + (−1)k−1

∑∞
i=1 β

k
i , k ≥ 2,

(2.16)

see [VK], [KOO].
According to the general theory of §1, the functions ϕzz′ ∈ H+

1 (Y) constructed
above give rise to a family of probability measures on Ω(Y). These measures were
thoroughly studied in [P.I–P.V], [BO1], [BO2].

§3 The Jack graph

Fix a positive number θ. Let Pµ be the Jack symmetric function with parameter
θ and index µ (see [M, VI.10]; note that Macdonald uses α = θ−1 as the parameter).
The simplest case of Pieri’s formula for the Jack functions reads as follows:

PµP(1) =
∑

λ:λ↘µ
κθ(µ, λ)Pλ , (3.1)

where κθ(µ, λ) are certain positive numbers,

κθ(µ, λ) =
∏
b

(
a(b) + (l(b) + 2)θ

)(
a(b) + 1 + l(b)θ

)(
a(b) + (l(b) + 1)θ

)(
a(b) + 1 + (l(b) + 1)θ

) . (3.2)

Here b ranges over all boxes in the jth column of the diagram µ, provided that the
new box λ \ µ belongs to the jth column of λ, see [M, VI.10, VI.6].

The Jack graph J(θ) is the multiplicative graph associated with the algebraA = Λ
of symmetric functions and its basis formed by the Jack symmetric functions. I.e.,
this is the Young graph with the formal edge multiplicities κ(µ, λ) = κθ(µ, λ).
When θ = 1, the Jack functions turn into the Schur functions, all formal edge
multiplicities are equal to 1, so that the Jack graph turns into the ordinary Young
graph.

We take as A∗ the algebra Λθ of shifted symmetric functions with parameter θ.
It is defined as the projective limit of filtered algebras Λθ(n), where, in turn, Λθ(n)
is formed by polynomials in x1, . . . , xn which are symmetric with respect to the new
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variables x′j = xj − θj. The projection Λθ(n) → Λθ(n − 1), as in the case of the
Young graph, is given by the specialization xn = 0.

For any µ there exists a unique element P ∗µ ∈ Λθ of degree |µ|, with highest term
Pµ and with the Interpolation Property; it is called the shifted Jack function. Our
reference about these functions is [OO2], [Ok2].

The relation (1.8) for shifted Jack functions has the form

P ∗µP
∗
(1) = nP ∗µ +

∑
λ: λ↘µ

κθ(µ, λ)P ∗λ , n = |µ|. (3.3)

Given a box b = (i, j) of a Young diagram, we denote its θ-content as cθ(b) =
(j − 1)− θ(i− 1). When θ = 1, this turns into the ordinary content.

Theorem 3.1. Let z, z′ be arbitrary complex numbers and t = θ−1zz′. Assume
that t 6= 0,−1,−2, . . . . Then the following expression is a harmonic function on
the Jack graph J(θ):

ϕzz′(µ) =
1

(t)n

∏
b∈µ

(z + cθ(b))(z′ + cθ(b))
a(b) + θl(b) + θ

, n = |µ|. (3.4)

The functions (3.4) fit into the general scheme of Proposition 1.3 with A∗ = Λθ

and P∗µ = P ∗µ .

This result generalizes Theorem 2.1. The first claim is due to Kerov [Ke5]. Our
proof of Theorem 3.1 is very similar to that of Theorem 2.1, so we shall only indicate
necessary modifications.

The analogs of the combinatorial formulas (2.8) and (2.9) are as follows:

Pµ(x1, . . . , xk) =
∑
T

ψT (θ)
∏
b∈µ

xT (b) , (3.5)

P ∗µ(x1, . . . , xk) =
∑
T

ψT (θ)
∏
b∈µ

(xT (b) − cθ(b)) , (3.6)

where, again, the summation is taken over the reverse Young tableaux of shape µ,
and ψ(θ) are certain numeric factors. We do not need their exact values, the point
is that they are the same in both formulas, see [Ok2], [Ok4].

Proposition 3.2. Let k = 1, 2, . . . and z′ ∈ C. The following specialization for-
mula holds

P ∗µ(−z′, . . . ,−z′︸ ︷︷ ︸
k

) = (−1)n
∏
b∈µ

(k + cθ(b))(z′ + cθ(b))
a(b) + θl(b) + θ

, n = |µ|. (3.7)
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Proof. The argument is exactly similar to that for Proposition 2.2. We employ the
combinatorial formulas (3.5), (3.6) and the well–known specialization formula for
the Jack symmetric functions:

Pµ(1, . . . , 1︸ ︷︷ ︸
k

) =
∏
b∈µ

θk + cθ(b)
a(b) + θl(b) + θ

,

see [M, VI, (10.20)]. �
A more general formula appeared in [Ok4, (1.9)].
Proposition 3.2 immediately leads to the following claim.

Corollary 3.3. For any z, z′ ∈ C, the linear functional πzz′ : Λθ → C given by

πzz′(P ∗µ) = (−1)n
∏
b∈µ

(z + cθ(b))(z′ + cθ(b))
a(b) + θl(b) + θ

, n = |µ|, (3.8)

is multiplicative.

Proof. The argument is just the same as for Corollary 2.3. �
Proof of Theorem 3.1. Exactly the same as for Theorem 2.1. �

Extreme points of the convex set H+
1 (J(θ)) of nonnegative normalized harmonic

functions on the Jack graph, as in the case of the Young graph (θ = 1), can be
parametrized by points of the Thoma simplex (2.15), see [KOO].

The Poisson kernel K(µ, ω) is defined as the image of the Jack function Pµ
under the specialization of Λ which sends power sums to the following expressions
(cf. (2.16)):

(xk1 + xk2 + . . . ) 7→
{

1, k = 1,∑∞
i=1 α

k
i + (−θ)k−1

∑∞
i=1 β

k
i , k ≥ 2,

(3.9)

see [KOO].
As was mentioned in §2, the setH+

1 (Y) = H+
1 (J(1)) has a representation theoretic

meaning. There is one more value of θ, namely θ = 1/2, when harmonic functions
on the Jack graph can be related to representations. We shall briefly explain this
connection.

Let G be the group of finite permutations of the set {±1,±2, . . .} and K be its
subgroup consisting of the permutations which commute with the involution i 7→ −i.
The group G is just another realization of the infinite symmetric group S(∞), and
the group K can be considered as an infinite version of the hyperoctahedral groups.
Note that (G,K) is a Gelfand pair [Ol].

It turns out that there exists a natural one–to–one correspondence between
H+

1 (J(1/2)) and the set of positive definite, K–biinvariant functions on G nor-
malized at the unity (this correspondence is based on classical facts explained in
[M, VII.2]). In particular, extreme functions from H+

1 (J(1/2)) correspond to the
spherical functions of irreducible unitary spherical representations of (G,K). For
more details about these representations, see [Ol], [Ok3].
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4. The Kingman graph

Let
µ = (µ1 ≥ · · · ≥ µl > 0) = (1r1(µ)2r2(µ) . . . )

denote an arbitrary partition also viewed as a Young diagram.
In this section we are dealing with the monomial symmetric functions mµ [M,

I.2]. They form a basis of the algebra Λ and obey the relation:

mµm(1) =
∑

λ:λ↘µ
κ0(µ, λ)mλ , (4.1)

where the positive integers κ0(µ, λ) are defined as follows: if k stands for the length
of the row in λ containing the box λ \ µ then κ0(µ, λ) = rk(λ).

