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Abstract

Stanley conjectured that the number of maximal chains in the weak Bruhat order
of Sn, or equivalently the number of reduced decompositions of the reverse of the
identity permutation w0 = n, n− 1, n − 2, . . . , 2, 1, equals the number of standard
Young tableaux of staircase shape s = {n− 1, n− 2, . . . , 1}. Originating from this
conjecture remarkable connections between standard Young tableaux and reduced
words have been discovered. Stanley proved his conjecture algebraically, later Edel-
man and Greene found a bijective proof. We provide an extension of the Edelman
and Greene bijection to a larger class of words. This extension is similar to the ex-
tension of the Robinson-Schensted correspondence to two line arrays. Our proof is
inspired by Viennot’s planarized proof of the Robinson-Schensted correspondence.
As it is the case with the classical correspondence the planarized proofs have their
own beauty and simplicity.

Key Words. Chains in the weak Bruhat order, reduced decompositions, Young
tableaux, bijective proof, planarization.
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1 Introduction

Stanley conjectured in [14] that the number of maximal chains in the weak Bruhat order
of Sn, or equivalently the number of reduced decompositions of the reverse of the identity
permutation w0 = n, n−1, n−2, . . . , 2, 1, equals the number fs of standard Young tableaux

An extended abstract of this paper has appered in the proceedings of FPSAC’00 (see [3])
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of staircase shape s = {n− 1, n− 2, . . . , 1}. Evaluating fs with the hook-formula yields

|Red(w0) | =

(
n
2

)
!

(2n− 3) · (2n− 5)2 · (2n− 7)3 · . . . · 5n−3 · 3n−2
.

Originating from this conjecture some remarkable connections between standard Young
tableaux and reduced words have been discovered and explained. Stanley [15] proved the
original conjecture algebraically. Edelman and Greene [2] found a bijective proof. Further
proofs are given by Lascoux and Schützenberger [13] and Haiman [9].

The basic correspondence has been generalized in different directions. Based on con-
jectures of Stanley [15] a related correspondence between shifted standard tableaux and
reduced decompositions of the longest element in the hyperoctahedral group, i.e., the
Weyl group of type Bn, was established by Kraskiewicz [12] and Haiman [9]. In recent
work Fomin and Kirillov [5] found an amazing generalization of Stanley’s formula which
includes a formula of Macdonald as a second special case.

The main purpose of this paper is to give a planarized construction and proof for
the bijection of Edelman and Greene between reduced words and certain pairs of Young
tableaux. The construction is similar in spirit to the planarization of the Robinson-
Schensted correspondence of Viennot [17, 18]. In particular we introduce a skeleton for
reduced words. We agree with Viennot’s statement [18, page 412]: “Unfortunately the
simplicity of the combinatorial constructions, together with the magic of this very beauti-
ful correspondence, cannot be written down in a paper as easily as it can be described in an
oral communication with a friend or using superposition of pictures with transparencies”.

In the next section we give a rather broad introduction to the background of our
construction. In Subsection 2.1 we indicate the relation between reduced words of per-
mutations and partial arrangements. Subsection 2.2 is an exposition of the proof of the
Robinson-Schensted correspondence using the geometric construction of skeletons as in-
troduced by Viennot. In Subsection 2.3 we state the bijection of Edelman and Greene
between reduced decompositions and certain pairs of Young tableaux. Along the lines of
Viennot’s proof we introduce the terminology required for our geometric version of this
bijection. At the end of this subsection we state our main theorem which is a generaliza-
tion of the Edelman and Greene bijection. The proof of the theorem is given in Section 3.
We conclude in Section 4 by indicating a possible extension of the present work.

2 Preliminaries

In this section we introduce the set-up for the main bijection of this paper. We explain
the connection between reduced decompositions and arrangements. After that Viennot’s
planarized version of the Robinson-Schensted correspondence is reviewed. Finally, we
present the Edelman-Greene bijection. To prepare for the planarized proof we introduce
switch diagrams and their skeleton. The section concludes with the statement of the
planarized bijection. The proof of the theorem is given in the next section.
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2.1 Reduced Words and Arrangements

The weak Bruhat order of Sn, denoted WBn is the ordering of all permutations σ of [n]
by inclusion of their inversion sets Inv(σ) = {(σi, σj) : i < j and σi > σj}, i.e,

σ ≤WB τ ⇐⇒ Inv(σ) ⊆ Inv(τ).

The cover relation in WBn consists of the pairs (σ, τ) where τ is obtained from σ by
exchanging two adjacent elements which are in increasing order, i.e., σ ≤WB τ and |Inv(σ)\
Inv(τ)| = 1. The unique minimal element of the weak Bruhat order is the identity
permutation id = 1, 2, . . . , n and the unique maximal element is the reverse of the identity,
w0 = n, n − 1, . . . , 1. The weak Bruhat order is a graded lattice with rank function
r(σ) = |Inv(σ)|. A maximal chain in WBn is a sequence of

(
n
2

)
+1 permutations beginning

with id and ending with w0. Figure 1 shows the Hasse diagram of WB4, this graph is also
known as the 1-dimensional skeleton of the permutahedron. Maximal chains in WBn are
known to have several interesting interpretations, below we describe two of these, another
interpretation as reflection network is described by Knuth [11].

