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For k,N ∈ N, let WN
k denote the set of length-N words on the alphabet {0, 1, · · · , k−

1}. A variable word overWN
k is a word w(x) of length N on the alphabet {0, 1, · · · , k−

1, x} in which the letter x appears at least once. If w(x) is a variable word and
i ∈ {0, 1, . . . , k − 1}, we denote by w(i) the word that is obtained by replacing each
occurrence of x in w(x) by an i. The Hales-Jewett theorem states that for every
k, r ∈ N, there exists N = N(k, r) ∈ N such that for any partition WN

k =
⋃r
i=1 Ci,

there exist j, 1 ≤ j ≤ r, and a variable word w(x) over WN
k such that

{
w(i) : i ∈

{0, 1, . . . , k − 1}
}
⊂ Cj .

1. Finitary extensions.

In [BL], V. Bergelson and A. Leibman provided a “polynomial” version of the Hales-
Jewett theorem. In order to formulate their result, we must develop some terminology.
Let l ∈ N. A set-monomial (over Nl) in the variable X is an expression m(X) =
S1 × S2 × · · · × Sl, where for each i, 1 ≤ i ≤ l, Si is either the symbol X or a non-
empty singleton subset of N (these are called coordinate coefficients). The degree of
the monomial is the number of times the symbol X appears in the list S1, · · · , Sl.
For example, taking l = 3, m(X) = {5} × X × X is a set-monomial of degree 2,
while m(X) = X × {17} × {2} is a set-monomial of degree 1. A set-polynomial is an
expression of the form P (X) = m1(X) ∪ m2(X) ∪ · · · ∪ mk(X), where k ∈ N and
m1(X), · · · ,mk(X) are set-monomials. The degree of a set-polynomial is the largest
degree of its set-monomial “summands”, and its constant term consists of the “sum” of
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those mi that are constant, i.e. of degree zero. Finally, we say that two set polynomials
are disjoint if they share no set-monomial summands in common.

Let F(S) denote the family of non-empty finite subsets of a set S. Any non-
empty set polynomial p(A) determines a function from F(N) to F(Nl) in the obvious
way (interpreting the symbol × as Cartesian product and the symbol ∪ as union).
Notice that if P (X) and Q(X) are disjoint set-polynomials and B ∈ F(N) contains
no coordinate coefficients of either P or Q then P (B) ∩Q(B) = ∅.

Here now is the Bergelson-Leibman coloring theorem.

Theorem 1.1. Let l ∈ N and let P be a finite family of set-polynomials over Nl

whose constant terms are empty. Let I ⊂ N be any finite set and let r ∈ N. There
exists a finite set S ⊂ N, with S ∩ I = ∅, such that if F

(⋃
P∈P P (S)

)
=
⋃r
i=1Ci then

there exists i, 1 ≤ i ≤ r, some non-empty B ⊂ S, and some A ⊂
⋃
P∈P P (S) with

A ∩ P (B) = ∅ for all P ∈ P and
{
A ∪ P (B) : P ∈ P

}
⊂ Ci.

Although the “polynomial” nature of Theorem 1.1 is at once clear, it is not im-
mediately obvious that it includes the Hales-Jewett theorem as a special case, so we
shall give a different formulation, and derive it from Theorem 1.1.

Let k,N, d ∈ N. We denote byMN
k (d) the set of all function φ : {1, 2, . . . , N}d →

{0, 1, . . . , k − 1}. When d = 2, one may identify this with the set of N × N matrices
with entries belonging to {0, 1, . . . , k− 1}, so in general we shall refer to the members
of MN

k (d) as matrices, even when d > 2. A variable matrix over MN
k (d) is a function

ψ : {1, 2, . . . , N}d → {0, 1, . . . , k− 1, x} for which x appears in the range. The support
of ψ is the set ψ−1(x); that is, the set of locations in the matrix where the symbol x
appears. If ψ is a variable matrix over MN

k (d), ψ is said to be standard if its support
has the form Bd for some B ⊂ {1, 2, . . . , N}.

We shall also consider multi-variable matrices ψ : {1, 2, . . . , N}d → {0, 1, . . . , k −
1, x1, x2, . . . , xt}. In this case we require that all the xi appear in the range, and we
call ψ−1(xi) the ith support of ψ. If ψ is a t-variable matrix then ψ gives rise, via
substitution, to a function w(x1, . . . , xt) : {0, . . . , k − 1} →MN

k (d), and we will often
refer to this induced w instead of to ψ when dealing with variable matrices.

We require the following nonconventional notion of addition of matrices. We will
introduce this notion in the context of dimension 2, although the obvious analogs
are valid in arbitrary dimension. Let w = (wij)Mi,j=1 and y = (yij)Mi,j=1 be matri-
ces (variable or otherwise). If there exist disjoint sets W and Y , whose union is
{1, . . . ,M}2, such that wij = 0 for (i, j) ∈ W and yij = 0 for (i, j) ∈ Y , then we
define w + y = (zij)Mi,j=1, where zij = wij if (i, j) ∈ Y and zij = yij if (i, j) ∈ W . If
however there exists (i, j) ∈ {1, . . . ,M}2 such that wij 6= 0 6= yij then the sum w + y
is undefined.

Theorem 1.2 The following are equivalent:
(a) Theorem 1.1.
(b) Let d ∈ N and let

(
Pi(X)

)t
i=1

be pairwise disjoint set-polynomials over Nd having
empty constant term and let J be any finite subset of N containing all coordinate
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coefficients represented in the Pi’s. Let k, r ∈ N. There exists N ∈ N having the
property that if MN

k (d) =
⋃r
i=1 Ci then there exists a set B ⊂ {1, 2, . . . , N} \ J , a

variable matrix w(x1, . . . , xt), and n, with 1 ≤ n ≤ r, such that
(i) The ith support of wi is Pi(B), 1 ≤ i ≤ t,
(ii) {w(i1, . . . , it) : ij ∈ {0, 1, . . . , k − 1}, 1 ≤ j ≤ t} ⊂ Cn, and
(iii) w is 0 on Jd.

(c) Let k, r, d ∈ N. There exists N such that for every partition MN
k (d) =

⋃r
i=1 Ci

there is a standard variable matrix w(x) overMN
k (d) such that {w(i) : i ∈ {0, 1, . . . , k−

1}} lies in one cell Cj .

Proof. First we show (a) implies (b). Choose b ∈ N with 2b ≥ k and consider the set

P = {
t⋃

s=1

(
Es × Ps(X)

)
: Es ⊂ {1, . . . , b}, 1 ≤ s ≤ t}.

P is a finite family of set polynomials over Nd+1. Let I = J ∪ {1, . . . , b} and let
l = d+ 1. Now pick a finite subset S ⊂ N as guaranteed by Theorem 1.1. Notice in
particular that S ∩ I = ∅. Pick N ∈ N such that S ∪ I ⊂ {1, . . . , N}. Suppose that
MN

k (d) =
⋃r
i=1 Ci. Form a map π : F

(
{1, . . . , b}×{1, . . . , N}d

)
→MN

k (d) as follows:(
π(A)

)
(a1, . . . , ad) = min

{ ∑
(j,a1,...,ad)∈A

2j−1, k − 1
}
.

