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Abstract

A mixed hypergraph is a tripleH = (V, C,D) where V is the vertex set and C and
D are families of subsets of V , the C-edges and D-edges, respectively. A k-colouring
of H is a mapping c : V → [k] such that each C-edge has at least two vertices with a
Common colour and each D-edge has at least two vertices of Different colours. H is
called a planar mixed hypergraph if its bipartite representation is a planar graph.
Classic graphs are the special case of mixed hypergraphs when C = ∅ and all the
D-edges have size 2, whereas in a bi-hypergraph C = D.

We investigate the colouring properties of planar mixed hypergraphs. Specifi-
cally, we show that maximal planar bi-hypergraphs are 2-colourable, find formulas
for their chromatic polynomial and chromatic spectrum in terms of 2-factors in the
dual, prove that their chromatic spectrum is gap-free and provide a sharp estimate
on the maximum number of colours in a colouring.
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1 Introduction

We use the standard graph and hypergraph terminology of Berge [1, 2] and the mixed
hypergraph terminology from [10, 11, 12, 13]. Following Berge [1, 2] a hypergraph is a
pair (V, E) where V is the set of vertices and E is a family of subsets of V (of size at least
2), the edges. We use this notation mainly when we discuss general properties. When we
consider colouring properties specifically, we shall use the language of mixed hypergraphs.

A mixed hypergraph is a triple H = (V, C,D) where V is the vertex set, |V | = n, and
C and D are families of subsets of V , the C-edges and D-edges.

A (proper) k-colouring of a mixed hypergraph is a mapping c : V → {1, 2, . . . , k} from
the vertex set V into a set of k colours so that each C-edge has at least two vertices with
Common colour and each D-edge has at least two vertices with Different colours. A strict
k-colouring is a proper colouring using all k colours. If a mixed hypergraph H has at
least one colouring, then H is called colourable. Otherwise H is called uncolourable. Let
P (H, k) denote the number of proper k-colorings of H. It can be seen that P (H, k) is a
polynomial in k, known as the chromatic polynomial of H. By c(v) we denote the colour
of vertex v ∈ V in the colouring c. A set of vertices is monochromatic in a colouring
if all the vertices of the set have the same colour. Similarly a set is polychromatic if no
two vertices in it have the same colour. Thus in a proper colouring C-edges must be
non-polychromatic subsets, and D-edges non-monochromatic subsets of vertices. If H is
colourable then the minimum number of colours over all colourings is the lower chromatic
number χ(H). The maximum number of colours in all strict colourings of H is its upper
chromatic number χ̄(H).

For each k, 1 ≤ k ≤ n, let rk be the number of partitions of the vertex set into k
nonempty parts (colour classes) such that the colouring constraint is satisfied on each C-
and D-edge. We call these partitions feasible. Thus rk is the number of different strict
k-colourings of H if we disregard permutations of colours. The vector

R(H) = (r1, . . . , rn) = (0, . . . , 0, rχ(H), . . . , rχ̄(H), 0, . . . , 0)

is the chromatic spectrum of H.
The set of values k such that H has a strict k-colouring is the feasible set of H; this

is the set of indices i such that ri > 0. A mixed hypergraph has a gap at k if its feasible
set contains elements larger and smaller than k but omits k. A mixed hypergraph H is
called uniquely colourable [11] if it has precisely one feasible partition.

A mixed hypergraph H = (V, C,D) is called reduced if every C-edge is of size at least 3,
every D-edge is of size at least 2, and moreover no C-edge (D-edge) is included in another
C-edge (D-edge). It follows from the splitting-contraction algorithm [12, 13] that the
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colouring properties of an arbitrary mixed hypergraph may be obtained from its reduced
mixed hypergraph. Therefore, unless otherwise stated, we consider only reduced mixed
hypergraphs.

If H = (V, C,D) is a mixed hypergraph, then the subhypergraph induced by V ′ ⊆ V
is the mixed hypergraph H′ = (V ′, C′,D′) defined by setting C′ = {C ∈ C : C ⊆ V ′},
D′ = {D ∈ D : D ⊆ V ′} and denoted by H′ = H/V ′.

