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Abstract

Recently Zagier proved a remarkable q-series identity. We show that this iden-
tity can also be proved by modifying Franklin’s classical proof of Euler’s pentagonal
number theorem.
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1 Introduction

We use the standard q-series notation:

(a)n =
n∏
k=1

(1− aqk−1)

where n is a nonnegative integer or n =∞. Euler’s pentagonal number theorem states
that

(q)∞ = 1 +
∞∑
r=1

(−1)r(qr(3r−1)/2 + qr(3r+1)/2). (1)

Recently Zagier proved the following remarkable identity

Theorem 1
∞∑
n=0

[(q)∞ − (q)n] = (q)∞
∞∑
k=1

qk

1− qk +
∞∑
r=1

(−1)r[(3r − 1)qr(3r−1)/2 + 3rqr(3r+1)/2]. (2)

This is [8, Theorem 2] slightly rephrased.
Equation (1) has a combinatorial interpretation. The coefficient of qN in (q)∞ equals

de(N)− do(N) where de(N) (respectively do(N)) is the number of partitions of N into
an even (respectively odd) number of distinct parts. Franklin [4] showed that

de(N)− do(N) =

{
(−1)r if N = 1

2
r(3r ± 1) for a positive integer r,

0 otherwise.
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His proof was combinatorial. He set up what was almost an involution on the set of
partitions of N into distinct parts. This “involution” reverses the parity of the num-
ber of parts. However there are certain partitions for which his map is not defined.
These exceptional partitions occur precisely when N = 1

2
r(3r ± 1), and so account for

the nonzero terms on the right of (1). Franklin’s argument has appeared in numerous
textbooks, notably [1, §1.3] and [5, §19.11].

We show that Zagier’s identity has a similar combinatorial interpretation, which,
miraculously, Franklin’s argument proves at once.

The author wishes to thank George Andrews and Don Zagier for supplying him with
copies of [3] and [8], and also an anonymous referee for helpful comments.

2 Proof of Theorem 1

We begin by recalling Franklin’s “involution”. Let DN denote the set of partitions of N
into distinct parts and let D =

⋃∞
N=0DN . For λ ∈ DN let Nλ = N , nλ be the number of

parts in λ and mλ be the largest part of λ (if λ is the empty partition of 0 let mλ = 0).
Then

(q)∞ =
∑
λ∈D

(−1)nλqNλ . (3)

Let λ be a non-empty partition in D. Denote its smallest part by aλ. If the parts
of λ are λ1 > λ2 > λ3 > · · · let b = bλ denote the largest b such that λb = λ1 + 1 − b
(so that λk = λ1 + 1 − k if and only if 1 ≤ k ≤ b). If λ ∈ D is not exceptional (we
shall explain this term shortly), then we define a new partition λ′ as follows. If aλ ≤ bλ
we obtain λ′ by removing the smallest part from λ and then adding 1 to the largest aλ
parts of this new partition. If aλ > bλ we obtain λ′ by subtracting 1 from the bλ largest
parts of λ and then appending a new part bλ to this new partition.

For example take the partition λ illustrated in Figure 1.
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Figure 1: the partition λ
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Then aλ = 2 and bλ = 3. As aλ ≤ bλ then λ′ is obtained by removing the smallest
part of λ and adding 1 to its largest two parts. We get the partition λ′ illustrated in
Figure 2. This time aλ′ = 3 and bλ′ = 2, and we obtain λ′′ by subtracting 1 from the
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Figure 2: the partition λ′

two largest parts of λ′, and creating a new smallest part of 2. This operation reverses
the construction of λ′ from λ, and so λ′′ = λ.

The exceptional partitions are those for which this procedure breaks down. We regard
the empty partition as exceptional, also we regard those for which nλ = bλ and aλ = bλ or
bλ+1. If λ is not exceptional, then neither is λ′ and λ′′ = λ and (−1)nλ′ = −(−1)nλ . Thus
on the right side of (3) the contributions from non-exceptional partitions cancel. The
non-empty exceptional partitions are of two forms: for each positive integer r we have
λ = (2r−1, 2r−2, . . . , r+ 1, r) for which nλ = r, mλ = 2r−1 and Nλ = 1

2
r(3r−1), and

we have λ = (2r, 2r−1, . . . , r+2, r+1) for which nλ = r, mλ = 2r and Nλ = 1
2
r(3r+1).

Thus from (3) we deduce (1).
If λ ∈ D is non-exceptional, then either nλ′ = nλ−1, in which case mλ′ = mλ + 1, or

nλ = nλ + 1, in which case mλ′ = mλ − 1. In each case mλ′ + nλ′ = mλ + nλ. It follows
that in the sum ∑

λ∈D
(−1)nλ(mλ + nλ)qNλ

the terms corresponding to non-exceptional λ cancel and so we get only the contribution
from exceptional λ. Thus

∑
λ∈D

(−1)nλ(mλ + nλ)q
Nλ =

∞∑
r=1

(−1)r[(3r − 1)qr(3r−1)/2 + 3rqr(3r+1)/2]. (4)

This sum occurs in (2), which will follow by analysing the left side of (4).
We break this into two sums. The first∑

λ∈D
(−1)nλmλq

Nλ
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is dealt with in [3, Theorem 5.2]. We repeat their argument. The coefficient of qN in
(q)∞ − (q)n is the sum of (−1)nλ over all λ ∈ DN having a part strictly greater than n.
Such a λ is counted for exactly mλ different n so that

∞∑
n=0

[(q)∞ − (q)n] =
∑
λ∈D

(−1)nλmλq
Nλ . (5)

For each positive integer k,

−qk
1− qk (q)∞ = (1− q)(1− q2) · · · (1− qk−1)(−qk)(1− qk+1) · · · .

The coefficient of qN in this product is the sum of (−1)nλ over all λ ∈ DN having k as
a part. Such a λ occurs for nλ distinct k, and summing we conclude that

−(q)∞
∞∑
k=1

qk

1− qk =
∑
λ∈D

(−1)nλnλq
Nλ. (6)

Combining (4), (5) and (6) gives (2).

3 Another identity

Subbararo [7] (see also [2, 6]) has used essentially the above argument to prove a related
identity. As before Franklin’s involution proves that

∑
λ∈D

(−1)nλxmλ+nλqNλ = 1 +
∞∑
r=1

(−1)r[x3r−1qr(3r−1)/2 + x3rqr(3r+1)/2]. (7)

By elementary combinatorial considerations the left side of (7) can be shown to equal

∞∑
r=0

(x)r+1x
r

and so ∞∑
r=0

(x)r+1x
r = 1 +

∞∑
r=1

(−1)r[x3r−1qr(3r−1)/2 + x3rqr(3r+1)/2]. (8)

For details see [2, 6, 7]. An alternative method of proving (8) is outlined in [1] and
presented in more detail in [8]. Zagier [8] deduces (2) from (8), essentially by carefully
differentiating with respect to x and setting x = 1.
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