Now put Di = π−1(Ci), 1 ≤ i ≤ r. Then F
(⋃

P∈P P (S)
)
⊂
⋃r
i=1 Di so there

exist B ⊂ S and A ⊂
⋃
P∈P P (S) with A ∩ P (B) = ∅ for all P ∈ P (in particular

A ∩
(
{1, . . . , b} × Pi(B)

)
= ∅, 1 ≤ i ≤ t) and such that for some z, 1 ≤ z ≤ r,

{
A ∪

t⋃
s=1

(
Es × Ps(B)

)
: Es ⊂ {1, . . . , b}, 1 ≤ s ≤ t

}
⊂ Dz.

Define a variable matrix ψ = w(x1, . . . , xt) over MN
k (d) by

1. ψ
(
(a1, . . . , ad)

)
= xi if (a1, . . . , ad) ∈ Pi(B), and

2. ψ
(
(a1, . . . , ad)

)
= π(A)(a1, . . . , ad) otherwise.

(Recall that the sets {Pi(B) : 1 ≤ i ≤ t} are pairwise disjoint, owing to the fact that
the Pi’s are pairwise disjoint and B contains no coordinate coefficients of any Pi.)

The ith support of w is clearly Pi(B), 1 ≤ i ≤ t. Now for any i1, . . . , it ∈
{0, 1, . . . , k − 1}, we pick sets Es ⊂ {1, . . . b} such that

∑
n∈Es 2n−1 = is, 1 ≤ s ≤ t,

and note that

w(i1, . . . , it) = π(A) +
t∑

s=1

π
(
Es × Ps(B)

)
= π

(
A ∪

t⋃
s=1

(
Es × Ps(B)

))
∈ Cz.
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Since J ⊂ I, S ∩ I = ∅ and A ⊂
⋃
P∈P P (S), we have A ∩

(
{1, . . . , b} × Jd

)
= ∅, so

that w is zero on Jd.
This finishes the proof that (a) implies (b). Letting t = 1 and P1(X) = Xd, one

sees that (b) implies (c). Therefore all that remains is to show (c) implies (a).
Let {Q1, · · · , Qt} be the family of all set-monomials that appear in any of the

set-polynomials of P, and write Qi(X) = S
(i)
1 × · · · × S

(i)
d , where each S

(i)
j is either a

singleton or the symbol X. Let k = 2t and put d = l.
Let N be as promised by (c) and choose y ∈ N larger than all coordinate coef-

ficients in question and larger than any member of I. Set S = {y + 1, . . . , y + N}.
Suppose now that F

(⋃
P∈P P (S)

)
=
⋃r
i=1Ci.

Let Y be the family of t-tuples of subsets of {1, . . . , N}d. We identify Y with
MN

k (d) by

(A1, . . . , At)↔ w if and only if w(i1, . . . , id) =
t∑

s=1

21As ((i1,...,id)).

Our next task is to construct a map π sending Y (and thus, effectively, MN
k (d)) to

F
(⋃t

s=1Qs(S)
)

= F
(⋃

P∈P P (S)
)
. First we define π for t-tuples of sets, one of which

is a singleton and the rest of which are empty. Suppose then that i is fixed, Aj = ∅
for i 6= j and Ai = {(a1, . . . , ad)}. Recall that Qi(X) = S

(i)
1 × · · ·S

(i)
d , where some

of the S(i)
j are singletons and some are X. Let T = {j : S(i)

j = X}. Suppose that
for all j ∈ {1, . . . , d} \ T , aj = min

{
ai : i ∈ T

}
. If this condition is not met, we

set π
(
(A1, · · · , At)

)
= ∅. If the condition is met, put bj = S

(i)
j if S(i)

j is a singleton

and bj = aj + y if S(i)
j = X, 1 ≤ j ≤ d, and set π(A1, . . . , At) = {(b1, . . . , bd)}.

We now extend π to the desired domain by requiring that π(A1 ∪B1, . . . , At ∪Bt) =
π(A1, . . . , At) ∪ π(B1, . . . , Bt). (This extension is unique.)

We now confirm that π has the following two properties. First, if C ⊂ {1, . . . , N},
then letting B = C + y = {c + y : c ∈ C}, fixing i and putting Ai = Cd and
Aj = ∅ for all j 6= i, π(A1, . . . , At) = Qi(B). Second, if Ai ∩ Bi = ∅ for all i,
π
(
(A1, . . . , At)

)
∩ π
(
(B1, . . . , Bt)

)
= ∅.

We now use the map π to draw back the partition. Namely, let Di = π−1(Ci),
1 ≤ i ≤ r. Then Y =

⋃r
i=1Di. But Y is identified withMN

k (d), so by (c) there exists
a standard variable matrix w(x) and some z, 1 ≤ z ≤ r, such that W =

{
w(i) : i ∈

{0, 1, . . . , k − 1}
}
⊂ Dz . (After the identification, of course.)

Let Cd be the support of w(x). Let (A1, . . . , At) be the member of Y that is
identified with w(0). Then Ai ∩ Cd = ∅ for 1 ≤ i ≤ t, so that π

(
(A1, . . . , At)

)
∩

π
(
(Cd, . . . , Cd)

)
= ∅. Moreover, in Y , W takes the form

W =
{

(A1, . . . , At) ∪ (F1, . . . , Ft) : Fi ∈ {∅, Cd}, 1 ≤ i ≤ t
}
.

Let A = π
(
(A1, . . . , At)

)
and let B = C+y. Let P ∈ P and choose a set E ⊂ {1, . . . , t}

such that P (X) =
⋃
i∈E Qi(X). Next put Fj = Cd if j ∈ E and Fj = ∅ otherwise.

Then (A1, . . . , At) ∪ (F1, . . . , Ft) ∈W . But π(W ) ⊂ Cz, so
(
A ∪

⋃
i∈E Qi(B

d)
)
∈ Cz.
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Formulations (a) and (b) in Theorem 1.2 are more powerful, on the surface, than
formulation (c) and hence it is good to have them on hand for some applications, but
formulation (c) has aesthetic advantages. For one, when d = 1 it gives precisely the
Hales-Jewett theorem.

We now shift our focus slightly. Let A be a finite field and let n ∈ N. Then An is
a vector space over A. A translate of a t-dimensional vector subspace of An is called a
t-space. The following theorem was proved by Graham, Leeb and Rothschild ([GLR]).

Theorem 1.3 Let r, n, t ∈ N. There exists N = N(r, n, t) such that for any r-coloring
of the n-spaces ofAN there exists a t-space V such that the family of n-spaces contained
in V is monochromatic.

We mention this result because it is so well known. It is not quite in keeping with
our theme, namely extensions of the Hales-Jewett theorem, but if we restrict attention
to a certain sub-class of n-spaces, the situation becomes much more “Hales-Jewett-
like”.