A mixed hypergraph H = (V, ∅,D) (H = (V, C, ∅)) is called a ”D-hypergraph” (”C-
hypergraph”) and denoted by HD (HC). If HD contains only D-edges of size 2 then it
coincides with the usual notion of a graph. A mixed hypergraph H = (V, C,D) is called a
bi-hypergraph iff C = D. A subset of vertices which is both a C-edge and D-edge is called
a bi-edge.

The study of mixed hypergraphs has made a lot of progress since its inception [13].
It has many potential applications, since mixed hypergraphs can be used to encode var-
ious partitioning constraints. They have been used to model problems in such areas as
colouring of block designs [3, 4], list-colouring of graphs [10], integer programming [10]
and other areas. In this paper we begin a systematic study of planar mixed hypergraphs.

2 Planar hypergraphs

Let H = (V, E) be a hypergraph.

Definition 1 The bipartite representation of H, denoted by B(H), is a bipartite graph
with vertex set V ∪ E . v ∈ V is adjacent to E ∈ E (in B(H)) if and only if v ∈ E.

The following definition is due to Zykov [16]:

Definition 2 A hypergraph H is called planar iff B(H) is a planar graph.

Thus planar graphs are the special case of planar hypergraphs in which all edges have
size 2. As one may see, a planar hypergraph admits an embedding on the plane in such a
way that each vertex corresponds to a point on the plane, and every edge corresponds to
a closed region homeomorphic to a disk such that it contains the points corresponding to
its vertices in the boundary and it does not contain the points corresponding to the other
vertices. Furthermore two such regions intersect exactly in the points that correspond
to the vertices in the intersection of the corresponding edges. In this way the connected
regions of the plane which do not correspond to the edges form the faces of the embedding
of the planar hypergraph.

Using properties of the bipartite representation B(H) one can derive many properties
of a planar embedding of the hypergraph H [1, 2, 16]. For example if the degree of vertex
v ∈ V in H is denoted by dH(v) we obtain
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Theorem 1 (Euler’s formula) If H = (V, E) is a planar hypergraph embedded on the
plane with f faces, then

|V |+ |E| −
∑
E∈E
|E|+ f = |V |+ |E| −

∑
v∈V

dH(v) + f = 2.

Proof. This follows from Euler’s formula for B(H).

Definition 3 An embedding of a planar hypergraph is called maximal iff every face con-
tains precisely two vertices, or equivalently iff in the corresponding embedding of B(H)
every face has length 4.

This maximality is relative in the sense that in every such face one can always insert
a new edge of size 2. However if a planar hypergraph H is not maximal then there is at
least one face of size at least 3 and therefore one can insert a new edge of size at least 3
in that face.

If we draw the faces of a maximal planar hypergraph as curves connecting respective
vertices then we obtain a plane graph whose faces correspond to the edges of the initial
hypergraph. In this way, we may look at a plane graph as a planar embedding of a
maximal hypergraph such that the faces of the graph correspond to the edges of the
hypergraph.

3 Colouring planar mixed hypergraphs

Let H = (V, C,D) be a mixed hypergraph. Denote the underlying edge-set of H by
E = C ∪ D. Observe that if some C-edge coincides as a subset of vertices with some
D-edge (i.e. it is a bi-edge) then it appears only once in E . We say that H′ = (V, E) is
the underlying hypergraph of H.

Definition 4 We call a mixed hypergraph H = (V, C,D) planar if and only if the under-
lying hypergraph H′ is planar.

This can be viewed as follows: we can embed H′ in the plane and label all hyperedges
with b, c or d appropriately according to whether they are bi-edges, C-edges or D-edges.
Note that C-edges of size 2 can be contracted, and bi-edges of size 2 lead to uncolourability,
so that in general it suffices to only consider mixed hypergraphs containing neither.