The Kingman graph K is the multiplicative graph associated with the algebra
Λ and its basis {mµ} [Ke1]. I.e., this is the Young graph with the formal edge
multiplicities κ0(µ, λ). Since the numbers κ0(µ, λ) are integers, one can regard K
as a graph with multiple edges.

Next, introduce the factorial monomial symmetric functions m∗µ, which are also
elements of Λ. By definition [Ke1], m∗µ is the sum of all distinct expressions obtained
from

l∏
i=1

xi(xi − 1) . . . (xi − µi + 1)

by permutations of the variables x1, x2, . . . . Thus, the definition of m∗µ is similar
to that of mµ, the only difference is that the ordinary powers xm are replaced by
the falling factorial powers x(x− 1) . . . (x−m+ 1).

The function m∗µ can be characterized as the only symmetric function with the
highest term mµ and such that m∗µ(λ1, λ2, . . . ) = 0 for any diagram λ 6= µ, |λ| ≤ |µ|.
Thus, m∗µ possesses the Interpolation Property of §1.

One can directly verify that

m∗µm
∗
(1) = nm∗µ +

∑
λ:λ↘µ

κ0(µ, λ)m∗λ, n = |µ| (4.2)

(this also follows from the Interpolation Property).

Theorem 4.1. Let t, α be complex parameters, t 6= −1,−2, . . . . Then the function

ϕt,α(µ) =
(µ1 − 1)! . . . (µl − 1)!
r1(µ)!r2(µ)! . . .

· t(t+ α) . . . (t+ (l − 1)α)
(t)n

·
∏

b=(i,j)∈µ
j≥2

(
1− α

j − 1

)
,

(4.3)
where n = |µ|, is harmonic on the graph K. Here l is the length (number of nonzero
parts) of µ.
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The functions (4.3) fit into the general scheme of Proposition 1.3 with A∗ = Λ
and P∗µ = m∗µ.

As is explained below, the first claim is equivalent to a result of Pitman [Pi].

Proof. According to Proposition 1.3, it suffices to check that there exists a multi-
plicative functional πt,α : Λ→ C such that

πt,α(m∗µ) = (−1)n
(µ1 − 1)! . . . (µl − 1)!
r1(µ)!r2(µ)! . . .

· t(t+ α) . . . (t+ (l− 1)α) ·
∏

b=(i,j)∈µ
j≥2

(
1− α

j − 1

)
.

(4.4)

As the functions m∗µ form a basis in Λ, we can define a linear functional πt,α :
Λ → C by the formula (4.4). We claim that it is multiplicative if t = −kα, where
k = 1, 2, . . . . To see this we shall prove that π−kα,α coincides with the specialization
at the point (α, . . . , α︸ ︷︷ ︸

k

).

Indeed, from the definition of m∗µ it follows that

m∗µ(α, . . . , α︸ ︷︷ ︸
k

) =
k(k − 1) . . . (k − l + 1)

r1(µ)!r2(µ)! . . .

l∏
i=1

α(α− 1) . . . (α− µi + 1), (4.5)

and a direct verification shows that this expression coincides with π−kα,α(m∗µ).
Finally, as the right–hand side of (4.4) depends on the parameters t, α polyno-

mially, πt,α is multiplicative for all values of the parameters. �
Proposition 4.2. The function ϕt,α afforded by Theorem 4.1 is a nondegenerate
function from H+

1 (K) if and only if the parameters t, α are real and satisfy the
inequalities 0 ≤ α < 1, t > −α.

The proof is straightforward.
There is a bijective correspondence between the functions ϕ ∈ H+

1 (K) and the
partition structures in the sense of Kingman [Ki1], [Ki2]. According to Kingman,
a partition structure is a sequence M = (Mn) of probability distributions on the
partitions of n, n = 1, 2, . . . , such that for each n, Mn and Mn+1 are connected by
a certain consistency relation. These sequences are nothing else than the sequences
(Mn) as defined in §1, see (1.4). Thus, the passage from a harmonic function
ϕ ∈ H+

1 (K) to the corresponding partition structure is given by the formula

Mn(µ) = ϕ(µ) · dimK(µ), |µ| = n,

where
dimK(µ) =

n!
µ1! . . . µl!

(4.6)
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(the latter formula readily follows from the general relation (1.12) if we substitute
λ = µ and P∗µ = m∗µ).

Under this correspondence, the functions ϕt,0 with t > 0 turn into Ewens’ par-
tition structures [Ew]. More general functions ϕt,α with the restrictions t > −α,
0 ≤ α < 1, of Proposition 4.2 correspond to Pitman’s two–parameter generalization
of Ewens’ partition structures [Pi], [Ke4]. Note that the harmonic functions ϕ−kα,α
with k = 1, 2, . . . , which appear in the proof of Theorem 4.1, are nonnegative and
degenerate provided that α < 0; the significance of the corresponding partition
structures is explained in the introduction to [Pi].

Here is yet another interpretation of the harmonic functions ϕt,α.
For n ≥ 2 there exists a unique map S(n) → S(n − 1) which commutes with

the two–sided action of the smaller group S(n− 1). This map, called the canonical
projection, can be defined as follows: if s, s1, s2 ∈ S(n− 1) and (n− 1, n) stands for
the elementary transposition of “n−1” and “n”, then s 7→ s and s1 ·(n−1, n) ·s2 7→
s1s2. In other words, the canonical projection is defined by removing “n” from the
cycle . . . i→ n→ j . . . containing it, see [KOV].

The projective limit X = lim←−S(n) taken with respect to the canonical projections
is a compact topological space. Its elements are called virtual permutations. There
is a natural embedding S(∞) → X whose image is dense, so that X is a certain
compactification of the discrete set S(∞). The two–sided action of S(∞) on itself
can be extended to X, which makes X a S(∞)×S(∞)-space. This construction and
its meaning for the representation theory of the group S(∞) is discussed in [KOV].

A probability measureM on X is called central if it is invariant under the action
of the diagonal subgroup in S(∞)× S(∞) (that action extends the action of S(∞)
on itself by conjugations). There is a natural bijective correspondence ϕ ↔ M
between the elements ϕ ∈ H+

1 (K) and the central measures M on X. It is specified
as follows: for each n = 1, 2, . . . , the image of M under the composite projection
X → S(n) → Kn coincides with Mn; here the second arrow S(n) → Kn assigns to
a permutation its cycle structure which is identified with a partition, and (Mn) is
the partition structure corresponding to ϕ.

Let us denote by Mt,α the measures corresponding to the harmonic functions
ϕt,α, where the parameters satisfy the conditions of Proposition 4.2. The measure
M1,0 is invariant with respect to S(∞)×S(∞) and it is the only probability measure
with this property. The measures Mt,0 with t > 0 were employed in [KOV] for a
geometric construction of generalized regular representations of the group S(∞)×
S(∞) which are closely related to the harmonic functions ϕzz′ defined in §2. Note
that all the measures Mt,α are quasi–invariant under the action of this group, see
[KOV], [Ke4].