Recall that a variable word over Wk is a word on the alphabet {1, 2, · · · , k, x} in
which the symbol x appears at least once. An n-variable word is a word on the alphabet
{1, · · · , k, x1, · · · , xn} in which all the xi’s occur and for which no occurrence of xi+1

precedes an occurrence of xi, 1 ≤ i ≤ n−1. If w(x1, · · · , xn) is an n-variable word over
WM
k then the set {w(t1, t2, · · · , tn) : 1 ≤ ti ≤ k, i = 1, · · · , n} will be called the space

associated with w. (Notice now that if k = ps for some prime p and s ∈ N and we
identify {0, 1, . . . , k−1} with a field A having ps elements, choose a basis {v1, · · · , vM}
for AM and identify the word w1w2 · · ·wM with the vector

∑M
i=1 wivi, then the space

associated with an n-variable word is indeed an n-space in AN . However, not all
n-spaces can be obtained in this way.)

If w is a t-variable word and v is an n-variable word and the space associated
with v is contained in the space associated with w, v will be called an n-subword of w.
Another way of seeing this is, if w(y1, · · · , yt) is a t-variable word then the n-variable
subwords of it (in the variables x1, · · · , xn) are of the form w(z1, · · · , zt), where z1 · · · zt
is an n-variable word over Wk(t).

The following theorem is a finitary consequence of a generalization of T. Carlson’s
theorem ([C, Lemma 5.9]) due to H. Furstenberg and Y. Katznelson (see [FK, Theorem
3.1]). It extends the Hales-Jewett theorem in the following sense. If we call regular
words (that is, elements of WM

k ) 0-variable words, then the Hales-Jewett theorem
corresponds to the case n = 0, t = 1 of Theorem 1.4.

Theorem 1.4 Let k, r, n, t ∈ N be given. There exists M = M(k, r, n, t) such that for
every r-cell partition of the n-variable words over WM

k there exists a t-variable word
all of whose n-subwords lie in the same cell.

We seek now to give a polynomial analog of Theorem 1.4. To this end, let
k,N, d, n ∈ N and suppose we have non-empty sets Bi ⊂ {1, . . . , N}, 1 ≤ i ≤ n,
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with B1 < · · · < Bn. (Here and elsewhere in this paper, we write A < B where
A and B are non-empty finite subsets of N when a < b for all a ∈ A and b ∈ B.)
If w(x1, · · · , xnd) is an nd-variable matrix over MN

k (d) whose supports are the sets
Bi1 × Bi2 × · · · × Bid , 1 ≤ i1, . . . , id ≤ n, then w is said to be a standard nd-variable
matrix. The space associated with w is

{
w(i1, . . . , ind) : i1, . . . , ind ∈ {0, 1, . . . , k−1}

}
.

If n1 ≤ n2, w1 is a standard nd1-variable matrix, w2 is a standard nd2-variable
matrix, and the space associated with w1 is contained in the space associated with w2,
then we will say that w1 is a submatrix of w2.

Our main theorem in this section is Theorem 1.7. This theorem will be a version
of Theorem 1.4 valid in any finite dimension d. However, in order to simplify the proof
notationally, we will take d to be 2. We need two lemmas for the proof.

Lemma 1.5 Let R, k, T ∈ N. There exists M = M(R, k, T ) ∈ N having the following
property: Let E denote the set of matrices (aij)T+M

i,j=1 such that

(a) (aij)T+M
i,j=1 is a standard n2-variable matrix, and

(b) aij ∈ {0, 1, . . . , k−1} if either i > T or j > T (that is, all the supports of (aij)T+M
i,j=1

lie in {1, . . . , T}2).
Then for any R-coloring γ of E there exists a (2T+1)-variable matrix w(x1, . . . , x2T+1)
= (bij)T+M

i,j=1 over MT+M
k (2) that satisfies:

(1) bij = 0 if (i, j) ∈ {1, . . . , T}2.
(2) There exists a non-empty set B ⊂ {T + 1, . . . , T +M} such that the supports of
w are {i} ×B and B × {i}, i ∈ {1, . . . , T}, B ×B.
(3) For any standard n2-variable matrix m = (cij)T+M

i,j=1 satisfying cij = 0 if (i, j) 6∈
{1, . . . , T}2, the set {m+ w(i1, . . . , i2T+1) : ij ∈ {0, 1, . . . , k − 1}, 1 ≤ j ≤ 2T + 1} is
γ-monochromatic.

Proof. Let Pi(X), 1 ≤ i ≤ 2T + 1, denote the set polynomials {i} ×X and X × {i},
i ∈ {1, . . . , T}, and X×X. These are pairwise disjoint set-polynomials (in fact, distinct
set-monomials). Let G be the set of all standard n2-variable matrices overMT

k (2). Let
J = {1, . . . , T}, t = 2T + 1, r = R|G| + 1, d = 2, and put M = N − T , where N is the
number guaranteed by Theorem 1.2 (b). Let γ be an R-coloring of E .

We now construct a (R|G|+ 1)-cell partition ofMN
k (2). For (dij)Ni,j=1, (fij)

N
i,j=1 ∈

MN
k (2), we write (dij)Ni,j=1 ∼ (fij)Ni,j=1 if for every standard n2-variable matrix m =

(eij)T+M
i,j=1 satisfying eij = 0 for all (i, j) 6∈ {1, . . . , T}2, we have γ

(
m + (dij)Ni,j=1

)
=

γ
(
m+ (fij)Ni,j=1

)
, in the sense that if either side of this expression is defined then so

is the other and they are equal. (Hence in particular all matrices that have a non-zero
entry for any index point in {1, . . . , T}2 are relegated to the same equivalence class.
The other equivalence classes are characterized by the value of γ at |G| points, hence
the equivalence classes of ∼ form an r-cell partition.)

According to the conditions whereby M was chosen, there exists a non-empty set
B ⊂ {1, . . . , N} \ J = {T + 1, . . . , T +M} and a variable matrix w(x1, . . . , x2T+1) =
(bij)T+M

i,j=1 such that the supports of w are Pi(B), 1 ≤ i ≤ 2T + 1, and the set
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{w(i1, . . . , i2T+1) : ij ∈ {0, 1, . . . , k − 1}, 1 ≤ j ≤ 2T + 1} lies entirely in a single
equivalence class of ∼ and such that moreover bij = 0 for all (i, j) ∈ J2 = {1, . . . , T}2.
The variable matrix thus chosen satisfies (1), (2) and (3).

Our second lemma is a finitary version of a theorem proved independently by
Milliken ([Mi]) and Taylor ([T]). Recall that if A is a set then F(A) is the family of non-
empty finite subsets of A. We write F = F(N) as a kind of shorthand. Recall that for
α, β ∈ F , we write α < β if maxα < minβ. For k ∈ N, and a sequence (αi)∞i=1 ⊂ F ,
we write FU(< αi >

∞
i=1) = {

⋃
i∈A αi : A ∈ F}. (FU stands for “finite unions.”