Example 1 Clearly not every mixed hypergraph is planar. Let H7 be the
3-uniform hypergraph with vertex-set V (H7) = Z7, and edge-set E(H7) = {{0 + i, 1 + i, 3 + i}, {0 + i, 2 + i, 3
In H7 every pair of vertices appears in exactly 2 edges, but B(H7) has 21 vertices, 42 edges
and girth 4, and is therefore not planar. It can also be proved by exhaustion in a few te-
dious minutes that H7 is uncolourable as a bi-hypergraph. It is worth noting that H7 is
embeddable in the torus: The faces of the standard embedding of K7 on the torus, shown
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in Figure 1, are precisely E(H7). We note also that the edges of this hypergraph are the
blocks of the unique simple S(7, 3, 2) design. The study of designs as mixed hypergraphs
is also an important emerging subfield [3].
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Figure 1: An embedding of K7 on the torus

A first discussion on the colouring of planar hypergraphs can be found in a paper of
Zykov [16]. The main results discussed there may be reformulated in the language of
mixed hypergraphs as follows.

Theorem 2 (Bulitco) The Four colour theorems for planar graphs and for planar D-
hypergraphs are equivalent.

Theorem 3 (Burshtein, Kostochka) If a planar D-hypergraph contains at most one
D-edge of size 2 then χ(H) ≤ 2.

The question of colouring properties of general planar mixed hypergraphs was first
raised in [13] (problem 8, p.43). It is evident that every planar D-hypergraph is colourable,
just as every planar C-hypergraph is. The situation changes however if we consider gen-
eral planar mixed hypergraphs. The smallest non-trivial (reduced) uncolourable pla-
nar mixed hypergraph H = (V, C,D) is given by V = {1, 2, 3}, C = {(1, 2, 3)},D =
{(1, 2), (2, 3), (1, 3)}. It is easy to embed it on the plane with 4 faces (3 containing 2
vertices each and 1 containing 3 vertices). It is not difficult to extend this example to
an infinite family of uncolourable planar mixed hypergraphs. Take for example an odd
D-cycle of length 2k + 1 and add to it k triples of the form (1,2,3),(3,4,5),(5,6,7), ... as
C-edges, see [14]. The general structure of uncolourable planar mixed hypergraphs is un-
known, but we will see that the presence of D-edges of size 2 is crucial. In general D-edges
of size 2 are problematic, since allowing them implies that the four colour problem is a
special case of the theory of planar mixed hypergraphs.

Since we already excluded C-edges and bi-edges of size 2, it seems reasonable to study
only planar mixed hypergraphs without edges of size 2. The first interesting case is that in
which H = (V, C,D) is a maximal 3-uniform planar bi-hypergraph. These graphs already
have a rich structure that will allow us to draw interesting conclusions for the general
case, and we will study them in the next section.
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4 Bi-triangulations

We now consider the colouring problem for maximal 3-uniform planar bi-hypergraphs H.
Since every face of a maximal planar hypergraph is of size 2, we can associate a graph
G(H), on the same vertex set, with H: replace every face in H by an edge in G, so that
every edge in H becomes a face of G. H is maximal 3-uniform, so that G must be a
triangulation in the usual sense. We use H and G interchangeably, and since every edge
of H is a bi-edge, we will refer to them as bi-triangulations.

In this section we will study the colourings of bi-triangulations: we want to colour
V (G) so that every face has exactly two vertices of the same colour.

Definition 5 A colouring c1 is a refinement of a colouring c2 if every colour class of c1

is contained in a colour class of c2. A colour class of a colouring c is maximal if it is a
colour class in every refinement of c. If every colour class of c is maximal, then c is a
maximal colouring.

Lemma 4 A colour class of a colouring of a bi-triangulation is maximal if and only if it
induces a connected subgraph.

Proof. In a triangulation two vertices are together in a face if and only they are adjacent.
Therefore a maximal colour class must induce a connected subgraph, since otherwise we
can simply recolour one of the components. Conversely, a connected colour class can
not be refined furthermore, since recolouring some of its vertices would result in two
adjacent vertices from the old colour class receiving distinct new colours. This leads to a
contradiction, since any face containing these two vertices is now multicoloured.