1432

1234

1324 1243

2314 3124 2143 1342 1423

41232413314223413214

2431 4213 4132

43124231

4321

3421

3241

2134

3412

Figure 1: The diagram of the weak Bruhat order WB4 of S4.

Color the edges of the cover graph of WBn with the elements of N = {1, . . . , n − 1}
such that edge (σ, τ) is colored i exactly if the two permutations σ and τ differ by a
transposition exchanging positions i and i + 1. Note that every permutation is incident
to exactly one edge of every color. If we fix id as the start permutation we can associate
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to every word ω over the alphabet N a unique walk in the cover graph of WBn. With a
word ω associate the permutation πω which is the end vertex of the walk corresponding to
ω. E.g. the word 2, 3, 3, 1, 2 corresponds to the walk 1234, 1324, 1342, 1324, 3124, 3214 in
WB4, i.e., π2,3,3,1,2 = 3214 (in Figure 1 the coloring is indicated by different gray scales).
Maximal chains from id to π in WBn are in bijection with the minimum length words ω
such that π = πω. Such a minimum length word is known as a reduced decomposition or
a reduced word of π. The permutation 3214 has two reduced words 2, 1, 2 and 1, 2, 1.

A pseudoline is a curve in the Euclidean plane whose removal leaves two unbounded
regions. An arrangement of pseudolines is a family of pseudolines with the property that
each pair of pseudolines has a unique point of intersection where the two pseudolines
cross. In a partial arrangement we do not require that every pair of pseudolines has a
crossing, i.e., we allow parallel lines. In the case of pseudolines the relation ‘parallel’ need
not be transitive. An arrangement is simple if no three pseudolines have a common point
of intersection. An arrangement partitions the plane into cells of dimensions 0, 1 or 2, the
vertices, edges and faces of the arrangement. Let F be an unbounded face of arrangement
A, call F the northface and let F o be F together with an orientation of the boundary
path of F . The pair (A, F o) is a marked arrangement. Two marked arrangements are
isomorphic if there is an isomorphism of the induced cell decompositions of the plane
respecting the oriented marking faces. We denote as arrangement an isomorphism class
of simple marked arrangements of pseudolines. Similarly a partial arrangement is an
isomorphism class of simple marked partial arrangements of pseudolines.

Goodman and Pollack [8] described a one-to-many correspondence from arrangements
to reduced decompositions of w0 (in this context the name simple allowable sequence
is used for these objects). We sketch the connections which carry through to partial
arrangements and general reduced decompositions.

Let (A, F ) be a marked partial arrangement of n lines, specify points x ∈ F and x in
the complementary face F of F . A sweep of A is a sequence c0, c1, . . . cr, of curves from
x to x which avoid vertices of the arrangement and such that between two consecutive
curves ci and ci+1 there is exactly one vertex of the arrangement and every vertex of A is
between two curves. An example of a sweep is shown in Figure 2.

Label the lines of A such that curve c0 oriented from x to x crosses them in the order
1, 2, . . . , n. Traversing curve ci from x to x we meet the lines of A in some order. Since
each line is met by ci exactly once, the order of the crossings corresponds to a permutation
πi of [n]. If in the arrangement each pair of lines crosses exactly once, then r =

(
n
2

)
and

πr = w0. The sequence π0, . . . , πr of permutations is a simple allowable sequence or in our
terminology a reduced word of w0. In the example of Figure 2 we obtain the reduced word
1, 2, 3, 1, 2, 1. In general an arrangement (A,F ) has various sweeps leading to different
reduced words. In our example 1, 2, 1, 3, 2, 1 is another sweep.

Conversely a reduced word corresponds to a unique (up to isomorphism) simple marked
partial arrangement. A nice construction of an arrangement corresponding to a reduced
word is the wiring diagram of Goodman [7]. Let ω be a reduced word. Start drawing
n horizontal lines called wires and vertical lines p0, . . . , pr. Between pi and pi+1 draw
a X shaped cross between wires ωi and ωi + 1 (wires are counted from bottom to top).
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c0

c6

Figure 2: A sweep for arrangement A

Pseudoline li starts on wire i moves to the right and whenever it meets a cross it changes
to the other wire incident to the cross. The construction is illustrated in Figure 3.

p6

2

1

3

4

p5p4p3p2p1p0

Figure 3: A wiring diagram for the word 1, 2, 3, 1, 2, 1

Let ω = ω1, ω2, . . . , ωr be a reduced word. If |ωi − ωi+1| ≥ 2, in other words, if the
crossings corresponding to ωi and ωi+1 in the wiring diagram of ω do not share a line, then
the word ω′ obtained from ω by exchange of ωi and ωi+1 is a reduced word corresponding
to the same arrangement. Words ω and ω′ over N are called elementary equivalent if ω′

is obtained from ω by a sequence of transpositions of adjacent letters ωi and ωi+1 with
|ωi−ωi+1| ≥ 2. This results in the following proposition which is a restatement of classical
results of Tits and Ringel, see [1, pp 262-269] for exact references.

Proposition 1. Two reduced words are elementary equivalent iff they correspond to the
same isomorphism class of simple marked partial arrangements.