Extreme points of the convex set H+
1 (K) can be parametrized by nonincreasing

sequences of nonnegative numbers with sum less or equal to 1 (cf. (2.15)):

Ω(K) = {α1 ≥ α2 ≥ . . . |
∑
i

αi ≤ 1}, (4.7)
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and the Poisson kernel K(µ, ω) is given in this case by extended monomial symmetric
functions:

K(µ, α) = K(1r12r2 . . . , α) =
r1∑
k=0

(1−
∑
i αi)

k

k!
m(1r1−k2r2 ... )(α1, α2, . . . ), (4.8)

see [Ki2], [Ke4].
Let us also note that the Kingman graph may be viewed as the degeneration

of the Jack graph J(θ) as θ → 0. Indeed, according to the definition of the Jack
functions, their expansion in the monomial functions has the form

Pµ = mµ + lower terms

relative to the dominance order on partitions [M, VI, (10.13)]. It is well known that
in the limit θ → 0 the coefficients of all the lower terms vanish. In this sense, the
Jack functions Pµ degenerate to the monomial functions mµ as θ → 0. This implies,
in particular, the limit relation

κ0(µ, λ) = lim
θ→0

κθ(µ, λ),

which can also be checked directly from (3.2).

§5. The Schur graph

Recall that a partition is said to be strict if its nonzero parts are pairwise distinct.
In this section, the symbols µ and λ always mean strict partitions. Using the
standard correspondence between partitions and Young diagrams we introduce the
relation µ ↗ λ as before, see §2. Then the Schur graph S is defined as follows:
the vertices of the nth floor Sn are the strict partitions of n, and the edges are the
couples µ↗ λ. By definition, the empty partition ∅ is included into the set of the
strict partitions. All the edge multiplicities are equal to 1. Thus, the Schur graph
is a subgraph of the Young graph.

Let Γ denote the subalgebra in Λ generated by the odd power sums p1 =
∑
i xi,

p3 =
∑
i x

3
i , . . . . Equivalently, Γ consists of those symmetric functions f(x1, x2, . . . )

which satisfy the following cancellation condition: for any i 6= j, the result of
specializing xi = y, xj = −y in f does not depend on y (see [Pr]).

In this section, the symbol Pµ stands for the Schur P function indexed by a strict
partition µ. The Schur P functions form a homogeneous basis of Γ, degPµ = |µ|.
They obey the following Pieri–type rule:

PµP(1) =
∑

λ:λ↘µ
Pλ , (5.1)

see [M, III.8]. Thus, S is a multiplicative graph with A = Γ and {Pµ} = {Pµ}.
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Note that
dimS µ =

n!∏`(µ)
i=1 µi!

∏
1≤i<j≤`(µ)

µi − µj
µi + µj

. (5.2)

Here and below `(µ) denotes the length of µ.
We shall employ the factorial Schur P functions P ∗µ , see [I1]. These are inho-

mogeneous elements of Γ with the Interpolation Property; the highest term of P ∗µ
coincides with Pµ. According to the general formalism, the P ∗ functions satisfy the
relation

P ∗µP
∗
(1) = nP ∗µ +

∑
λ:λ↘µ

P ∗λ , n = |µ|, (5.3)

which has the same form as for the shifted Schur functions (see [OO, Theorem 9.1]),
except that now µ and λ are not arbitrary but strict partitions.

There is a convenient generating series for the one–row P ∗ functions,

F ∗(u) = 1 +
∞∑
m=1

P ∗(m)

u(u− 1) . . . (u−m+ 1)
, (5.4)

whose evaluation at a point x = (x1, x2, . . . ) has the form

F ∗(u)(x) =
∞∏
i=1

u+ 1 + xi
u+ 1− xi

, (5.5)

see [I2]. The formulas (5.4), (5.5) should be understood in the same way as the
formulas (2.6), (2.7).

Theorem 5.1. Let t > 0. The following expression is a positive harmonic function
on the Schur graph:

ϕt(µ) =
1

(t)n

∏
(i,j)∈µ(2t+ (j − 1)j)

2`(µ)
∏`(µ)
i=1 µi!

∏
1≤i<j≤`(µ)

µi − µj
µi + µj

, n = |µ|. (5.6)

The harmonic functions (5.6) fit into the general scheme of Proposition 1.3 with
A∗ = Γ and P∗µ = P ∗µ .

The first claim was established in [B1].
Let µ̃ denote the shifted Young diagram corresponding to µ (see [M, III.8]).

Define t1, t2 from the conditions

t1 + t2 = 1, t1t2 = 2t. (5.7)

Then (cf. (2.4)) ∏
(i,j)∈µ

(2t+ (j − 1)j) =
∏
b∈eµ

(t1 + c(b))(t2 + c(b)) (5.8)
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so that the parameters t1, t2 are to a certain extent similar to z, z′.

Sketch of proof. As usual, we shall employ Proposition 1.3.
Consider the linear functional πt : Γ→ C defined by

πt(P ∗µ) = (−1)n
∏

(i,j)∈µ(2t+ (j − 1)j)

2`(µ)
∏`(µ)
i=1 µi!

∏
1≤i<j≤`(µ)

µi − µj
µi + µj

, n = |µ|. (5.9)

Here t ∈ C is arbitrary. Note that πt(P ∗(1)) = −t, as prescribed by Proposition 1.3.
According to the general formalism, it suffices to prove that πt is multiplicative.

Since the expression (5.9) depends on t polynomially, it suffices to prove the
claim for a countable number of different values of t. We shall assume that

t =
k(1− k)

2
, k = 1, 2, . . . . (5.10)

That is, in the notation of (5.7),

t1 = k, t2 = 1− k, k = 1, 2, . . . . (5.11)

To prove the multiplicativity property for the values (5.10) we shall show that

πk(1−k)/2 = evaluation at the staircase diagram (k, k − 1, . . . , 1). (5.12)

This claim is an analog of Propositions 2.2, 3.2, and formula (4.5). It does not
seem to have appeared in the literature before, so we give here a sketch of the proof.

We shall consecutively check (5.12) on the one–row P ∗ functions, next on the
two–row P ∗ functions, and finally on arbitrary P ∗ functions.

First, consider the generating series (5.4) for the one–row functions. By (5.5),
its evaluation at the kth staircase diagram is as follows:

F ∗(u)(k, k− 1, . . . , 1) =
k∏
i=1

u+ 1 + i

u+ 1− i . (5.13)

Here and below we assume <u� 0.
On the other hand, by (5.4) and (5.9) we have

πt(F ∗(u)) = 1 +
∞∑
m=1

(t1)m(t2)m
(−u)mm!

= 2F1(t1, t2;−u; 1) =
Γ(−u)Γ(−u− t1 − t2)
Γ(−u− t1)Γ(−u− t2)

,

(5.14)
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where the last equality is Gauss’ summation formula, cf. (2.12). When t1, t2 are as
in (5.11), this coincides with (5.13). Thus, we have checked (5.12) on the one–row
functions.