Observe that this result does not extend to general planar graphs, as can be easily
seen by colouring C4 with two colours, so that every vertex is adjacent to a vertex of the
same colour. The following results (Theorem 5 and Corollaries 1 and 2) also break down
for C4.

Theorem 5 There is a 1-1 correspondence between the k-colourings of a bi-triangu-
lation G and the k-face-colourings of the 2-factors in the dual G∗. In this correspondence
a colouring c1 of G is a refinement of a colouring c2 if and only if the corresponding
2-factors are identical and the face-colouring associated with c1 is a refinement of the
face-colouring associated with c2.

The main idea of the proof is due to Penaud [7] who essentially showed that there is
a 1-1 correspondence between 2-colourings of G and 2-factors of G∗. (See Corollary 2)
Proof. A 2-factor of G∗ partitions the plane into regions, inducing a partition of V (G)
into non-empty sets. Thus every proper face-colouring of this 2-factor with k colours
corresponds to a k-colouring of V (G). Such a colouring is in fact a k-colouring of the
bi-triangulation G, since it follows from the properness of the face-colouring that in every
face of G there are exactly 2 vertices from one colour class and 1 from another.
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Conversely, given a k-colouring we can recover the 2-factor and its face-colouring.
Since in every face of G there are exactly 2 vertices of the same colour we get a 2-regular
spanning subgraph, i.e. a 2-factor, of G∗ by taking the dual edge of every edge in G
that is incident to vertices of different colour. Now, if two vertices are in the same region
(generated by the 2-factor) then there is a curve connecting them that passes only through
vertices in this region. But then consecutive vertices on this curve must be on the same
face and are therefore adjacent. The edge joining these vertices can not be the dual of
an edge in the 2-factor, since otherwise it would follow from the Jordan curve theorem
that they are in different faces. By the definition of the 2-factor it follows thus that
consecutive vertices on this curve must be of the same colour, and that therefore every
vertex in a given region has the same colour. Since every region of the 2-factor must
contain at least one vertex we can therefore uniquely define the colouring of the regions
and this k-colouring is a good-colouring since faces are separated by dual edges and thus
adjacent faces contain adjacent vertices of different colour.

For the second part of the proof observe that a refinement of the face-colouring of the
dual graph clearly leads to a refinement of the colouring of the bi-triangulation. For the
converse suppose that c1 is a refinement of c2. Following the construction of the dual
2-factor it follows that the 2-factor for c1 must contain the 2-factor for c2, from which it
follows that they are identical. It follows that the face-colouring corresponding to c1 must
be a refinement of the colouring for c2.

Definition 6 Recall that rk(G) is the number of different strict k-colourings of G (disre-
garding permutations of colors), i.e. the number of partitions of V (G) into k non-empty
sets that describe a good-colouring of the mixed hypergraph G. Let S(n, k) denote the
Stirling numbers of the second kind, i.e. the number of ways of partitioning a set of n
elements into exactly k sets. Also define fk(G

∗) to be the number of 2-factors of G∗ that
consist of exactly k components, and let f(G∗) =

∑
i≥1 fi(G

∗) be the total number of
2-factors of G∗.

Corollary 1 Every colouring of a bi-triangulation G can be refined to a unique maximal
colouring. Furthermore, there are exactly fk−1(G∗) maximal k-colourings of G.

Proof. By the Jordan curve theorem a given 2-factor consisting of k − 1 cycles divides
the plane into k regions and by Lemma 4 the colouring that assigns a different colour to
each face must be the unique maximal colouring for this 2-factor, since (as it was shown
in the proof above) the vertices in every region induce a connected subgraph. The second
statement follows immediately. All refinements of a given colouring correspond to the
same 2-factor, so that the first statement also follows.

Corollary 2 A bi-triangulation G has exactly 2f(G∗) proper 2-colourings. In general,

rk(G) =
∑
i≥1

S(i, k − 1)fi(G
∗), and
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P (H, λ) =
∑
i≥1

fi(G
∗)λ(λ− 1)i.

