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Abstract

We show that the linear discrepancy of a basic totally unimodular matrix
A ∈ Rm×n is at most 1− 1

n+1 . This extends a result of Peng and Yan.

AMS Subject Classification: Primary 11K38.

1 Introduction and Results

In [PY00] Peng and Yan investigate the linear discrepancy of strongly unimodular 0, 1
matrices. One part of their work is devoted to the case of basic strongly unimodular
0, 1 matrices, i. e. strongly unimodular 0, 1 matrices which have at most two non-
zeros in each row. The name ’basic’ is justified by a decomposition lemma for strongly
unimodular matrices due to Crama, Loebl and Poljak [CLP92].

A matrix A is called totally unimodular if the determinant of each square submatrix is
−1, 0 or 1. In particular, A is a −1, 0, 1 matrix. A is strongly unimodular, if it is totally
unimodular and if this also holds for any matrix obtained by replacing a single non-zero
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entry of A with 0. Note that for matrices having at most two non-zeros per row both
notions coincide.

The linear discrepancy of an m× n matrix A is defined by

lindisc(A) := max
p∈[0,1]n

min
χ∈{0,1}n

‖A(p− χ)‖∞.

The objective of this note is to show

Theorem. Let A be a totally unimodular m×n matrix which has at most two non-zeros
per row. Then

lindisc(A) ≤ 1− 1
n+1

.

Our motivation is two-fold: Firstly, we extend the result in [PY00] to arbitrary totally
unimodular matrices having at most two non-zeros per row. We thus expand the as-
sumption to include matrices with entries of −1, 0, and 1. This enlarges the class of
matrices for which Spencer’s conjecture lindisc(A) ≤ 1− 1

n+1
herdisc(A) is proven1. Sec-

ondly, our proof is shorter and seems to give more insight in the matter. For the problem
of rounding an [0, 1] vector p to an integer one we provide a natural solution: We par-
tition the weights pi, for i ∈ [n] := {1, . . . , n}, into ’extreme’ ones close to 0 or 1 and
’moderate’ ones. The extreme ones will be rounded to the closest integer. The moderate
ones are rounded in a balanced fashion using the fact that totally unimodular matrices
have hereditary discrepancy at most 1. The latter is restated as following result:

Theorem (Ghouila-Houri [Gho62]). A is totally unimodular if and only if each sub-
set J ⊆ [n] of the columns can be partitioned into two classes J1 and J2 such that for
each row i ∈ [m] we have |

∑
j∈J1

aij −
∑

j∈J2
aij| ≤ 1.

This approach is a main difference to the proof [PY00], where the theorem of Ghouila-
Houri is applied to the set of all columns only.

2 The Proof

Let p ∈ [0, 1]n. Without loss of generality we may assume p ∈ [0, 1[n (if pi = 1 for some
i ∈ [n], simply put χi = 1). For notational convenience let P := {pj|j ∈ [n]} denote the
set of weights. For a subset S ⊆ [0, 1] write J(S) := {j ∈ [n]|pj ∈ S}.

1We will not use this notion in the following explicitly, but an interested reader might like to have
this background information: The discrepancy disc(A) := minχ∈{−1,1}n ‖Aχ‖∞ of a matrix A describes
how well its columns can be partitioned into two classes such that all row are split in a balanced way.
The hereditary discrepancy herdisc(A) of A is simply the maximum discrepancy of its submatrices.
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For k ∈ [n+ 1] set Ak :=
[
k−1
n+1

, k
n+1

[
. For k ∈

[⌊
n+1

2

⌋]
set Bk := Ak ∪An+2−k. From the

pigeon hole principle we conclude that there is a k ∈
[⌊

n+1
2

⌋]
such that |P ∩Bk| ≤ 1 or

n+ 1 is odd and P ∩An
2

+1 = P ∩
[

1
2
− 1

2(n+1)
, 1

2
+ 1

2(n+1)

[
= ∅. The latter case is solved

by simple rounding, i. e. for χ ∈ {0, 1}n defined by χj = 0 if and only if pj ≤ 1
2

we have
‖A(p− χ)‖∞ ≤ 1− 1

n+1
.

Hence let us assume that there is a k ∈
[⌊

n+1
2

⌋]
such that |P ∩ Bk| ≤ 1. By symmetry

we may assume that P ∩ Ak = ∅ (and thus P ∩ An+2−k may contain a single weight).
Set X0 := J(

[
0, k−1

n+1

[
) = J(A1 ∪ . . . ∪ Ak−1), the set of columns with weight close to 0,

M := J(
[

k
n+1

, n+2−k−1
n+1

[
) = J(Ak+1 ∪ . . . ∪ An+1−k), the set of columns with moderate

weights, M0 := J(An+2−k) containing the one exceptional column, if it exists, and finally
X1 := J(

[
n+2−k
n+1

, 1
[
) = J(An+3−k ∪ . . . ∪ An+1), the set of columns with weight close to

1. Note that [n] = X0∪̇M∪̇M0∪̇X1.

As A is totally unimodular and has at most two non-zeros per row, by Ghouila-Houri’s
theorem there is a χ′ ∈ {0, 1}M∪M0 such that the following holds: For each row i ∈ [m]
having two non-zeros aij1, aij2, (j1 6= j2), in the columns of M ∪M0 we have χ′j1 = χ′j2
if and only if aij1 6= aij2 . Eventually replacing χ′ by 1 − χ′ we may assume χ′j = 1
for all (which is at most one) j ∈ M0. As any two weights of p|M∪M0 have their sum in[

2
n+1

, 2− 1
n+1

[
and their difference in

]
− n
n+1

, n
n+1

[
, we conclude |

∑
j∈M∪M0

aij(pj−χ′j)| ≤
1− 1

n+1
for all rows i that have two non-zeros in M ∪M0.

Let χ ∈ {0, 1}n such that χj = 0, if j ∈ X0, χ|M∪M0 = χ′ and χj = 1, if j ∈ X1. This
just means that the extreme weights close to 0 or 1 are rounded to the next integer, and
the moderate ones are treated in the manner of χ′. Note that an exceptional column is
treated both as extreme and moderate.

We thus have

(∗) |pj − χj| ≤


k−1
n+1

x ∈ X0 ∪X1
k

n+1
if x ∈M0

1− k
n+1

if x ∈M
.

Let us call a row with index i ’good’ if |(A(p − χ))i| ≤ 1 − 1
n+1

. Then by (∗) all rows
having just one non-zero are good, as well as those rows having two non-zeros at least
one thereof in X0 ∪X1. Rows having two non-zeros in M ∪M0 were already shown to
be good by construction of χ′. All rows being good just means ‖A(p− χ)‖∞ ≤ 1− 1

n+1
.

This ends the proof.
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