One may consider the set of finite unions of a finite sequence as well, of course.) If
G ⊂ F , let Gk< be the set of k-tuples (α1, . . . , αk) in Gk for which α1 < α2 < · · ·αk.
The Milliken-Taylor theorem states that for any finite partition Fk< =

⋃r
i=1 Ci, there

exists j, with 1 ≤ j ≤ r, and a sequence (αi)∞i=1, with α1 < α2 < · · ·, such that(
FU(< αi >

∞
i=1)

)k
<
⊂ Cj .

We shall not need the full strength of the Milliken-Taylor theorem, but only the
following finitary version of it.

Lemma 1.6 Let r, n, t ∈ N. There exists L = L(r, n, t) ∈ N such that if {(α, . . . , αn) :
∅ 6= αi ⊂ {1, . . . , L}, α1 < α2 < · · · < αn} =

⋃r
i=1Ci then there exist non-empty sets

αi ⊂ {1, . . . , L}, 1 ≤ i ≤ t, with α1 < α2 < · · · < αt, and j, 1 ≤ j ≤ r, with(
FU(< αi >

t
i=1)

)n
<
⊂ Cj .

Here now is the main theorem of this section.

Theorem 1.7 Let k, r, n, t, d ∈ N. There exists N = N(k, r, n, t, d) such that for
every r-cell partition of the standard nd-variable matrices over MN

k (d), there exists a
standard td-variable matrix overMN

k (d) all of whose standard nd-variable submatrices
lie in the same cell.

Before giving the proof of Theorem 1.7, let us make a few remarks about notation
and also Lemma 1.5. First, the object E defined in the lemma consists of variable
words with supports in {1, . . . , T}2, and the variable word that is found must have zero
entries over {1, . . . , T}2. We note that there is nothing remarkable here about the set
{1, . . . , T}2. Once M has been chosen, any set S2 ⊂ {1, . . . ,M + T}2 where |S| = T ,
would serve just as nicely in this capacity. This is a simple result of the fact that
standard variable matrices remain such upon permuting the indices {1, . . . ,M + T}.

Next, the lemma as stated applies to MT+M
k (2) and variable words over it. In

our application of it, we shall be applying it in the context of an isomorphic copy of
MT+M

k , namely the space determined by an appropriate standard (M + T )2-variable
matrix. Notationally, it is convenient to write such a variable matrix with a matrix
of variables, namely as w

(
(xij)T+M

i,j=1

)
, where it is understood that the variable xij has

support Bi × Bj for some non-empty sets B1 < B2 < · · · < BT+M . When applying
Lemma 1.6 to the space associated with the variable matrix, it is important to note
that if (mij) is a standard n2-variable matrix over MT+M

k (2), then w
(
(mij)T+M

i,j=1

)
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becomes, upon substitution, a standard n2-variable matrix. Moreover, all standard
n2-variable matrices over the space in question arise in this fashion.

Proof of Theorem 1.7 Recall that our plan is to confine ourselves in the proof to
the d = 2 case. The changes necessary to extend the proof to general d are minor and
rather obvious, but it will be difficult enough to keep track of all the symbols in two
dimensions, so we opt to simplify.

Let L = L(r, n, t) be as guaranteed by Lemma 1.6. We now use Lemma 1.5 iter-
atively. Let M1 = M(r, k, L− 1). Having chosen M1, . . . ,Ms−1, let Ms = M(r, k, L−
s+M1 +M2 + · · ·+Ms−1). Continue until ML = M(r, k,M1 + · · ·+ML−1) has been
chosen. For i = 1, 2, . . . , L, let Ni = M1 + · · ·+Mi, and put N = NL.

Suppose now we are given an r-coloring γ of the standard n2-variable matrices
over MN

k (2). By virtue of the way ML was chosen, we can find a non-empty set
BL ⊂ {NL−1 +1, . . . , NL} and a (2NL−1 +1)-variable matrix WL that has zero entries
on {1, . . . , NL−1}2 and whose supports are {i} × BL and BL × {i}, 1 ≤ i ≤ NL−1,
and BL × BL, with the following property: for every standard n2-variable matrix m
over MN

k (2) whose entries are zero except possibly on {1, . . . , NL−1}2, the value of
γ on m+ wL(i1, · · · , i2NL−1+1) remains constant as the ij ’s move independently over
{0, 1, . . . , k − 1}.

We now restrict attention to the space, call it SL−1, of matrices p + f , where
p has zero entries except possibly on {1, . . . , NL−1}2 and f is in the range of wL.
This space may be realized as the space associated with an appropriately chosen
standard (NL−1 + 1)2-variable matrix, hence is isomorphic to MNL−1+1

k , and so the
remarks made prior to the proof apply. Namely, we can use Lemma 1.5 in this
space. Specifically, since ML−1 = M(r, k,NL−2 + 1), we can find a non-empty set
BL−1 ⊂ {NL−2 +1, . . . , NL−1} and a variable matrix wL−1(x1, . . . , x2(NL−1+1)+1) over
SL−1 with the following properties. (This part is somewhat tedious, as one must be
very careful to interpret Lemma 1.5 correctly in this specialized context of a space
that is merely isomorphic to MN

k (2).)
1. Let wL−1 = (bij) and let wL = (cij). If (i, j) 6∈ {1, . . . , NL−1}2, and cij ∈

{0, 1, . . . , k − 1}, then bij = cij .
2. bij = 0 for all (i, j) ∈

(
{1, . . . , NL−2} ∪BL

)2.
3. The supports ofwL−1 are the sets {i}×BL−1 andBL−1×{i}, i ∈ {1, . . . , NL−2},

BL ×BL−1, BL−1 ×BL, and BL−1 ×BL−1.
4. Let m = (dij) be any standard n2-variable matrix such that dij = 0 for

every (i, j) 6∈
(
{1, . . . , NL−2} ∪ BL

)2. Then the value of γ remains constant on m +
wL−1(i1, . . . , i2NL−1+3) as the ij ’s run over {0, 1, . . . , k − 1} independently.

At the next stage we restrict attention to the space, call it SL−2, of matrices of
the form p+ f where f is in the range of wL−1 and p is constant on each of the sets:

a. {(i, j)}, (i, j) ∈ {1, . . . , NL−2}2,
b. {i} ×BL and BL × {i}, i ∈ {1, . . . , NL−2},
c. BL ×BL,
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while being zero elsewhere.
This space is isomorphic toMNl−2+2

k , and so by the way ML−2 was picked, Lemma
1.5 applies. The variable word (over SL−2) wL−2 that is found will have 2NL−3 + 5
variables and its supports will be {i} × BL−2 and BL−2 × {i} for i ∈ {1, . . . , NL−3},
BL−1 × BL−2, BL−2 × BL−1, BL × BL−2, BL−2 × BL, and BL−2 × BL−2. Here
∅ 6= BL−2 ⊂ {NL−3 + 1, . . . , NL−2}. wL−2 will have zero entries in

(
{1, . . . , NL−3} ∪

BL ∪ BL−1

)2. wL−2 will agree with wL−1 on those indices (i, j) lying outside of
{1, . . . , NL−2}2 on which wL−1 takes a value in {0, 1, . . . , k − 1}. Finally if m = (dij)
is any standard n2-variable matrix such that dij = 0 for every (i, j) 6∈

(
{1, . . . , NL−3}∪

BL ∪BL−1

)2, then the value of γ remains constant on m+wL−2(i1, . . . , i2NL−2+5) as
the ij ’s run over {0, 1, . . . , k − 1} independently.