Next, we employ recurrence relations which make it possible to express the two–
row functions through the one–row ones. It is convenient to extend the definition
of two–row functions P ∗(p,q) with p > q ≥ 1 to a larger set of indices by adopting the
convention P ∗(p,q) = −P ∗(q,p). Thus, P ∗(p,q) makes sense for any p, q = 1, 2, . . . (we
assume that P ∗(p,q) = 0 for p = q). Then we have two families of relations:

P ∗(p,1) = P ∗(p)P
∗
(1) − pP ∗(p) , (5.15)

P ∗(p+1,q) + P ∗(p,q+1) + (p+ q)P ∗(p,q) = P ∗(p)P
∗
(q+1) − P ∗(p+1)P

∗
(q) − (p− q)P ∗(p)P ∗(q) .

(5.16)

Here p, q range over {1, 2, . . .}. These relations were proved in [I2]. Note that (5.15)
can be formally obtained from (5.16) by substituting q = 0.

Using double induction on p + q and q we see that these relations indeed allow
to express the two–row functions through the one–row functions.

A direct computation shows that the relations (5.15), (5.16) remain valid if we
apply πt to each P ∗ function involved. This means that (5.12) holds on the two–row
functions.

Finally, to handle arbitrary P ∗ functions we employ the following relation proved
in [I2]:

P ∗µ = Pf
[
P ∗(µi,µj)

]
1≤i,j≤`(µ)+ε

. (5.17)

Here the symbol Pf means Pfaffian and ε equals 1 for odd `(µ) and 0 for even `(µ),
so that the order of the matrix is always even. Note that this relation has exactly
the same form as in the case of the classical Schur P functions, see [M, III.8].

To conclude that (5.12) holds on any P ∗µ we must verify that (5.17) remains
valid if we apply πt to each P ∗ function. This readily follows from the well–known
relation ∏

1≤i<j≤`(µ)

µi − µj
µi + µj

= Pf
[
µi − µj
µi + µj

]
1≤i,j≤`(µ)+ε

, (5.18)

see [M, III.8]. �
Proposition 5.2. The harmonic function ϕt afforded by Theorem 5.1 is strictly
positive if and only if t > 0.

The proof is straightforward.
It should be noted that the values t = k(1− k)/2 used in the proof of Theorem

5.1 lie outside the region t > 0.
Quite similarly to the case of the Young graph, extreme points of H+

1 (S) corre-
spond to projective characters or projective finite factor representations of the group
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S(∞). They can be parametrized by the points of the infinite–dimensional simplex
Ω(S) = Ω(K) described by (4.7), see [N], [I1].

The Poisson kernel K(µ, ω) for the Schur graph is given by the image of the Schur
P function Pµ under the specialization of the algebra Γ which sends odd powers
sums to the following expressions (cf. (2.16), (3.9))

(xk1 + xk2 + . . . ) 7→
{

1, k = 1,∑∞
i=1 α

k
i , k = 2m+ 1 ≥ 3.

(5.19)

§6. Finite–dimensional specializations

In the previous four sections we described four different examples of graphs which
fit into the general scheme introduced in §1. For each of these graphs we produced a
nontrivial family of specializations of the corresponding algebras A∗ which defined,
according to Proposition 1.3, a certain family of (nonnegative) harmonic functions
on the graph.

Every such family, in its turn, gives rise to a family of probability measures
on the space Ω(G) (Theorem 1.1), and this space in all our examples is infinite–
dimensional, see (2.15), (4.7).

For Young and Kingman graphs such measures have been thoroughly studied, see
[P.I–P.V], [BO1], [BO2], [Ki3], [Pi], [Ke4]. They lead to certain stochastic processes
on the real line, for the Young graph the processes are closely related to those arising
in Random Matrix Theory, while for the Kingman graph the theory is connected
with Poisson processes.

Our goal in this section is to construct ‘simpler’ families of harmonic functions
for Young, Kingman, and Schur graphs. The word ‘simpler’ means that the cor-
responding measures on Ω(G) will be supported by finite–dimensional subspaces.
These measures will be explicitly computed.

The corresponding Poisson integrals (which arise due to Theorem 1.1) will give
(possibly new) integral formulas involving products of Schur S and P functions, see
(6.10), (6.15), (6.23), (6.26) below.

6.1. Truncated Young branching. Recall that for the Young graph Y the
algebra A∗ is the algebra Λ∗ of functions in infinitely many variables x1, x2, . . .
symmetric in ‘shifted’ variables x′j = xj − j.

We shall consider the most natural specializations of this algebra obtained by fix-
ing finitely many variables x1, . . . , xl and sending remaining variables xl+1, xl+2, . . .
to zero.

In any such specialization all functions s∗µ with the length (number of nonzero
parts) of µ greater than l vanish, see [OO]. This implies that the harmonic function
on Y afforded by Proposition 1.3 vanishes on all Young diagrams with more than
l rows. Thus, one can consider such a function as a harmonic function on the
subgraph Y(l) of Y consisting of all Young diagrams with length ≤ l. This graph
fits into the general formalism of §1: the algebra A is the algebra of symmetric
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polynomials in l variables, and the algebra A∗ is the algebra of shifted symmetric
polynomials in l variables. The elements Pµ and P∗µ are conventional and shifted
Schur polynomials in l variables, respectively. The graph Y(l) is called the truncated
Young graph. Harmonic functions on such graphs were considered by Kerov, see
[Ke3]; he used them to derive certain Selberg–type integrals. Our arguments below
are similar to those of Kerov’s work.

Let us fix a Young diagram λ. Denote by l the length of λ. We shall assume that
l ≥ 2. Denote by πλ the algebra homomorphism πλ : Λ∗ → R defined by{

xi 7→ −λi − 2(l− i)− 1, 1 ≤ i ≤ l,
xi 7→ 0 i > l.

(6.1)

Convenience of such choice of notation will be clear in a while.
According to the general scheme of §1 (Proposition 1.3), the corresponding har-

monic function on Y has the form

ϕλ(µ) =
(−1)|µ|πλ(s∗µ)
(−πλ(s∗(1)))|µ|

=
(−1)|µ|s∗µ(−λ− 2δ − 1)

(|λ|+ l2)|µ|
, (6.2)

where s∗µ is the shifted Schur function and{
δi = l − i, 1 ≤ i ≤ l,
δi = 0, i > l.

Proposition 6.1. The function ϕλ defined by (6.2) is nonnegative.

Proof. Let the symbol (a � k) denote the kth falling factorial power of a:

(a � k) =
{
a(a− 1) · · · (a− k + 1), k = 1, 2, . . . ,
1, k = 0.

Recall the definition of the shifted Schur polynomials in finitely many variables [OO]

s∗µ(x1, . . . , xl) =
det[(xi + δi � µj + δj)]li,j=1

det[(xi + δi � δj)]li,j=1

, (6.3)

where δj are as above.
Let us plug in our xi from (6.1) to (6.3). We get

(−1)|µ|πλ(s∗µ) = (−1)|µ|
det[(−λi − δi − 1 � µj + δj)]li,j=1

det[(−λi − δi − 1 � δj)]li,j=1

=
det[Γ(λi + δi + 1 + µj + δj)]li,j=1

det[Γ(λi + δi + 1 + δj)]li,j=1

.
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As the first l members of sequences λ + δ + 1, µ + δ, and δ decrease, the claim
follows from the inequality

det[Γ(xi + yj)]li,j=1 > 0, x1 > · · · > xl > 0, y1 > · · · > yl > 0,

which is a special case of Problem VII.66 in [PS]. �

Next, we form the probability distributions Mn = Mλ
n on Yn for each n =

0, 1, 2, . . . according to (1.4):

Mλ
n (ν) = dimY(ν)ϕλ(ν), |ν| = n. (6.4)

Let us embed Yn ↪→ Ω(Y) via

ν 7→
(ν1

n
,
ν2

n
, . . . ; 0, 0, . . .