We now come back to the mapping from words ω over N to permutations πω in Sn. It
is natural to ask for conditions on ω and ω′ such that they represent the same permutation
πω = πω′ . The full answer to this question is provided by the Coxeter relations. ω and
ω′ represent the same permutation if ω can be transformed into ω′ by a sequence of
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transformations (moves) of the form

i, i←→ ∅ (COX 0)

i, j ←→ j, i |i− j| ≥ 2 (COX 1)

i, i+ 1, i←→ i+ 1, i, i+ 1 (COX 2)

We call two words equivalent iff they are related by a sequence of moves of type COX 1
and COX 2. Equivalence between ω and ω′ is denoted by ω ∼ ω′. With this definition
the equivalence class of a reduced word ω is the set of all reduced words representing the
same permutation πω.

2.2 Young Tableaux, Point Sets and Skeletons

Let λ be a partition of n = |λ| with parts λ1 ≥ λ2 ≥ . . . ≥ λm. With λ we associate a
Ferrer’s diagram with λi cells in the ith row, see Fig. 4. We refer to the cells of a diagram

11
6 10
2 5 9
1 3 4 7 8

8
4 9
3 5 10
1 2 6 7 11P Q

Figure 4: Two standard Young tableaux P and Q of shape λ = (5, 3, 2, 1) .

in matrix notation, rows are numbered from top to bottom, columns from left to right
and cell (i, j) is the cell in row i and column j. A tableau T of shape λ is an assignment of
numbers to the cells of the diagram of λ. The shape of a tableau T is denoted λ(T). The
content cont(T) of tableau T is the set of entries of cells of T. A tableau T is a Young
tableau if the entries strictly increase in rows and columns. A Young tableau of shape λ
and content {1, . . . , |λ|} is a standard Young tableau, see Fig. 4.

The bijection of the following Proposition is known as the Robinson-Schensted cor-
respondence. This correspondence is the starting point of much combinatorial work on
Young tableaux. We refer to [6, 16, 18] for more comprehensive treatments of this topic.

Proposition 2. There is a bijection between the permutations of {1, . . . , n} and pairs
(P,Q) of standard Young tableaux of the same shape and |λ(P)| = n.

A set X of points in R2 is said to be in ‘general position’ if no two points have the
same x- or y-coordinate. There is a natural mapping from permutations {1, . . . , n} to
point sets, with π associate Xπ = {(i, πi) : i = 1, . . . , n}. Via this mapping the following
Proposition specializes to the Robinson-Schensted correspondence.

Theorem 1. There is a bijection between n element point sets X in R2 which are in
general position and pairs (P,Q) of Young tableaux of the same shape, with |λ(P)| = n,
cont(P(X)) = {y : (x, y) ∈ X} and cont(Q(X)) = {x : (x, y) ∈ X}.
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It is possible to remove the ‘general position assumption’ and even extend Theorem 1
to the case of a multiset X, in that case the tableaux corresponding to X have multiple
entries and only remain weakly increasing. Basically, this is the extension of the Robinson-
Schensted correspondence to two line arrays due to Knuth [10]. The proof given below
follows the ideas developed by Viennot in [17, 18]. Algorithmic consequences of the
planarization have been obtained in [4], a comprehensive exposition of Viennot’s approach
is given by Wernisch [19].

Define the shadow of a point p = (x, y) as the set of all points (u, v) dominating p, i.e.,
points with u > x and v > y. For a set E ⊆ X of points, the shadow of E is the union of
the shadows of the points of E, i.e., the set of all points dominating at least one point of
E (see the shaded region in Fig. 5).

The jump line, L(E), of a point set E is the topological boundary of the shadow of
E. The unbounded half lines of jump lines are the outgoing lines, they are specified as
right and top. The jump line L(E) of a set E of points is a downward staircase with some
points of E in its lower corners.

The dominance relation induces a partial ordering on E, in the terminology of partial
orders the points of A = E∩L(E) are the antichain of minimal elements of E. The points
in the upper-right corners of the jump-line are the skeleton points or skeleton S(A) of the
antichain A. Formally, if (x1, y1), . . . , (xk, yk) are the points of A ordered by increasing
x-coordinate then S(A) contains the points (x2, y1), . . . , (xk, yk−1). Hence, A has exactly
|A| − 1 skeleton points (see Fig. 5).

The minimal elements of a point set X form an antichain A such that the rest X \A
lies completely in the shadow of A. Hence, by removing A and treating X \ A in the
same way, we recursively obtain the canonical antichain partition A = A0, . . . , Aλ−1 with
non-intersecting jump lines L(Ai), 0 ≤ i < λ, which will be called the layers Li(X) of
X. The skeleton of X, denoted by S(X), is defined as the union of the skeletons S(Ai),
0 ≤ i < λ. Since, as noted above, layer Li(X) has |Ai|−1 skeleton points the size of S(X)
is |X| − λ. A picture of a point set X, its skeleton S(X), its antichain layer partition,
and the shadow of antichain A2 is shown in Fig. 5.