Proof. The first statement follows from both summation formulas, by setting k = 2
or λ = 2 respectively. For the first formula it suffices by Theorem 5 to show that every
2-factor consisting of i cycles can be k-face-coloured in exactly S(i, k − 1) ways. To see
this, create a graph whose vertex-set are the faces in the dual of the 2-factor, and two
vertices are adjacent if and only if the corresponding faces are separated by a 2-factor.
This graph is connected and has i edges. By the Jordan curve theorem it has exactly i+1
vertices and must therefore form a tree T . Let rk(T ) be the number of proper k-colourings
of T . To see that rk(T ) = S(e(T ), k − 1), observe that r1(K1) = 1 and rk(K1) = 0 for
k ≥ 2. By removing a leaf v we can see that rk(T ) = (k − 1)rk(T − v) + rk−1(T − v),
the usual recursion for the Stirling numbers. For the second formula it now suffices to
observe that the chromatic polynomial for a tree on i+ 1 vertices is λ(λ− 1)i.

Jiang, Mubayi, Tuza, Voloshin and West [6] have exhibited mixed hypergraphs whose
chromatic spectrum is not an interval, i.e. there may be some zeroes between positive
components. This can not happen for bi-triangulations.

Corollary 3 The spectrum of every bi-triangulation G is unbroken, χ(G) = 2 and χ̄(G) =
1 + max{k : fk(G

∗) ≥ 1}.

Proof. Since G∗ is a 3-regular bridgeless graph it follows from Petersen’s theorem that
it has a 2-factor. So by Corollary 2 every bi-triangulation is 2-colourable, and therefore
must have lower chromatic number 2. A colouring achieving the upper chromatic number
must be maximal, so that the value of χ̄(G) follows from Corollary 1. If k = χ̄(G), then
fk−1(G∗) ≥ 1, so since S(k − 1, i − 1) ≥ 1 for every 2 ≤ i ≤ k, we get that ri(G) ≥ 1
in this range and the spectrum is unbroken. Furthermore an i-colouring can be obtained
from an i-colouring of the tree.

Corollary 4 Every planar mixed hypergraph without edges of size 2 can be 2-coloured.

Proof. Without loss of generality we may assume that the mixed hypergraph is a maxi-
mal bi-hypergraph, since adding C- or D-edges only decreases the number of 2-colourings.
Similarly, if G contains any faces of size larger than 3, then those can be divided into
faces of size 3 by adding graph edges to obtain a bi-triangulation. The result now follows
from Corollary 3.

Corollary 5 Every uniquely colourable planar mixed hypergraph must have an edge of
size 2.

Proof. Suppose that G is uniquely colourable, and free of edges of size 2. Again we may
assume that G is a bi-triangulation. By Corollary 3, χ̄(G) = 2, so that by Corollary 2,
G∗ must have a unique 2-factor: a Hamiltonian cycle. This contradicts the following
theorem.
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Theorem 6 (Thomason [8], Tutte [9] “Smith’s Theorem”) The
number of Hamiltonian cycles through a given edge of a cubic graph is even.

Proof. We sketch the elegant proof of Thomason. Let uv be the given edge. Consider
the graph whose vertices are the Hamiltonian paths starting at u with edge uv. Two
such paths are adjacent if one can be obtained from the other by adding an edge at
the end of the path and deleting a different edge. Now vertices of degree 1 in this graph
correspond to Hamiltonian cycles containing uv and all other vertices have degree 2. Thus
the number of Hamiltonian cycles containing uv is even.

Example 2 Consider the bi-triangulation corresponding to K4, i.e. H = (V, C,D) with
V = {1, 2, 3, 4}, C = D = {(123), (234), (341), (412)}. It is easy to see that K4 is self-dual
and that all 2-factors of K4 are Hamiltonian. Thus χ(H) = χ̄(H) = 2. One can also verify
that the strict colourings with two colours are 1212, 1122, 2112 and the corresponding
three 2-factors of G∗ are 12341, 13241 and 12431, so that the chromatic spectrum is
R(H) = (0, 3, 0, 0) and the chromatic polynomial is 3λ(λ− 1).