)
∈ Ω(Y). (6.5)

As was mentioned in §1, the probability measure P involved in the Poisson
integral (1.2) is the weak limit of the images of the measures Mn under appropriate
embeddings Yn ↪→ Ω(Y); as such embeddings one can take (6.5).

Let us denote by V (a) the Vandermonde determinant

V (a1, . . . , as) =
∏

1≤i<j≤s
(ai − aj).

Proposition 6.2. The images of Mλ
n under the embeddings (6.5) weakly converge

to a probability measure P on Ω(Y) supported by the finite–dimensional face

∆l = {(α, β) ∈ Ω(Y) |αl+1 = αl+2 = · · · = β1 = β2 = · · · = 0,
l∑
i=1

αi = 1}

w {(α1, . . . , αl) ∈ Rl+|α1 ≥ α2 ≥ · · · ≥ αl,
l∑
i=1

αi = 1}.

The density of P with respect to the Lebesgue measure on ∆l equals

Γ(|λ|+ l2) sλ(α1, . . . , αl)V 2(α1, . . . , αl)
det[Γ(λi + δi + δj + 1)]li,j=1

. (6.6)

Proof. We shall need the following lemma.
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Lemma 6.3. As n→∞,

max
ν∈Yn

Mλ
n (ν) = O(n1−l).

Furthermore, if νl ≥ εn, where ε > 0 is arbitrary, then, as n→∞,

Mλ
n (ν) = n1−l Γ(|λ|+ l2) sλ(α1, . . . , αl)V 2(α1, . . . , αl)

det[Γ(λi + δi + δj + 1)]li,j=1

(1 + o(1)) (6.7)

with
α1 =

ν1

n
, . . . , αl =

νl
n
,

and the estimate (6.7) is uniform in ν.

Let us postpone the proof of this statement and proceed with the proof of Propo-
sition 6.2 taking Lemma 6.3 for granted.

The Thoma simplex Ω(Y) defined in (2.15) is a compact topological space. Let
C(Ω(Y)) denote the algebra of continuous functions on Ω(Y). Take any f ∈
C(Ω(Y)). Note that f is bounded. The value on f of the image of Mλ

n under
the nth embedding (6.5) have the form∑

ν∈Yn

Mλ
n (ν) · f

(ν1

n
,
ν2

n
, . . . ; 0, 0, . . .

)
. (6.8)

Recall that Mλ
n is supported by the Young diagrams ν with the length ≤ l. Let us

first consider the part of the sum (6.8) involving diagrams ν with νl ≥ εn, νl+1 = 0.
Using Lemma 6.3 and the boundedness of f , we get∑

ν∈Yn
νl≥εn, νl+1=0

Mλ
n (ν) · f

(ν1

n
,
ν2

n
, . . . ; 0, 0, . . .

)
=

Γ(|λ|+ l2) (1 + o(1))
det[Γ(λi + δi + δj + 1)]li,j=1

×
∑
ν∈Yn

νl≥εn, νl+1=0

f(α1, . . . , αl, 0, . . . ; 0, 0, . . . ) · sλ(α)V 2(α) · n1−l ,

(6.9)
where α = (α1, . . . , αl) is as in Lemma 6.3.

The sum in the right–hand side of (6.9) is a Riemannian sum for the integral∫
f(α1, . . . , αl, 0, . . . ; 0, 0, . . . ) · sλ(α)V 2(α) dα

over the part of ∆l specified by the condition αl ≥ ε.
Thus, it remains to prove that the part of the sum (6.8) involving diagrams ν

with νl < εn is ε–negligible. Since Mλ
n ( · ) = O(n1−l), this follows from the fact
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that the number of Young diagrams ν = (ν1, . . . , νl, 0, . . . ) with ν1 + · · ·+ νl = n
and such that νl < εn is bounded by const · ε nl−1. This completes the proof of
Proposition 6.2 modulo Lemma 6.3.

Proof of Lemma 6.3. We shall employ formulas (6.2), (6.3), (6.4). Denote by m the
length of ν. We apply a well–known dimension formula

dimY ν =
n!∏m

i=1(νi +m− i)!
∏

1≤i<j≤m
(νi − i− νj + j)

which can be derived, e.g., from [M, I.7, Ex.6]. Then

Mλ
n (ν) = dimY(ν)ϕλ(ν) =

n!∏m
i=1(νi +m− i)!

∏
1≤i<j≤m

(νi − i− νj + j)

× 1
(|λ|+ l2)n

·
det[Γ(λi + δi + 1 + νj + δj)]li,j=1

det[Γ(λi + δi + 1 + δj)]li,j=1

.

Here νj = 0 for j > m.
Next, we have the following asymptotic relations as n→∞:∏

1≤i<j≤m
(νi − i− νj + j) = O(n

m(m−1)
2 ),

Γ(λi + δi + 1 + νj + δj)
(νj +m− j)! =

(λi + δi + νj + δj)!
(νj +m− j)!
≤ (λi + δi + νj + δj)λi+δi+l−m = O(nλi+δi+l−m),

n!
(|λ|+ l2)n

= O(n−|λ|−l
2+1),

where estimates are uniform in ν ∈ Yn.
Expanding the determinant det[Γ(λi + δi + 1 + νj + δj)]li,j=1 and using the above

estimates we get that each of l! terms in the expansion, after multiplication by the
remaining factors, is at most of order n1−l. This proves the first claim of the lemma.

Let us proceed to the second claim. Assume that νl ≥ εn. We have∏
1≤i<j≤l

(νi − i− νj + j) = n
l(l−1)

2 V (α) · (1 + o(1)),

Γ(λi + δi + 1 + νj + δj)
(νj + δj)!

=
Γ(λi + δi + 1 + νj + δj)

Γ(νj + δj + 1)
= (αjn)λi+δi · (1 + o(1)),

n!
(|λ|+ l2)n

= Γ(|λ|+ l2)
Γ(n+ 1)

Γ(|λ|+ l2 + n)
= Γ(|λ|+ l2)n−|λ|−l

2+1 · (1 + o(1)).

All estimates are uniform in ν ∈ Yn provided that νl ≥ εn. This assumption has
been used in the second estimate above. This implies the desired estimate (6.7). �

As a consequence, we have the Poisson integral representation for our harmonic
functions (see Theorem 1.1):
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Proposition 6.4.

(−1)|µ|s∗µ(−λ− 2δ − 1)
(|λ|+ l2)|µ|

=
Γ(|λ|+ l2)

det[Γ(λi + δi + δj + 1)]li,j=1

∫
∆l

sµ(α) sλ(α)V 2(α) dα.