One of the properties that seem to lie behind the usefulness of skeletons is the fact that
it is possible to reconstruct X from S(X) with a small amount of additional information.
Let xmax be the maximal x-coordinate of points in X, and let ymax be defined analogously.
Then the right marginal pointsMR(X) ofX are the points (xmax+1, y1), . . . , (xmax+λ, yλ),
where λ is the number of layers of X and y1, . . . , yλ are the y-coordinates of the right
outgoing lines of the layers ordered increasingly (see Fig. 6). Assuming x1, . . . , xλ to
be the x-coordinates of the top outgoing lines of the layers in increasing order the top
marginal points MT (X) of X are (x1, ymax + 1), . . . , (xλ, ymax + λ) (see Fig. 6). With
M(X) we denote the marginal points of X, i.e., M(X) = MR(X) ∪MT (X).

For a point set X let −X be the set containing (−x,−y) iff X contains (x, y). Define
the left-down skeleton S↙(X) as −S(−X). The same result is obtained by defining the
left-down shadow of a point p as the set of points dominated by p and defining the left-
down versions of jump-lines, layers and the skeleton in analogy to the definition based on
the shadow of a point.
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points of X

points of S(X)

Figure 5: Point set X, its skeleton, and the shadow of layer L2(X).

Lemma 1. A point set X is the left-down skeleton of the skeleton S(X) enhanced by the
marginal points of X, i.e., X = S↙(S(X) ∪M(X)).

Let Sk(X) = S(Sk−1(X)) denote the k fold application of S to a point set X. Since
|S(X)| < |X| there is a m such that Sm(X) = ∅, let µ(X) be the minimum such m. Also
let λi(X), 0 ≤ i < µ(X), denote the number of layers of Si(X).

Lemma 2. Let X be a planar point set and λi = λi(X) then λ0 ≥ λ1 ≥ · · · ≥ λµ−1 > 0,
and |Sk(X)| =

∑
k≤i<µ λi. In particular λ = (λ0, λ1, . . . , λµ(X)−1) is a partition of n.

Proof. We show that (λi) is a decreasing sequence: By Lemma 1, the number of antichains
in a minimal antichain partition of S(X)∪M(X) is the same as λ0, the size of the canonical
antichain partition of X. Hence, λ1(X), the size of a minimal antichain partition of S(X)
is at most λ0. The same argument shows the other inequalities. The claim on the size of
Sk(X) follows by induction from |S(X)| = |X| − λ0(X) and its immediate consequence
|Sk+1(X)| = |Sk(X)| − λk(X).

We are ready now to describe the bijection of Theorem 1. With a planar set X of n
points we associate two tableaux P(X) and Q(X) (the P- and Q-symbol of X) in the
following way. The k-th row of P(X), k ≥ 0, are the y-coordinates of the right outgoing
lines of Sk(X) in increasing order. The k-th row of Q(X), k ≥ 0, are the x-coordinates of
the top outgoing lines of Sk(X) in increasing order. As an example compare the outgoing
lines of the first two layers of Fig. 7 with the first two rows of the Young tableaux in
Fig. 4. According to Lemma 2, P(X) and Q(X) have λi(X) cells in their i-th row and
|X| cells altogether. Hence, the shape of P(X) and Q(X) is the diagram of a partition,
moreover, the shapes of P(X) and Q(X) are equal and cont(P(X)) = {y : (x, y) ∈ X}
and cont(Q(X)) = {x : (x, y) ∈ X}.

It remains to show that the entries in the cells of the symbols increase along rows and
columns. For the rows this is true by construction. For the increase in the columns of P
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points of X

points of S(X)

marginal points M

Figure 6: X is the left-down skeleton of S(X) ∪M(X).

we claim that the right outgoing line of layer Lj(X) lies below that of the corresponding
layer Lj(S(X)) in the skeleton, i.e., that P(0, j) ≤ P(1, j). Consider a skeleton point s of
height j in the dominance order of S(X). Since a layer of X can only contain one point
from a chain in S(X) we conclude that s belongs to some layer Li(X) with i ≥ j. Hence,
Lj(S(X)) lies in the shadow of Lj(X) and its right outgoing line must lie above that of
Lj(X). Induction implies that P(X) is a Young tableaux.

The same property for the Q-symbol follows from an important symmetry in the two
symbols of a point set. Let the inverse X−1 of X be the point set obtained from X by the
transposition (x, y)→ (y, x), i.e., by reflection on the diagonal line x = y. The following
proposition (Schützenberger) is immediate from the construction.

Proposition 3. The two symbols of the inverse X−1 of a point set X are P(X−1) =
Q(X) and Q(X−1) = P(X).

We conclude this subsection with the proof that X ↔ (P,Q) is a bijection. By
Lemma 1 X is determined by S(X) and the sets of right and top marginal points, MR(X)
and MT (X). The right marginal points are obtained from the first row of P(X) and the
top marginal points from the first row of Q(X). If we delete the fist row from P(X) and
Q(X) we are left with the P and Q symbols of S(X). With induction this shows that
X can be reconstructed from (P(X),Q(X)). The same construction allows to associate
a point set with any pair (P,Q) of Young tableaux of the same shape.

For more complete exposition of this planarized correspondence and its consequences
the reader is referred to Viennot [18] and Wernisch [19].
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points of X

points of S(X)

points of S(S(X))

Figure 7: The first two skeletons S(X) and S2(X) of X.

2.3 The Correspondence of Edelman and Greene

The statement of the correspondence of Edelman and Greene, Proposition 4 is surprisingly
similar to the Robinson-Schensted correspondence, Theorem 1.