5 Bounds for the upper chromatic number

Recall that the upper chromatic number of a D-hypergraph on n vertices is always n. If
we have at least one C-edge then we have χ̄ ≤ n − 1. Perhaps surprisingly, this bound
can be achieved even for the restricted class of bi-triangulations.

Definition 7 If we replace an edge ab of a graph by creating a new digon cd and including
the edges ac and bd, then we say that we are inserting a digon. The new graph is cubic if
and only if the original graph was cubic.

Similarly, inserting a K4 − e corresponds to removing the edge ab, creating 4 new
vertices {c, d, e, f} and including the edges {ac, bd, ce, cf, de, df, ef}.

C∗3 is the 2-vertex graph consisting of a triple-edge.

Example 3 Let C ′2n denote the cubic graph on 2n vertices that is obtained by replacing
every edge of a perfect matching in C2n by a double-edge. C ′2n can also be built recursively
by inserting n − 1 digons into the same edge of C∗3 . Consider the bi-triangulation on n
vertices H, with underlying graph G, such that G∗ = C ′2n−4. It follows from Corollary 3
that χ̄(H) = n−1, since the n−2 digons form a 2-factor in G∗ with the maximum number
of cycles.

It can be seen that this is the unique n-vertex bi-triangulation that achieves the bound.
We notice that in the example H, G and G∗ all have repeated edges, and this is crucial
for achieving the bound. For this reason we will regard E as a multi-set, i.e. we keep
track of how many copies there are of each bi-edge.



the electronic journal of combinatorics 7 (2000), #R60 10

Lemma 7 Let H be the bi-triangulation corresponding to a triangulation G other than
C3.

1. An edge of H can be repeated at most twice.

2. If G∗ has repeated edges, then G has repeated edges.

3. Every pair of vertices in G∗ that form a digon gives rise to a unique pair of repeated
edges in H.

4. G∗ has repeated edges if and only if H has repeated edges.

Proof. For 1. consider the edge abc in H and suppose that in G the edge ab appears k
times. The k copies of ab divide the plane into k regions, only one of which can contain
c. Thus abc is repeated at most twice.

For the remaining parts suppose that ab is a repeated edge of G∗ and let ax and by be
the remaining edges at a and b respectively. If x = b, then y = a and G∗ is a triple-edge,
so that G = C3. Otherwise ab forms a digon. Because G∗ is 2-connected (as the dual of a
planar graph) both x and y must be internal or external to the digon, so that the digon
forms a face C in G∗. Furthermore, every face in G∗ containing ax must also contain a
copy of ab and by. There are exactly two such faces A and B. So the edges in G that
are dual to ax and by must be two copies of the edge AB, proving 2. For 3. observe that
{ABC} is a repeated edge of H, once corresponding to a and once to b.

For 4. it now suffices to prove the reverse implication, so suppose that ABC appears
twice. If AB and AC are not repeated, then the two faces ABC are connected by exactly
two edges BC and AC, forming a digon in G∗.

The reverse implications in Lemma 7.2/3 need not hold in general.

Example 4 Let C ′′2n be the cubic graph on 4n vertices obtained by inserting n− 1 copies
of K4 − e into the same edge of K4. If we again let G∗ = C ′′2n, then G∗ and H have no
repeated edges, but G forms a bi-triangulation with multiple edges.

Example 5 Let Θ′ be the cubic graph on 8 vertices obtained by inserting a digon into
every edge of C∗3 . So Θ′ has 3 digons, but the corresponding hypergraph contains 4 pairs
of identical hyperedges.

Theorem 8 If H is a bi-triangulation with n vertices and m repeated edges, then χ̄(H) ≤
b(2n+m− 1)/3c and this bound is sharp.

Proof. Let H have G as its underlying graph, and suppose that G∗ contains d digons.
We first notice that the digons are vertex-disjoint (since G∗ is cubic) and by Lemma 7.3
we get d ≤ m. In a 2-factor of G∗ with the maximum number of cycles every vertex not
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in a digon must be in a cycle of length at least 3. Thus, since G∗ has exactly n∗ = 2n− 4
vertices, such a 2-factor has at most d+ (n∗ − 2d)/3 cycles and therefore:

χ̄(H) ≤ 1 + d+

⌊
2n− 4− 2d

3

⌋
=

⌊
2n+ d− 1

3

⌋
≤
⌊

2n+m− 1

3

⌋
.