(6.10)

Note that the Poisson kernel K(µ, ω) on ∆l coincides with the ordinary Schur
function sµ(α), see the end of §2.

It should be noted that the integration in (6.10) can be carried out directly by
making use of the formulas

sµ(α) =
det[αµj+δji ]li,j=1

V (α)
, sλ(α) =

det[αλj+δji ]li,j=1

V (α)
,

and the well–known Dirichlet integrals∫
α1≥···≥αl≥0
α1+···+αl=1

ακ1−1
1 · · ·ακl−1

l dα =
1
l!

∫
α1≥0,...,αl≥0
α1+···+αl=1

ακ1−1
1 · · ·ακl−1

l dα

=
1
l!

Γ(κ1) · · ·Γ(κl)
Γ(κ1 + · · ·+ κl)

.

However, in more complicated cases, see below, a direct evaluation of integrals like
(6.10) seems to be difficult.

The identity (6.10) is similar to a result of Hua, see [H, p. 104], [Ri, (3.3)].

Remark 6.5. All claims of the present subsection remain true if we replace the
integers (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) by any positive real numbers satisfying the same
system of inequalities. Then the Schur function sλ(α) should be understood just
as the ratio det[αλj+l−ji ]/det[αl−ji ]. We restricted ourselves to integral λi’s in order
to emphasize the symmetry λ↔ µ in the integral (6.10). By analytic continuation,
the formula (6.10) can be extended to arbitrary complex λi’s. When λ has the form
((l − 1)θ + a, (l − 2)θ + a, . . . , a), where θ > 0 and a > −1, the measure (6.6) is
related to the so–called Laguerre biorthogonal ensemble, see [B2].

6.2. Γ–shaped Young branching. As in the previous subsection, we work with
the Young graph Y. This time we shall use another, so–called super realization of
the algebra A∗ = Λ∗ of shifted symmetric functions. Since a detailed exposition
of the material of this subsection would be rather tedious, we shall only state the
results and outline the ideas used in the proofs.

Let Λ̃ be the algebra of supersymmetric functions in x = (x1, x2, . . . ) and y =
(y1, y2, . . . ), see [BR], [M, Ex.I.3.23-24, Ex.I.5.23]. It can be identified with the
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algebra Λ of symmetric functions; under this identification power sums pm ∈ Λ
correspond to their super analogs

pm(x; y) =
∑
i

xmi + (−1)m−1
∑
i

ymi .

Note that our notation slightly differs from that of Macdonald’s book: his super-
symmetric functions in x and y coincide with ours in x and −y.

Below we shall use Frobenius notation for Young diagrams, its description can
be found in [M, I.1].

Theorem 6.6 [KO]. There exists an algebra isomorphism ρ : Λ∗ → Λ̃ such that
for any f ∈ Λ∗ and any Young diagram λ = (λ1, λ2, . . . ) with Frobenius coordinates
(p1, . . . pd| q1, . . . , qd) the following equality holds:

f(λ1, λ2, . . . ) = ρ(f)
(
p1 +

1
2
, . . . , pd +

1
2

; q1 +
1
2
, . . . , qd +

1
2

)
.

Now we shall identify Λ̃ and Λ∗ using the isomorphism ρ. We shall denote the
elements ρ(s∗µ) ∈ Λ̃ as FSµ and call them Frobenius–Schur functions, see [ORV].

Let us consider specializations of the algebra Λ∗ ' Λ obtained by fixing finitely
many variables x1, . . . , xd; y1, . . . , yd and sending remaining variables xi, yi, i =
d, d + 1, . . . , to zero. In any such specialization all functions s∗µ with the depth
(number of diagonal boxes) greater than d vanish, this follows from results of [ORV].
Hence, the corresponding harmonic functions are concentrated on a subgraph of
the Young graph Y consisting of diagrams with depth ≤ d. These are exactly the
Young diagrams which fit into the Γ–shaped figure with d rows and d columns. We
denote the subgraph of such Young diagrams by Y(d, d) and call it the Γ–shaped
Young graph. Like the truncated Young graphs considered in 6.1, the Γ–shaped
Young graphs also fit into the general formalism of §1. The algebras A and A∗ are
both identified with the algebra of supersymmetric polynomials in d+ d variables,
the elements Pµ are supersymmetric Schur polynomials, and the elements P∗µ are
supersymmetric Frobenius–Schur polynomials.

Fix a Young diagram λ with Frobenius coordinates (p1, . . . pd | q1, . . . , qd). We
shall denote by πλ the algebra homomorphism πλ : Λ∗ → R defined by

xi 7→ −pi − 1
2 , 1 ≤ i ≤ d,

yi 7→ −qi − 1
2 , 1 ≤ i ≤ d,

xi, yi 7→ 0, i > d.

(6.11)

According to §1, the harmonic function on Y corresponding to πλ has the form

ϕλ(µ) =
(−1)|µ|πλ(s∗µ)
(−πλ(s∗(1)))|µ|

=
(−1)|µ|FSµ(−p− 1

2 ;−q − 1
2)

(|λ|)|µ|
. (6.12)
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Unfortunately, it is not clear how to prove directly that ϕλ is nonnegative. How-
ever, we can go around this obstacle.

Set
Mλ
n (ν) = dimY(ν)ϕλ(ν), |ν| = n.

Consider the embeddings Yn ↪→ Ω(Y) defined as follows. For a Young diagram
ν ∈ Yn with Frobenius coordinates (P1, . . . , PD|Q1, . . . , QD)

ν 7→
(
P1 + 1/2

n
, . . . ,

PD + 1/2
n

, 0, . . . ;
Q1 + 1/2

n
, . . . ,

QD + 1/2
n

, 0, . . .
)
∈ Ω(Y).

(6.13)

Proposition 6.7. The images of (possibly signed) measures Mλ
n under the embed-

dings (6.13) weakly converge, as n → ∞, to a (positive) probability measure P on
Ω(Y). This measure is supported by the finite–dimensional face

∆d,d = {(α, β) ∈ Ω(Y) |αd+1 = βd+1 = αd+2 = βd+2 = · · · = 0,
d∑
i=1

(αi + βi) = 1}

w {(α1, . . . , αd; β1, . . . , βd) ∈ R2d
+ |α1 ≥ · · · ≥ αd; β1 ≥ · · · ≥ βd,

d∑
i=1

(αi + βi) = 1},

and its density with respect to the Lebesgue measure d(α; β) on ∆d,d equals

Γ(|λ|)∏d
i=1 pi!qi!

[
det
(

1
pi + qj + 1

)]−1

sλ(α; β) det2

(
1

αi + βj

)
, (6.14)

where sλ(α; β) is the supersymmetric Schur polynomial in d+ d variables.

The proof of this proposition is quite similar to that of Proposition 6.2. An analog
of Lemma 6.3 is proved using the Sergeev–Pragacz formula for sλ(α; β) (see [PT],
[M, I.3, Ex.24]) and its analog for the Frobenius–Schur polynomials (see [ORV]).

It turns out that Proposition 6.7 implies the existence of the Poisson integral
representation (1.2) for the harmonic function (6.12). The proof of this claim is
quite similar to the proof of Theorem B in [KOO]. Since the Poisson kernel is always
nonnegative, the existence of the Poisson integral representation implies that our
harmonic function is nonnegative.