To state the proposition we need to define the reading(T), of a Young tableau T as
the word obtained by concatenating the rows of T from bottom to top. For example the
reading of the tableau P of Fig. 4 is the concatenation of (11)(6, 10)(2, 5, 9)(1, 3, 4, 7, 8),
i.e., reading(P) = 11, 6, 10, 2, 5, 9, 1, 3, 4, 7, 8.

Proposition 4 (Edelman and Greene). There is a bijection between reduced words ω
of permutations in Sn and pairs (P,Q) of Young tableaux of the same shape such that
Q is standard, |λ(Q)| = length(ω), cont(P) ⊆ {1, . . . , n − 1} and the reading of P is a
reduced word equivalent to ω.

To prepare for our planarized proof of the theorem we extend the notions of words and
reduced words. Let i1 < i2 . . . < im be positive integers, a sequence ω = ωi1, ωi2, . . . , ωim
with letters ωij in the alphabet N = {1, . . . , n−1} will be called a quasi-word. Sometimes
it is appropriate to code a quasi-word in two lines, where the top line carries the indices
and the bottom line the letters, e.g.,

(
1,
2,

3,
3,

6,
2,

7,
1,

8
3

)
. The word obtained from the quasi-word

ω by reindexing ij → j is called the normalized word corresponding to ω. If the normalized
word of ω is a reduced word we call ω a reduced quasi-word.

With a quasi-word ω we associate a switch diagram as shown in Fig. 8. Begin with
n horizontal lines at unit distance, with wire i we denote the i-th of these lines counted
from bottom to top. With the letter ωij of ω we associate a switch [ij , ωij ] at x-coordinate
ij connecting wires ωij and ωij + 1. Note the similarity of this construction to the wiring
diagram of Subsection 2.1. Occasionally we use the notation ωX and Xω to go from a
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quasi-word ω to the associated set X of switches and back. In order to have this natural
bijection ωX ↔ Xω we make the following general position assumption: A set of switches
never contains two switches above each other, i.e., with the same first coordinate. A
switch diagram X is normalized iff ωX is a normalized word, i.e., if the indices of switches
are 1, 2, . . . , |X|.

1

2

3

4

5

6

1 2 1514131211109876543

Figure 8: A switch-diagram for the quasi-word ω =
(

2,
4,

3,
3,

5,
4,

7,
1,

8,
2,

9,
3,

10,
5,

11,
4,

13,
1,

14,
5,

15
2

)
In analogy to the terminology introduced for point sets we define shadows, jump-lines,

layers and skeletons for switch diagrams.
The base point of a switch s = [i, w] the lower end point (i, w) of s and the shadow

of s is the region of all points (u, v) which dominate the base point of s, i.e., the set of
all point which are right and up of the base point. The shadow of a set of switches is the
union of the shadows of switches in the set.

The jump line, L(E), of a set E of switches is the topological boundary of the shadow
of E. The unbounded half lines of jump lines are the outgoing lines, they are specified as
right and top.

The jump line L(E) of a set E ⊆ X of switches is a downward staircase. Some
switches of E define corners of L(E), they are said to be taken by the jump line, some
other switches only have their base point on L(E), they are said to be touched by the jump
line. Let T (E) be the set of switches in E which are taken or touched by the jump line of
E. Note that T (E) corresponds to an decreasing subword of the quasi-word ωE. In the
example of Fig. 8 and 9 the decreasing quasi-word corresponding to T (Eω) is

(
2,
4,

3,
3,

7,
1,

13
1

)
.

On switches we define an order relation, for s = [i, w] and s′ = [i′, w′] we say s′ dominates
s if i < i′ and w < w′. This allows us to speak of chains and antichains of switches. Note
that T (E) is just the antichain of minimal switches in the dominance order induced by
E.

Let A be an antichain of switches, i.e., A = T (A). The jump line L(A) has a corner
above each but the first of the switches taken by the jump-line, let C(A) be the set of
these corners and let D(A) be the set of upper ends of the switches touched by L(A).
The set of skeleton switches of the jump line L(A) is the set of switches with base point
in C(A) ∪D(A) (see Fig. 9). The set of skeleton switches of A is denoted as S(A). We
emphasize two important properties of the skeleton of an antichain:

• If A is antichain of switches then |S(A)| = |A| − 1.
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• The skeleton switches S(A) of an antichain A are again an antichain.

Skeleton switchesSwitches of E

Figure 9: A set E of switches, its jump line and the skeleton switches of T (E)

For a set X of switches every switch s ∈ X \T (X) lies completely in the shadow of T (X).
Hence, by removing A0 = T (X) and treating X \ T (X) in the same way, we recursively
obtain a partition A0, A1, . . . , Aλ−1 of X into antichains. As in the case of points this is
the partition by height of the dominance order, we call it the canonical partition of X.
The canonical partition is a minimal partition into antichains.

The jump lines L(Ai), 0 ≤ i < λ, are pairwise non-intersecting, they will be called
the layers Li(X) of X. The skeleton of X, denoted by S(X), is defined as the union of
the skeletons S(Ai), 0 ≤ i < λ. Since, as noted above, layer Li(X) has |Ai| − 1 skeleton
points the size of S(X) is |X| − λ. An example for a set of switches, its layers and the
skeleton is given in Fig. 10.