We shall now prove that the upper bound is sharp by constructing the appropriate
cubic planar graph G∗. In a Y -∆ transformation of a cubic graph a vertex v with neighbors
w1, w2, w3 is replaced by a triangle v1v2v3 as follows: Remove v, and introduce new vertices
v1, v2, v3 and the edges {v1v2, v1v3, v2v3, v1w1, v2w2, v3w3}. The new graph is still cubic
planar and there are no multiple edges involving the new vertices.

Let 2n − 4 − 2m = 3t + r with 0 ≤ r ≤ 2. Observe that t − r must be even and
suppose that t > r, so that C ′t−r is a cubic planar graph. Perform a Y -∆ transformation
at every vertex in C ′t−r to obtain a simple cubic planar graph on 3t − 3r vertices that
contains exactly t− r disjoint triangles. Next pick an edge uv that is not contained in a
triangle and insert r K4 − e’s into uv. We now have a graph G0 on 3t+ r vertices which
contains a 2-factor consisting of t cycles. If 0 < t ≤ r, then 3t + r ∈ {4, 8} and we let
G0 be K4 or the graph obtained from K4 by inserting a K4 − e into some edge uv. In
either case G0 contains no pair of vertices incident to the same faces. Now obtain G∗ by
inserting m digons into uv, and if t = 0 = r we let G∗ = C ′2m. Hence G∗ is a cubic, planar
graph on 2n− 4 vertices and has a 2-factor consisting of t+m cycles. The corresponding
bi-triangulation H has n vertices, m repeated edges, and

χ̄(H) ≥ t+m+ 1 =

⌊
2n+m− 1

3

⌋
.

In the remaining case when 3t + r = 2 we must have m = n − 3 and all but exactly 2
faces are repeated. Observe that no face may have a repeated edge, since then the third
edge of the face would have to be a loop. However, since every edge must be in an even
number of faces and all but 2 faces are repeated, every edge that occurs in one of these
2 faces must also occur in the other. But then these faces would have to be identical, a
contradiction, so that this case can’t occur.

6 Open Problems

We raise some open questions in this section.

1. For which planar bi-hypergraphs is χ̄(G) = χ(G)? or even

2. Is K4 the only bi-triangulation with χ̄(G) = 2?

3. For which bi-hypergraphs of given genus g is χ̄(G) = χ(G)?

4. Is it NP-hard to determine the upper chromatic number of a bi-triangulation?
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5. Are there bi-hypergraphs/planar mixed hypergraphs (without edges of size 2) for
which the spectrum is broken? or more generally

6. What is the smallest genus of a mixed hypergraph that has gaps in its chromatic
spectrum?

REMARKS: Question 2 is difficult, since the equivalent question of “Is K4 the unique
cubic planar graphs all of whose 2-factors are Hamiltonian cycles?” has been investigated
with only partial success and counter-examples can be found if one drops the assumption
of planarity [5].

The hypergraph ({a, b, c}, {abc, abc, abc}) is embeddable in the torus as its incidence
graph is K3,3 and one trivially has χ̄(G) = χ(G) = 2.

Simply examining all 2-factors of the dual is not a successful strategy for question 4,
since for example the double-wheel K2 ∨ Cn has upper chromatic number 1 + bn/2c, but

Fn + Fn−2 + 2 (n + 1 mod 2) ∈ Θ((1+
√

5
2

)n) 2-colourings (and accordingly 2-factors in
the dual), where Fn is the n-th Fibonacci number. This follows, since there are exactly
two 2-colourings in which the center vertices have different colour when n is even, none
otherwise, and the number of colourings with both vertices having the same colour is
equal to the number of independent sets in Cn, i.e. Fn + Fn−2.
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[7] J.G. Penaud, Une propriété de bicoloration des hypergraphes planaires. (French)
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