Continue choosing sets Bi and variable matrices wi. By the time w1 is chosen,
it’s supports will be on Bi × B1 and B1 × Bi, 2 ≤ i ≤ L, and B1 × B1, where
B1 ⊂ {1, . . .N1}. w1 will have zero entries on Bi × Bj, 2 ≤ i, j ≤ L, and will agree
with w2 elsewhere (that is, on the entries of w2 that are in {0, 1, . . . , k− 1}) outside of
{1, . . . , N1}2. w1 will have the property that for every standard n2-variable matrix m,
whose entries are constant over each set Bi×Bj , 2 ≤ i, j ≤ L, and zero elsewhere, the
value of γ on m + w1(i1, . . . , i2L+1) remains constant as the ij ’s move independently
over {0, 1, . . . , k − 1}.

Finally, let v
(
(xij)Li,j=1

)
be the standard L2-variable matrix that agrees with w1

for those indices on which w1 takes a value in {0, 1, . . . , k−1}, and whose variables xij
have supports Bi × Bj, respectively, 1 ≤ i, j ≤ L. The construction we have followed
gives v the following property: if (hij)Li,j=1 and (sij)Li,j=1 are standard n2-variable

matrices whose supports are identical, then γ
(
v
(
(hij)Li,j=1

))
= γ

(
v
(
(sij)Li,j=1

))
. In

demonstrating this, we may assume without loss of generality that the two L × L
matrices in question differ at only one entry, say at position (x, y). Clearly hxy and
sxy are in {0, 1, . . . , k − 1}.

Suppose for convenience that x ≤ y. One may show that there exist matrices
p1, p2 and m = (dij) such that

1. p1 and p2 are each in the range of wx.
2. m is a standard n2-variable matrix with dij = 0 if (i, j) 6∈

(
{1, . . .Nx−1}∪BL∪

BL−1 ∪ · · · ∪Bx+1

)2.
3. m+ p1 = v

(
(hij)Li,j=1

)
and m+ p2 = v

(
(sij)Li,j=1

)
.

Indeed, put U =
(
{1, . . .Nx−1} ∪BL ∪BL−1 ∪ · · · ∪Bx+1

)2. Let m coincide with
v
(
(hij)Li,j=1

)
on U and have zero entries on Uc, then let p1 coincide with v

(
(hij)Li,j=1

)
on Uc, and have zero entries on U . p2 is chosen similarly, but with respect to
v
(
(sij)Li,j=1

)
.

According to the criteria by which wx was chosen, γ(m + p1) = γ(m + p2), as
required.

Let us take stock of the situation. We have found a standard L2-variable ma-
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trix v with the property that the value of γ on its standard n2-variable sub-matrices
v
(
(hij)Li,j=1

)
depends only on the location of the supports of the variables in the un-

derlying matrix (hij)Li,j=1. Now, these variables are always supported on sets Ai×Aj ,
1 ≤ i, j ≤ n, where each Ai ⊂ {1, . . . , L} is non-empty and A1 < A2 < · · · < An. In
other words, the function γ restricted to the standard n2-variable submatrices of v is
the lift of an r-coloring γ′ of the set

(
F({1, . . . , L})

)n
<

. By the choice of L, there thus
exist non-empty sets Ci ⊂ {1, . . . , L}, 1 ≤ i ≤ t, with C1 < C2 < · · · < Ct, such that
γ′ is constant on the family of n-tuples (A1, · · · , An), where Ai ∈ FU

(
{C1, . . . , Ct}

)
,

1 ≤ i ≤ n, and A1 < A2 < · · · < An. Let now (hij)Li,j=1 be any standard t2-variable
matrix over ML

k (2) whose supports lie on Ci × Cj , 1 ≤ i ≤ t. Then v
(
(hij)Li,j=1

)
is a

standard t2-variable matrix over MN
k (2) whose standard n2-variable submatrices are

γ-monochromatic.

Theorem 1.7 extends the Bergelson-Leibman coloring theorem in the sense that if
one defines zero-variable matrices to be matrices with entries in {0, 1, . . . , k− 1} then
Theorem 1.2 (c) is precisely the case n = 0, t = 1 of Theorem 1.7.

2. Infinitary extensions.

Let k ∈ N and let w(x) be a variable word overWk. If the first letter of w(x) is x, then
we say that w(x) is a left-sided variable word. The following “infinitary” Hales-Jewett
theorem is due to T. Carlson and S. Simpson.

Theorem 2.1 ([CS]) Let k, r ∈ N and suppose Wk =
⋃r
i=1Ci. Then there ex-

ists z, with 1 ≤ z ≤ r, a variable word w1(x), and a sequence of left-sided vari-
able words

(
wi(x)

)∞
i=2

such that for all N ∈ N and all i1, · · · , iN ∈ {0, 1, . . . , k − 1},
w1(i1)w2(i2) · · ·wN (iN ) ∈ Cz.

Furstenberg and Katznelson indicated a similar theorem (see the remark following
Theorem 2.5 in [FK]).

Theorem 2.2 Let k, r ∈ N and suppose Wk =
⋃r
i=1Ci. Then there exists z, with

1 ≤ z ≤ r, and a sequence of variable words
(
wi(x)

)∞
i=1

such that for all N ∈ N,
all b1, b2, . . . , bN ∈ N with b1 < b2 < · · · < bN , and all i1, · · · , iN ∈ {0, 1, . . . , k − 1},
wb1(i1)wb2(i2) · · ·wbN (iN ) ∈ Cz.

Theorem 2.2 is stronger in the sense that one gets more products in the desired
cell, but Theorem 2.1 is stronger in the sense that the variable words, excepting the first
one, are required to be left-sided. One aesthetic advantage of left variable words is that
the determination of the words becomes somewhat more canonical. So, for example,
if one were given that w1(2)w2(1) = 225612114 and w1(1)w2(2) = 125622124, where
w2(x) is known to be a left variable word, we immediately determine that w1(x) = x256
and w2(x) = x21x4. Such a conclusion would not be warranted in the event w2(x) is
not known to be a left variable word.
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We remark that Hindman’s theorem ([H1]) follows from Theorem 2.2. In this
section we shall prove the following result, which strengthens Theorem 2.1 in a manner
having the spirit of Theorem 2.2.