Explicitly, the Poisson integral representation has the following form, cf. Propo-
sition 6.4.

Proposition 6.8.

(−1)|µ|FSµ(−p− 1
2 ;−q − 1

2)
(|λ|)|µ|

=
Γ(|λ|)∏d
i=1 pi!qi!

[
det
(

1
pi + qj + 1

)]−1

×
∫

∆d,d

sµ(α; β) sλ(α; β) det2

(
1

αi + βj

)
d(α; β).

(6.15)
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Remark 6.9. The formula (6.15) gives an expression for the integral∫
∆d,d

sµ(α; β) sλ(α; β) det2

(
1

αi + βj

)
d(α; β). (6.16)

The integrand is symmetric in λ and µ. However, our assumptions on λ and µ
are different: the depth of λ must be equal to d while µ is arbitrary. Actually, if
the depth of µ is > d then both sides of (6.15) vanish. If the depth of µ is equal
to d, the integration can be carried out directly in a rather simple way using the
Berele–Regev formula

sν(α1, . . . , αd; β1, . . . , βd) =

[
det
(

1
αi + βj

)d
i,j=1

]−1

det[αPji ]di,j=1 det[βQji ]di,j=1;

here (P |Q) are the Frobenius coordinates of ν, see [BR], [M, I.3, Ex.23]. But if the
depth of µ is strictly less than d, the Berele–Regev formula must be replaced by
the more complicated Sergeev–Pragacz formula, and a direct integration seems to
be more difficult.

Remark 6.10. All claims of this subsection remain true if we replace integral
Frobenius coordinates p1 > · · · > pd ≥ 0, q1 > · · · > qd ≥ 0 of a fixed Young
diagram λ with any ordered sequences of real numbers > −1

2 . Then the Schur
function sλ(α; β) should be understood as[

det
(

1
αi + βj

)d
i,j=1

]−1

det[αpji ]di,j=1 det[βqji ]di,j=1,

cf. Remark 6.5. As in 6.1, we restricted ourselves to integral p’s and q’s in order to
demonstrate the symmetry λ↔ µ in (6.15). By analytic continuation, the formula
(6.15) can be extrapolated to any pairwise distinct complex pi’s and qi’s.

6.3. Truncated Kingman branching. For the Kingman graph K (see §4) the
algebra A∗ coincides with the algebra Λ of symmetric functions. We consider spe-
cializations of Λ obtained by fixing finitely many indeterminates, say, x1, . . . , xl,
and sending remaining indeterminates to zero.

Under such a specialization all functions P∗µ = m∗µ with `(µ) > l vanish (this
easily follows from the definition of the factorial monomial functions, see §4). This
means that the corresponding harmonic function lives on the subgraph K(l) of the
Kingman graph K consisting of all Young diagrams with the length ≤ l. We call
this subgraph the truncated Kingman graph. It fits into the general formalism of
§1 with algebras A and A∗ both equal to the algebra of symmetric polynomials in
l variables. The elements Pµ and P∗µ are monomial symmetric polynomials and
factorial monomial symmetric polynomials, respectively.
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Certain harmonic functions on truncated Kingman graphs and their applications
to Selberg–type integrals were previously considered by Kerov [Ke3].

Let us fix a Young diagram

λ = (λ1 ≥ · · · ≥ λl > 0) = (1r1(λ)2r2(λ) . . . ).

We define an algebra homomorphism πλ : Λ→ R as follows, cf. (6.1), (6.11),{
xi 7→ −λi − 1, 1 ≤ i ≤ l,
xi 7→ 0, i > l.

(6.17)

The corresponding harmonic function on K has the form

ϕλ(µ) =
(−1)|µ|πλ(m∗µ)
(−πλ(m∗(1)))|µ|

=
(−1)|µ|m∗µ(−λ1 − 1, . . . ,−λl − 1)

(|λ|+ l)|µ|
. (6.18)

Proposition 6.11. The harmonic function ϕλ defined by (6.18) is nonnegative.

Proof. It suffices to note that m∗µ(−λ1 − 1, . . . ,−λl − 1), by definition, is a sum of
expressions of the form (σ is a permutation here)

l(µ)∏
i=1

(−λσ(i) − 1)(−λσ(i) − 2) · · · (−λσ(i) − µi),

each of which has sign (−1)|µ|. �
According to §1, we have probability distributions Mλ

n on Kn for all n = 1, 2, . . .
given by

Mλ
n (ν) = dimK(ν)ϕλ(ν), |ν| = n. (6.19)

Embeddings Kn ↪→ Ω(K) are defined as follows (Ω(K) was defined in (4.7)):

ν ∈ Kn 7→
(ν1

n
,
ν2

n
, . . .

)
∈ Ω(K). (6.20)

The images of the probability distributions Mλ
n via these embeddings, according to

the general theory, weakly converge, as n→∞, to a certain probability measure P
on Ω(K).

Proposition 6.12. The probability measure P on Ω(K) is supported by the finite–
dimensional face

∆l = {α ∈ Ω(K) |αl+1 = αl+2 = · · · = 0,
l∑
i=1

αi = 1}

w {(α1, . . . , αl) ∈ Rl+|α1 ≥ α2 ≥ · · · ≥ αl,
l∑
i=1

αi = 1}.
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Its density with respect to the Lebesgue measure dα on ∆l equals

Γ(|λ|+ l) · r1(λ)!r2(λ)! · · ·∏l
i=1 λi!

mλ(α1, . . . , αl). (6.21)

The proof is very similar to that of Proposition 6.2, so we shall just state the
analog of Lemma 6.3 in this case.

Lemma 6.13. As n→∞,

max
ν∈Kn

Mλ
n (ν) = O(n1−l).

Furthermore, if νl+1 = 0 and νl ≥ εn, where ε > 0 is arbitrary, then, as n→∞,

Mλ
n (ν) = n1−l Γ(|λ|+ l) · r1(λ)!r2(λ)! · · ·∏l

i=1 λi!
mλ(α1, . . . , αl) (1 + o(1)), (6.22)

with α1 = ν1/n, . . . , αl = νl/n. The estimate (6.22) is uniform in ν.

Proof. Using the formula (4.6) for dimK(ν) we get

Mλ
n (ν) = dimK(ν)ϕλ(ν) =

n!
(|λ|+ l)n

∑
σ

∏`(ν)
i=1 (λσ(i) + 1)νi
ν1! · · ·ν`(ν)!

,

where the summation is taken over all permutations σ ∈ Sl which produce different
products

∏`(ν)
i=1 (λσ(i) + 1)νi .

Next, we have asymptotic relations

n!
(|λ|+ l)n

= O(n1−l−|λ|),

(λj + 1)νi
νi!

≤ (λj + νi)λj = O(nλj).

They imply that each term of the sum above, after multiplication by remaining
factors, is at most of order n1−l. This proves the first part of the lemma.

For the second part of the lemma, assume νl ≥ εn. Then we have

n!
(|λ|+ l)n

= Γ(|λ|+ l)n1−l−|λ|(1 + o(1)),

(λj + 1)νi
νi!