Figure 10: Layers and skeleton of the set X of Fig. 9.

Let Sk(X) = S(Sk−1(X)) denote the k fold application of S to a set X of switches.
Since |S(X)| < |X| there is an m such that Sm(X) = ∅, let µ(X) be the minimum such
m. Also let λi(X), 0 ≤ i < µ(X), denote the number of layers of Si(P ).

Lemma 3. Let X be set of switches and λi = λi(X) then λ0 ≥ λ1 ≥ · · · ≥ λµ(X)−1 > 0,
and |Sk(X)| =

∑
k≤i<µ(X) λi. In particular λ = (λ0, λ1, . . . , λµ(X)−1) is a partition of |X|.

Proof. We show that (λi) is a decreasing sequence: Let A0, . . . , Aλ0−1 be the layers of
X. Recall that S(Aj) is an antichain and

⋃
j S(Aj) = S(X), hence, S(A0), . . . , S(Aλ0−1)

is a partition into antichains. Since λ1 is the size of a minimal partition of S(X) into
antichains we have λ0 ≥ λ1. The same argument shows the other inequalities. The claim
on the size of Sk(X) follows by induction from |S(X)| = |X| − λ0(X) and its immediate
consequence |Sk+1(X)| = |Sk(X)| − λk(X).
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Figure 11: The two tableaux P and Q associated with the quasi-word ω from Fig. 8 .

Now we are ready to describe a mapping from a switch diagram X with n switches
to a pair (P(X),Q(X)) of tableaux. The k-th row of P(X), k ≥ 0, are the numbers
of the wires of the right outgoing lines of Sk(X) in increasing order. The k-th row of
Q(X), k ≥ 0, are the indices of the top outgoing lines of Sk(X) in increasing order. As
an example compare the outgoing lines of the first layer of Fig. 9 with the first row of the
two tableaux in Fig. 11. We note some properties of the two tableaux:

• The shapes of P(X) and Q(X) are equal.

• The shape of P(X) and Q(X) is the diagram of the partition (λ0, λ1, . . . , λµ(X)−1)
of |X|, (Lemma 3).

• The entries of P(X) and Q(X) are strictly increasing in every row.

• cont(Q(X)) = {i : s = [i, w] ∈ X} and {w : s = [i, w] ∈ X} ⊆ cont(P(X)).

Given these properties the proof that P(X) and Q(X) are Young tableaux can be com-
pleted by showing that the entries of both tableaux are strictly increasing in columns.

Lemma 4. The jump line Lj(S(X)) is contained in the shadow of Lj(X) and they can
only touch in corners.

Proof. Let s be a skeleton switch of layer j, i.e., s ∈ Lj(S(X)), then s is the highest switch
of a chain s1 < s2 < . . . < sj = s in S(X). Consider the antichain partition A0, . . . , Aλ0−1

of X. Since S(Ai) is an antichain, for each i the switches of the chain are in the skeleton
of different Ai. Hence, s = sj ∈ S(Ak) for some k ≥ j. Switch s can touch Lj(X) only
if k = j and if s is above a switch t ∈ Aj which is taken by Lj(X), i.e., if the base point
of s is at a right-down corner of Lj(X). Considering the switches of Lj(S(X) from left to
right it thus follows that Lj(S(X) and Lj(X) can only touch in corners.

It follows that the top outgoing line of Lj(S(X)) is to the right of the top outgoing
line of Lj(X) and the right outgoing line of Lj(S(X)) is above the right outgoing line of
Lj(X). Hence, P(X) and Q(X) are strictly increasing in columns. This completes the
proof of the next proposition.

Proposition 5. To every quasi-word ω of length r the above mapping associates a pair
(P,Q) of Young tableaux of the same shape, with |λ(P)| = r and cont(Q(ω)) = {i :
i is an index in ω} and {w : w is a letter in ω} ⊆ cont(P(ω)).

If we restrict this mapping to reduced words, it is the bijection of Edelman and Greene
(Prop. 4); this will be shown in the next section. In general different quasi-words can be
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mapped to the same pair of tableaux. The simplest case for this phenomenon is shown in
Fig. 12; the words ω1 = (1, 1) and ω2 = (2, 1) are both mapped to (T,T) with T = 1

2
.

1

2

1

2

1 2 1 2

Figure 12: Two switch diagrams associated with the same pair of Young tableaux.

Definition 1. Let X be a set of switches. A bad switch of X is a switch s = [i, w]
such that s ∈ Aj implies that s is touched by Lj and the upper end (i, w + 1) is not on
Lj+1(X). Set X is good if it contains no bad switch. X is very good if Sk(X) is good for
0 ≤ k ≤ µ(X)− 1.

In the left example of Fig. 12 switch [2, 1] is bad, however, the right set of switches is
very good. We are ready now to formulate our main results.

Theorem 2. The mapping X → (P(X),Q(X)) is an injective mapping from very good
sets of switches to pairs of Young tableaux of the same shape such that cont(Q) = {i :
[i, w] ∈ X} and cont(P) = {w : [i, w] ∈ X}. In particular, if X is normalized then Q(X)
is standard.

The two tableaux of Fig. 13 show that the mapping X → (P(X),Q(X)) is not a surjection
to pairs of Young tableaux with Q standard and cont(P) ⊆ N.