Theorem 2.3 Let k, r ∈ N and suppose Wk =
⋃r
i=1Ci. Then there exists z, with

1 ≤ z ≤ r, a variable word w1(x), and a sequence of left-sided variable words
(
wi(x)

)∞
i=2

such that for all N ∈ N, all b1, b2, . . . , bN ∈ N with 1 = b1 < b2 < · · · < bN , and all
i1, · · · , iN ∈ {0, 1, . . . , k − 1}, wb1(i1)wb2(i2) · · ·wbN (iN) ∈ Cz.

The semigroup operation on Wk extends to its Stone-Čech compactification βWk

in such a way as to make βWk a compact left topological semigroup, that is, a compact
Hausdorff semigroup such that for fixed f ∈ βWk, the map g → gf is continuous. We
exploit the algebraic structure of compact left topological semigroups in the proof of
Theorem 2.3. Much of the material we need may be found in [BJM] and [HS]. Be
warned, however. What we call “left topological” is referred to as “right topological”
in these sources. (There is no unanimous agreement in the literature on the left-right
terminology. We say left topological because the semigroup operation is continuous in
the left variable.)

The following lemma of R. Ellis serves as the starting point.

Lemma 2.4 ([E, Corollary 2.10]; see also [BJM, Theorem I.3.11] or [HS, Theorem
2.5].) Any compact left topological semigroup S possesses an idempotent.

Let S be a compact left topological semigroup and let J ⊂ S be non-empty. If
SJ = {sj : s ∈ S, j ∈ J} ⊂ J then J is said to be a left ideal. If JS ⊂ J then J is said
to be a right ideal. If J is both a left and a right ideal then we call J a two-sided ideal.
Any closed (left, right or two-sided) ideal, itself being a compact semigroup, contains
idempotents by Lemma 2.4. If J is a left ideal of S that is minimal among left ideals
with respect to inclusion, then we call J a minimal left ideal.

The easy proof of the following lemma will be omitted.

Lemma 2.5 Let S be a compact left topological semigroup.
(a) For any x ∈ S, Sx is a closed left ideal, hence if J is minimal among closed

left ideals then J is minimal among all left ideals.
(b) Suppose I ⊂ S is a two-sided ideal. Then I contains every minimal left ideal

of S.
(c) There exists a closed left ideal that is minimal among closed left ideals.

Taking part (c) and part (a) together, we get that minimal left ideals exist and they
are closed.

Proofs of the following proposition may be found in [BJM, Theorem I.2.12], [HS,
Theorem 1.38] and [M1, Proposition 2.3.1].

Proposition 2.6 Let S be a compact left topological semigroup and let θ ∈ S be an
idempotent. The following two conditions are equivalent:

(a) θ belongs to a minimal left ideal.
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(b) The only idempotent φ ∈ S for which φθ = θφ = φ is φ = θ.

An idempotent that possesses property (a), and hence property (b), of the propo-
sition above is called a minimal idempotent. According to Lemma 2.5 (b), therefore,
any two-sided ideal contains every minimal idempotent.

Lemma 2.7 (See, eg., [BJM, Corollary I.3.12] or [HS, Theorem 2.9].) Let S be a
compact left topological semigroup. If R ⊂ S is a right ideal then R contains a
minimal right ideal.

Theorem 2.8 Let S be a compact left topological semigroup. If θ ∈ S is a minimal
idempotent and R ⊂ S is a right ideal then there exists an idempotent φ ∈ R with
θφ = θ.

Proof. By Lemma 2.7, R contains a minimal right ideal J . Let L be a minimal left
ideal with θ ∈ L. Then LJ is a 2-sided ideal and hence contains θ by Lemma 2.5 (b).
That is, there exists y ∈ J and l ∈ L such that ly = θ. Since J is a minimal right ideal,
yJ = J . Hence there exists r ∈ J such that yr = y. Then θr = (ly)r = l(yr) = ly = θ.
Let φ = rθr. Clearly φ ∈ R. We now have φ2 = (rθr)(rθr) = r(θr)rθr = r(θr)θr =
rθ2r = rθr = φ, so φ is idempotent. Finally, θφ = θ(rθr) = (θr)(θr) = θ2 = θ, as
required.

In our application of Theorem 2.8, we shall not utilize idempotence of φ.

Theorem 2.9 (See [FK, Theorem 2.1]. Also [HS, Theorem 2.23] or [M1, Theorem
2.3.2].) Let S be a compact left topological semigroup and let θ ∈ S be a minimal
idempotent. If k ∈ N and G ⊂ Sk is a closed semigroup containing (θ, θ, · · · , θ) then
(θ, θ, · · · , θ) is a minimal idempotent of G.

Proof. Any idempotent in Sk is clearly of the form (φ1, · · · , φk), where φi ∈ S is
idempotent. Suppose (φ1, · · · , φk) ∈ G is idempotent with

(φ1, · · · , φk)(θ, · · · , θ) = (θ, · · · , θ)(φ1, · · · , φk) = (φ1, · · · , φk).

Then φiθ = θφi = φi, 1 ≤ i ≤ k. But θ ∈ S is minimal, so φi = θ, 1 ≤ i ≤ k. In other
words, (φ1, · · · , φk) = (θ, · · · , θ). Hence (θ, · · · , θ) has property (b) of Proposition 2.6,
so that (θ, · · · , θ) is a minimal idempotent of G.

If X is a compact Hausdorff space then it is easily shown that XX with the
product topology forms a compact left topological semigroup under composition. If
k ∈ N, (XX)k will as well. The following easy lemma is contained in equation (2.3)
of [FK]. For another proof, see [M1, Lemma 2.3.3].

Lemma 2.10 Let X be a compact space and let k ∈ N. If A,B ⊂ (XX)k and A
consists of k-tuples of continuous functions then (A)(B) ⊂ AB.
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Let k ∈ N. We are finally prepared to introduce the version of the Stone-Čech
compactification of Wk that we will be using. Let X = {0, 1}Wk∪{e}, where e is the
empty word. (e is an identity for Wk). Give X the product topology, so that in
particular X is compact. Next embed Wk in XX as follows: for w ∈ Wk let Tw ∈ XX

be defined by Twγ(v) = γ(vw), where γ ∈ X and v ∈ Wk.
One may easily show that {Tw}w∈Wk

is a Wk-action by continuous self-maps of
X. That is, Tw ◦ Tv = Twv. We let S be the closure in XX of {Tw : w ∈ Wk}. That
is, S = {Tw}Wk

; the enveloping semigroup of {Tw : w ∈ Wk}. According to Lemma
2.10, S is a subsemigroup of (XX) and hence itself forms a compact left topological
semigroup. In fact, S can be shown to be the Stone-Čech compactification of Wk (see
[HS, Theorem 19.15]). We will not use that fact, however.

The following lemma will help facilitate the proof of Theorem 2.3 to follow. For
w = (w1, · · · , wk) ∈ Wk

k , let us write Tw = (Tw1 , · · · , Twk) ∈ Sk.