=
(αin)λj

λj !
(1 + o(1))

as n→∞, all estimates are uniform in ν ∈ Kn provided that νl ≥ εn. This yields
the estimate (6.22). �

As a corollary, we get the Poisson integral representation, cf. Propositions 6.4
and 6.8.
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Proposition 6.14.

(−1)|µ|m∗µ(−λ1 − 1, . . . ,−λl − 1)
(|λ|+ l)|µ|

=
Γ(|λ|+ l) · r1(λ)!r2(λ)! · · ·∏l

i=1 λi!

∫
∆l

mµ(α)mλ(α)dα.
(6.23)

This claim, similarly to Proposition 6.4, can be proved directly by making use of
Dirichlet integrals.

Remark 6.15. All claims above remain valid for any positive ordered sequence
λ = (λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0) with the obvious modification of the definition of
monomial symmetric function mλ(α), cf. Remarks 6.5, 6.10. By analytic continua-
tion, the formula (6.23) can be extended to arbitrary complex λi’s.

6.4. Truncated Schur branching. In this subsection we shall deal with the Schur
graph, see §5. For this graph the algebras A and A∗ coincide with a subalgebra
Γ of the algebra of symmetric functions; Γ is generated by the odd power sums∑
i x

2k+1
i , k = 0, 1, . . . . Again, we consider specializations of Γ obtained by fixing

variables x1, . . . , xl and sending remaining variables to zero. As in 6.2, we shall
state the results and sketch the ideas of the proofs.

In such a specialization, the elements P∗µ = P ∗µ vanish if `(µ) > l. This means
that the corresponding harmonic function can be viewed as a harmonic function on
the truncated Schur graph S(l) — the subgraph of the Schur graph S consisting of
diagrams with length ≤ l. The truncated Schur graphs also fit into the formalism
of §1 with algebras A and A∗ coinciding with the subalgebra of the algebra of
symmetric polynomials in l variables generated by odd power sums. The elements
Pµ and P∗µ are the Schur P polynomials and the factorial Schur P polynomials,
respectively.

Let us fix a strict partition λ and denote its length by l. We define a multiplicative
linear functional πλ : Γ→ R as follows, cf. (6.1), (6.11), (6.17):{

xi 7→ −λi − 1, 1 ≤ i ≤ l,
xi 7→ 0, i > l.

The corresponding harmonic function on S has the form

ϕλ(µ) =
(−1)|µ|πλ(P ∗µ)
(−πλ(P ∗(1)))|µ|

=
(−1)|µ|P ∗µ(−λ1 − 1, . . . ,−λl − 1)

(|λ|+ l)|µ|
. (6.24)

As in 6.2, it is not evident that this function is nonnegative.
For all strict partitions ν ∈ Sn, n = 1, 2, . . . , we define, as usual,

Mλ
n (ν) = dimS ν · ϕλ(ν).

Embeddings Sn ↪→ Ω(S) = Ω(K) are defined exactly as in the case of the Kingman
graph, see (6.20), the only difference is that now all partitions are strict.
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Proposition 6.16. The sequence of images of (possibly signed) measures Mλ
n under

the embeddings defined above weakly converges, as n→∞, to a (positive) probability
measure P on Ω(S). This measure is supported by the finite–dimensional face

∆l = {α ∈ Ω(S) |αl+1 = αl+2 = · · · = 0,
l∑
i=1

αi = 1}

w {(α1, . . . , αl) ∈ Rl+|α1 ≥ α2 ≥ · · · ≥ αl,
l∑
i=1

αi = 1},

and its density with respect to the Lebesgue measure dα on ∆l equals

Γ(|λ|+ l)∏l
i=1 λi!

[
Pf
(

λi − λj
λi + λj + 2

)]−1

Pλ(α1, . . . , αl) Pf2

(
αi − αj
αi + αj

)
. (6.25)

This result is parallel to Propositions 6.2, 6.7, 6.12. Its proof is based on an
appropriate analog of the approximation Lemmas 6.3, 6.13. The proof of such a
lemma in this case follows from explicit formulas for Schur P–functions and factorial
Schur functions [M, III.8], [I1].

Similarly to Proposition 6.7, Proposition 6.16 implies the existence of the Poisson
integral representation for ϕλ. Thanks to the positivity of (6.25), this implies that
ϕλ is nonnegative.

The explicit Poisson integral representation (1.2) in this case takes the following
form.

Proposition 6.17.

(−1)|µ|P ∗µ(−λ1 − 1, . . . ,−λl − 1)
(|λ|+ l)|µ|

=
Γ(|λ|+ l)∏l

i=1 λi!

[
Pf
(

λi − λj
λi + λj + 2

)]−1

×
∫
∆l

Pµ(α)Pλ(α) Pf2

(
αi − αj
αi + αj

)
dα.

(6.26)

Remark 6.18. If `(µ) = l (= `(λ)), then the integration in (6.26) can be carried
out directly using Dirichlet integrals and the formula [M, III.8, Ex.12]

Pν(α1, . . . , αl) =
[
Pf
(
αi − αj
αi + αj

)]−1

det[ανji ]li,j=1 , (6.27)

which holds for all ν of length l. If `(µ) < l, the integration seems to be more
complicated, cf. Remark 6.9.
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Remark 6.19. All claims of the present subsection remain true for any nonnegative
strictly ordered sequence λ = (λ1 > λ2 > · · · > λl ≥ 0). Then the Schur P–function
Pλ(α) should be understood as[

Pf
(
αi − αj
αi + αj

)]−1

det[αλji ] ,

cf. Remarks 6.5, 6.10, 6.15. By analytic continuation, the formula (6.26) can be
extended to arbitrary complex mutually distinct λi’s.

§7. Appendix

Proof of Theorem 1.1. Existence of the integral representation (1.2) follows from
Choquet’s theorem, see, e.g., [Ph]. To prove its uniqueness one can apply another
theorem, due to Choquet and Meyer, [DM]. Then we have to verify that the cone
H+(G) is a lattice, i.e., for any ϕ, ψ ∈ H+(G), there exist their lowest upper bound
ϕ ∨ ψ and greatest lower bound ϕ ∧ ψ. Let us prove that

(ϕ ∨ ψ) = lim
n→∞

∑
λ∈Gn

dimG(µ, λ) max(ϕ(λ), ψ(λ)), (7.1)

(ϕ ∧ ψ) = lim
n→∞

∑
λ∈Gn

dimG(µ, λ) min(ϕ(λ), ψ(λ)). (7.2)

Indeed, take (7.1) and (7.2) as the definition of the functions ϕ ∨ ψ and ϕ ∧ ψ.
For any fixed µ, the sum in the right–hand side of (7.1) increases as n → ∞ and
remains bounded from above by ϕ(µ) +ψ(µ). Similarly, the sum in the right–hand
side of (7.2) decreases and remains bounded from below by 0. Hence, the limits
exist.

Next, remark that for any fixed vertex ν, the function µ 7→ dimG(µ, ν) satisfies
the harmonicity relation up to level |ν| − 1. This implies that ϕ ∨ ψ and ϕ ∧ ψ are
harmonic functions. Clearly, they are nonnegative and are upper and lower bounds,
respectively.

Finally, it is readily verified that they are the lowest upper bound and the greatest
lower bound, respectively. �
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