3
1 3

3
1 2P Q

Figure 13: Two tableaux P and Q with no associated set X of switches such that (P,Q) =
(P(X),Q(X)).

So far the only technique to decide whether (P,Q) is in the image of the mapping is
to try to apply the inverse mapping and see if it fails. It would be interesting to find a
better characterization of those pairs (P,Q) which are in the image of the mapping. In
other words it would be interesting to understand the bijection hidden in the theorem.
From the next theorem it follows that the bijection of Edelman and Greene (Prop. 4) is
contained in the more general bijection of Theorem 2.

Theorem 3.

(1) If ω is a reduced quasi-word then Xω is a very good set of switches.

(2) If X is a very good set of switches, then ωX ∼ reading(P(X)).

the electronic journal of combinatorics 8 (2001), #R10 14



We indicate how Proposition 4 is obtained from this theorem: If ω is reduced then Xω

is very good, by (1), hence, ω ∼ reading(P) by (2). Since they have the same length
reading(P) is a reduced word iff ω is reduced.

The example of Fig. 14 shows that part (2) of the theorem can not be improved to an ‘if
and only if’ statement.

Figure 14: A very good set X of switches such that ωX = 3, 1, 3 is not reduced.

The generalization Proposition 4 provided by Theorem 2 and 3 to is similar to the
extension of the Robinson-Schensted correspondence to two line arrays due to Knuth [10].

3 Proofs of Theorems 2 and 3

For the proof that the mapping is injective it is convenient to review the construction of the
skeleton and the iterated skeletons of switch diagrams. The idea is that we can compute
all iterated skeletons in one single sweep from left to right through the diagram. Consider
a diagram X and let s = [t, w] be the switch of largest index t in X and X ′ = X \ {s}.
Given the canonical partition A′0, A

′
1, . . . , A

′
λ′−1 ofX ′ with layers L′j = L(A′j) the canonical

partition of X is obtained by inserting s into the set A′j with j minimal such that the
right outgoing line of L′j is on a wire ≥ w. To be more precise, let S′ = S(X ′) and
h′0 < h′1 < . . . < h′λ′−1 be the wires of the right outgoing lines of the layers of X ′. Skeleton
and layers of X, i.e., after insertion of s = [t, w], are obtained according to one of the
following cases:

(1) If h′λ′−1 < w then Aλ′ = {s}, i.e., s generates a new layer which takes s. In this
case S(X) = S(X ′) and the outgoing lines of X are at heights h′0, h

′
1, . . . , h

′
λ′−1, w.

(2) If h′j > w and h′j+1 < w then Aj = A′j ∪ {s}, i.e., s is taken by layer j. In this case
a new skeleton switch is created: S(X) = S(X ′) ∪ {[t, h′j ]}. The outgoing lines of
X are at heights h′0, . . . , h

′
j−1, w, h

′
j+1, . . . , h

′
λ′−1.

(3) If h′j = w and h′j+1 = w + 1 then Aj = A′j ∪ {s}, s is touched by layer j. In this
case a new skeleton switch is created: S(X) = S(X ′) ∪ {[t, w + 1]}. The outgoing
lines of X remain at the same heights as those of X ′.

(4) If h′j = w and h′j+1 > w + 1 then switch s is a bad switch. A new skeleton switch
[t, w+1] is created and the outgoing lines of X remain at the same heights as those
of X ′.

The new skeleton switch (if there is one) is handled recursively according to the same
rules. Note that if X is very good, i.e., rule (4) is never applied, then the horizontal
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segments of jump lines of all iterated skeletons remain on wires containing the base point
of a switch. Since a wire which is occupied by a segment of a jump line is occupied
by segments of jump lines everywhere to the right we obtain: If X is very good then
cont(P) = {w : [i, w] ∈ X}.

We restate the above procedure on the level of the associated tableaux. Let (P′,Q′)
be the tableaux associated with X ′. Let P0, P1, . . . , Pλ′−1 be the rows of P′ and recall that
Pi lists the wires of the right outgoing lines of Si(X ′) in increasing order. To avoid special
cases we consider Pλ′ as an empty row. From the above we obtain by an easy translation
that the tableau P associated with X = X ′∪{[t, w]} is obtained by the following iteration
with initial values w0 = w and i = 0:

(1) If wi is greater than every entry of Pi add wi at the end of this row and stop.

(2) If the least value x in Pi with x ≥ wi is greater than wi, then replace x by wi in
this row, let wi+1 = x and i = i+ 1, continue with (1).

(3) If the least value x in Pi with x ≥ wi equals wi, then let wi+1 = wi+1 and i = i+1,
continue with (1).

This modified-bumping yields the tableau P. The recording tableau Q is Q′ augmented
by the unique cell of λ(P) \ λ(P′), the entry of this cell is t.

Statement (2) from the Theorem (proof follows) tells us that the set of switches of a
reduced word is very good. Therefore, case (3) of the above bumping procedure is only
applied when Pi contains wi and wi + 1. This shows that the pair of Young tableaux
associated to a reduced word ω by our construction is the same as the pair associated to
ω by the generalized RSK correspondence of Edelman and Greene ([2], Defin.6.21).