Lemma 2.11 Let E ⊂ Wk
k and suppose (φ0, φ1, . . . , φk−1) ∈ {Tw : w ∈ E} ⊂ Sk. For

any γ1, . . . , γm ∈ X and any a1, . . . , am ∈ Wk there exists (w0, w1, . . . , wk−1) ∈ E such
that for all r, 1 ≤ r ≤ m, and all j ∈ {0, 1, . . . , k − 1}, γr(arwj) = φjγr(ar).

Proof. U =
{

(θ1, . . . , θk) ∈ Sk : θjγr(ar) = φjγr(ar), 1 ≤ r ≤ m, j ∈ {0, 1, . . . , k−1}
}

is an open neighborhood of (φ0, . . . , φk−1). Simply pick w = (w0, . . . , wk−1) ∈ E with
Tw ∈ U .

We are now ready to prove Theorem 2.3. The method employed is an adaptation of
that used in [FK].

Proof of Theorem 2.3 SinceWk =
⋃r
i=1 Ci, we have S =

⋃r
i=1 {Tw : w ∈ Ci}. Pick a

minimal idempotent θ ∈ S and choose z, with 1 ≤ z ≤ r, such that θ ∈ {Tw : w ∈ Cz}.
Put γ = 1Cz ∈ X. One checks that θγ(e) = 1.

Let I′ ⊂ Wk
k be the set of all k-tuples

(
w(1), · · · , w(k)

)
, where w(x) is a variable

word. Let G′ = I′ ∪ {(w, · · · , w) : w ∈ Wk}, and let J ′ be the set of all k-tuples(
w(1), · · · , w(k)

)
, where w(x) is a left-sided variable word. Then G′ is a subsemigroup

of Wk
k and I′,J ′ are subsemigroups of G′ satisfying G′I′ ⊂ I′, I′G′ ⊂ I′ and J ′G′ ⊂

J ′.
Let now G = {Tw}G′ ⊂ Sk, I = {Tw}I′ ⊂ G and J = {Tw}J ′ ⊂ G. By Lemma

2.10, G is a compact left topological semigroup containing
{

(f, f, · · · , f) : f ∈ S
}

, I is
a two-sided ideal in G, and J is a closed right ideal in G.

By Theorem 2.9, (θ, · · · , θ) is a minimal idempotent in G, therefore I, being
a two-sided ideal in G, contains (θ, · · · , θ). Moreover, by Theorem 2.8 there exists
(φ0, φ1, . . . , φk−1) ∈ J such that θφi = θ, i ∈ {0, 1, . . . , k − 1}.

We now use Lemma 2.11 iteratively. Choose a variable word w1(x) such that

γ
(
w1(t1)

)
= θγ(e) = 1 and

φjθγ
(
w1(t1)

)
= θφjθγ(e) = θγ(e) = 1, j, t1 ∈ {0, 1, . . . , k − 1}.
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Next choose a left-sided variable word u2(x) such that

θγ
(
w1(t1)u2(t2)

)
= φt2θγ

(
w1(t1)

)
= 1, t1, t2 ∈ {0, 1, . . . , k − 1}.

Then choose a variable word v2(x) such that

γ
(
w1(t1)u2(t2)v2(t2)

)
= θγ

(
w1(t1)u2(t2)

)
= 1 and

φjθγ
(
w1(t1)u2(t2)v2(t2)

)
= θφjθγ

(
w1(t1)u2(t2)

)
= θγ

(
w1(t1)u2(t2)

)
= 1

for all j, t1, t2 ∈ {0, 1, . . . , k − 1}.
Let w2(x) = u2(x)v2(x). Then w2(x) is a left-sided variable word. Moreover,

γ
(
w1(t1)w2(t2)

)
= 1 and φjθγ

(
w1(t1)w2(t2)

)
= 1, j, t1, t2 ∈ {0, 1, . . . , k − 1}.

Suppose that left-sided variable words w2(x), w3(x), . . . , wm(x) have been chosen
so that letting

Tm =
{
w1(t) : t ∈ {0, 1, . . . , k − 1}

}
∪
{
w1(t0)ws1(t1)ws2(t2) · · ·wsr(tr) : r ∈ N,

2 ≤ s1 < s2 < · · · < sr ≤ m, t1, . . . , tr ∈ {0, 1, . . . , k − 1}
}
,

one has
γ(w) = φjθγ(w) = 1, w ∈ Tm, j ∈ {0, 1, . . . , k − 1}.

Choose a left-sided variable word um+1(x) such that for all t ∈ {0, 1, . . . , k − 1}
and w ∈ TM , θγ

(
wum+1(t)

)
= φtθγ(w) = 1. Next choose a variable word vm+1(x)

such that for all w ∈ Tm and t, j ∈ {0, 1, . . . , k − 1},

γ
(
wum+1(t)vm+1(t)

)
= θγ

(
wum+1(t)

)
= 1 and

φjθγ
(
wum+1(t)vm+1(t)

)
= θφjθγ

(
wum+1(t)

)
= θγ

(
wum+1(t)

)
= 1.

Let wm+1(x) = um+1(x)vm+1(x). Then wm+1(x) is a left-sided variable word. If
we now define Tm+1 by analogy with Tm, one may easily see that γ(w) = φjθγ(w) = 1
for all w ∈ Tm+1 and j ∈ {0, 1, . . . , k − 1}. Hence the induction may proceed.

At this stage we are done, because the Tm’s contain all the words we are looking
for and they are all contained in Cz.

3. Four open problems.

In this section we discuss a few further extensions of the Hales-Jewett theorem and
ask several related questions that we do not at the moment know the answer to. For
starters, consider the following weak form of the Carlson-Simpson theorem.
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Theorem 3.1 Let k, r ∈ N and suppose Wk =
⋃r
i=1 Ci. Then there exists j, with

1 ≤ j ≤ r, and a sequence of variable words
(
wi(x)

)∞
i=1

such that for all N ∈ N and
all i1, · · · , iN ∈ {0, 1, . . . , k − 1}, w1(i1)w2(i2) · · ·wN (iN ) ∈ Cj .

This theorem is just like Theorem 2.1 except none of the variable words are
required to be left-sided. A polynomial version of Theorem 3.1 was given in [M2].
We’ll formulate it in dimension 2 for ease of notation.

Recall that for k,N ∈ N, MN
k (2) denotes the set of N × N matrices (aij)Ni,j=1,

where aij ∈ {0, 1, . . . , k − 1} for all pairs (i, j). Put Mk =
⋃∞
N=1MN

k (2). Suppose
we are given an increasing sequence (Ri)∞i=1 of natural numbers (let R0 = 0), and a
sequence of non-empty sets Bi ⊂ {Ri−1+1, Ri−1+2, · · · , Ri}. For every (l,m) ∈ N×N,
let alm be the symbol xij if (l,m) ∈ Bi × Bj . Otherwise, let alm ∈ {0, 1, . . . , k − 1}.
Then V

(
(xij)∞i,j=1

)
= (alm)l,m∈N will be called a standard N × N-variable matrix

over Mk. For fixed m ∈ N, the matrix Vm
(
(xij)mi,j=1

)
= (alm)Rml,m=1 is a standard

m2-variable matrix over MRm
k (2).

The variable matrix Vm induces a natural injection (tij)mi,j=1 → Vm
(
(tij)mi,j=1

)
from Mm

k to MRm
k . Here Vm

(
(tij)mi,j=1

)
is the Rm × Rm matrix which results by

substituting tij for the symbol xij in the matrix Vm
(
(xij)mi,j=1

)
= (aij)Rmi,j=1 constructed

above. Hence, the N × N matrix V
(
(xij)∞i,j=1

)
= (alm)l,m∈N, together with the

sequence (Rm)∞m=1, induces such maps for all m; in other words, induces an injection
of Mk into Mk (which takes m × m matrices to Rm × Rm matrices). We call the
image of such a map anMk-ring. Specifically, theMk-ring generated by the sequence
(Rm)∞m=1 and the variable matrix V

(
(xij)∞i,j=1

)
= (alm)l,m∈N.

Theorem 3.2 ([M2]) Let k ∈ N. For any finite partition Mk =
⋃r
i=1Ci, one of the

cells Ci contains an Mk-ring.

In order to derive Theorem 3.1 from Theorem 3.2, consider the map ∆ : Mk →
Wk defined by ∆

(
(aij)Ni,j=1

)
= a11a22 · · ·aNN . If now Wk =

⋃r
i=1Ci then Mk =⋃r

i=1 ∆−1(Ci) and for some z, 1 ≤ z ≤ r, ∆−1(Cz) contains an Mk-system generated
by a standard N ×N-variable matrix V

(
(xij)∞i,j=1

)
= (alm)l,m∈N. Letting Bi × Bj

be the support of the variable xij , let for i ∈ N wi(x) be the variable word that lies
along the diagonal from (Ri−1 + 1, Ri−1 + 1) to (Ri, Ri), with x replacing xii. That
is, wi(x) = w1w2 · · ·ws, where s = Ri − Ri−1 and for 1 ≤ t ≤ s and l = Ri−1 + t,
wt = all if all ∈ {0, 1, . . . , k − 1} and wt = x if all = xii. One may easily check now
that for all N ∈ N and all i1, i2, . . . , iN ∈ {0, 1, . . . , k − 1}, w1(i1)w2(i2) · · ·wN (iN ) =
∆
(
V
(
(tij)Ni,j=1

))
∈ Cz. Here tij ∈ {0, 1, . . . , k − 1} are defined by tjj = ij with tij ,

i 6= j, arbitrary.
It is also easy to see from this derivation what changes to Theorem 3.2 are required

in order to obtain the stronger Theorem 2.1 as a consequence. In order for wi(x) to be
a left-sided variable word, i ≥ 2, it must be the case that the point (Ri−1 +1, Ri−1 +1)
lies in the support of xii. That is, Ri−1 + 1 ∈ Bi. An Mk-system that meets this
requirement for i ≥ 2 will be called special.
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Question 3.3 Is it that case that for k ∈ N and any finite partition ofMk, some cell
contains a special Mk-system?

One can easily formulate a version of Theorem 3.2 that would extend Theorem
2.2 as well. Let 0 = R0 < R1 < · · · < RN ∈ N and let V = (aij)RNi,j=1 ∈ MRN

k (2). Let
∅ 6= α ⊂ {1, 2, . . . , N}. We define the α-collapse of V with respect to (R1, . . . , RN) to
be the T × T matrix, where T =

∑
i∈α(Ri −Ri−1), that is obtained by removing the

rows and columns in positions
⋃
i∈{1,...,N}\α{Ri−1+1, . . . , Ri} from V and “collapsing”

together what is left.
This is probably best demonstrated by example. In this example, N = 3, R1 = 2,

R2 = 4 and R3 = 5, while α = {1, 3}.
0 1 2 3 1
0 3 1 2 1
1 2 1 1 0
1 0 3 3 1
2 2 2 0 3

→


0 1 ∗ ∗ 1
0 3 ∗ ∗ 1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
2 2 ∗ ∗ 3

→
 0 1 1

0 3 1
2 2 3

 .

Of course, this collapsing notion may be formalized, as well. Write α = {a1, . . . as}
where a1 < a2 < · · · < as. Put a0 = 0. (bij)Ti,j=1 is the α-collapse of V , where if
(m,n) ∈ T × T , and i, j, b and c are chosen with 0 ≤ i, j < s, b ∈ {1, . . . , Rai+1 −
Rai}, and c ∈ {1, . . . , Raj+1 − Raj}, such that m =

∑i
t=0(Rat − Rat−1) + b and

n =
∑j
t=0(Rat −Rat−1) + c, then bmn = axy, where x = Rai + b and y = Raj + c.

A collapsibleMk-system consists of anMk-system N generated by an increasing
sequence (Rm)∞m=1 ⊂ N and a standard N×N-variable matrix V

(
(xij)∞i,j=1

)
, together

with all the α-collapses with respect to (R1, . . . , Rm) of every Rm ×Rm matrix in N ,
for all m ∈ N and ∅ 6= α ⊂ {1, . . . ,m}.

Question 3.4 Is it that case that for k ∈ N and any finite partition ofMk, some cell
contains a collapsible Mk-system?

We may combine elements of Questions 3.3 and 3.4 to formulate a version of
Theorem 3.2 that would extend Theorem 2.3, also. A special Mk-system, together
with all of it’s α-collapses for which 1 ∈ α, will be called a special collapsible Mk-
system. (One should note however that a special collapsible system need not be a
collapsible system.)

Question 3.5 Is it that case that for k ∈ N and any finite partition ofMk, some cell
contains a special collapsible Mk-system?

Again, we remind the reader that we have formulated Questions 3.3-5 in two
dimensions for convenience only. We suspect that the obvious versions of each for
arbitrary finite dimension are all true.

We wrap things up with two final questions dealing with possible infinitary ex-
tensions of Theorem 1.7.
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Given k, n ∈ N and an Mk-ring N generated by a sequence (Rm)∞m=1 and a
standard N ×N-variable matrix V

(
(xij)∞i,j=1

)
= (alm)l,m∈N, denote by N [n] the set

of standard n2-variable matrices that are submatrices of Vm
(
(xij)mi,j=1

)
for some m.

Question 3.6 Let k, r, n ∈ N. Supposing Mk[n] =
⋃r
i=1 Ci, is it the case that there

must exist i, 1 ≤ i ≤ r, and an Mk-ring N such that N [n] ⊂ Ci?

The one-dimensional analogue of Question 3.6 is precisely [FK, Theorem 3.1].
It is possible to go even further. As just one example, Bergelson, A. Blass and

Hindman have proved a theorem [BBH, Theorem 7.1] which stands in relation to [FK,
Theorem 3.1] precisely as Theorem 2.2 stands in relation to Theorem 3.1. A two di-
mensional version of their result (dealing with standard variable words over collapsible
systems) would stand in a similar relation to Question 3.6. We leave formulation of
this and other conjectures along these lines to the reader.
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