3.1 Proof of Theorem 2

The proof is by induction on n. Let X be a very good set of switches and X = X ′∪{[t, w]},
where t is the largest index of a switch of X. Let (P,Q) = (P(X),Q(X)). The entry t
is in some extremal cell of Q. Say, it is the last cell of row Qk of Q. Let Q′ be obtained
from Q by deletion of this cell. Working with rows Pk, Pk−1 . . . , P0 of P we construct a
sequence sj = [t, wj] of switches with wk > wk−1 > . . . > w0. Switch sj will be an element
of Sj(X)). We claim the following:

(a) w0 = w, i.e., the last switch of X can be reconstructed from (P,Q).

(b) Via the sequence sk, . . . , s0 of switches the right outgoing lines of X ′ and the
iterated skeletons of X ′ are uniquely determined. These outgoing lines determine
the Young tableaux P′ = P(X ′).

We have assumed that t was the entry of the last cell of row Qk of length λk. From the
construction of Q = Q(X) the top outgoing line at x-coordinate t comes from Sk(X)
and leaves at wire wk where wk is recorded in the last cell of Pk. Since the jump line
Lλk−1(Sk(X)) can only have one corner there is a switch sk = [t, wk] in Sk(X).
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When switch si = [t, wi], k ≥ i > 0, from Si(X) has been constructed we turn to the
construction of si−1 from Si−1(X) below si. Switch si−1 is either touched or taken by its
jump line. These two cases can be distinguished by comparing wi to row Pi−1:

If switch si−1 is touched, then, since X is very good, there are jump lines of Si−1(X)
on wires wi and wi− 1 at t and to the right of t. This happens if Pi−1 contains entries wi
and wi − 1.

If switch si−1 is taken, then (t, wi) is a right down corner of a jump line of Si−1(X)
which continues to the right at some wire wi−1 < wi. The value wi−1 is the largest entry
x < wi of Pi−1.

In both cases si−1 = [t, wi−1] with wi−1 being the the largest entry x < wi of Pi−1. In
the first case the (i−1)-st row P ′i−1 of P′ equals Pi−1. In the second case P ′i−1 is obtained
from Pi by replacing wi−1 by wi.

3.2 Proof of Theorem 3

The proof of (1) is in two parts.

(a) If ω is a reduced quasi-word then Xω is a good set of switches.

(b) If ω is a reduced quasi-word and Y = S(Xω) then ωY is again a reduced quasi-word.

Let ω be a reduced quasi-word. We view the switch diagram Xω as a wiring diagram,
lines enter from the left and at every switch the lines on the wires connected by the switch
cross, i.e., both lines change the wire. Since ω is reduced, any two lines cross at most
once. Now assume that Xω is not good. From this assumption it will follow that there
are two lines crossing twice, a contradiction.

Let s = [t, w] be the leftmost bad switch of Xω. Starting from s we define two
sequences aw, aw−1, . . . and bw, bw−1, . . . of switches. Fig. 15 illustrates the construction
which is explained next.

aw−1

k
ak bk

y

xw + 1
s = bw

bw−1

aw
w

w − 1

Figure 15: The sequences aw, aw−1, . . . and bw, bw−1, . . . and their region.

Let bw = s be the bad switch and Lj be the jump line of X touching s. Define aw as
the switch taken by Lj when it comes down to wire w. From the choice of s as the first
bad switch and the defining property of badness we conclude:
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• Between aw and bw wire w + 1 is not incident to a switch.

Let bw−1 be the rightmost switch connecting to wire w from below but left of bw. If bw−1

is left of aw then stop the construction. Otherwise, if bw−1 is between aw and bw then bw−1

is touched by jump line Lj−1. Let aw−1 be the switch taken by Lj when it comes down
to wire w. Again from the choice of s and since every switch belongs to a jump line it
follows that:

• Between aw−1 and aw wire w is not incident to a switch.

Iterate this construction until it stops at some wire k ≥ 1. Now consider the two lines x
and y crossing at switch s. Let y be on wire w to the right of of s. Since no switch is
connected to wire i between ai−1 and ai, k < i ≤ w, and to wire w + 1 between aw and
bw = s. It is easy to trace y backwards and see that y is changing wires at the switches
ak, . . . , aw, s. Now consider line x. No switch is connected to wire i between bi−1 and bi,
k < i ≤ w, and between ak and bk from below. Therefore, it is impossible for line x to
enter the region between the ai’s and the bi’s (the gray region of Figure 15) from below.
Again using that no switch is connected to wire i between ai−1 and ai, k < i ≤ w, it
follows, that line x has to use one of the switches ak, . . . , aw. This shows that lines x and
y cross twice in contradiction to the assumption that ω is reduced.

The second part of the proof of (1) is based on the next lemma which will also be
central to the proof of part (2) of the theorem.

Lemma 5. If ω is a good word, P0 is the first row of the P-symbol of ω and Y = S(Xω)
then the concatenation ωY ◦ P0 is equivalent to ω.

Proof. First note that the right outgoing lines of X and S(X) ◦P0 are on the same wires.
The right outgoing lines of X are on the wires specified by P0. By Lemma 4 the j-th jump
line of S(X) is above the j-th switch of P0, hence, it can carry on to contain that switch.
Since the switches of P0 form a chain they are on different jump lines and P0 encodes the
wires of the outgoing lines of S(X) ◦ P0.

The lemma is proved by induction on the length n of ω. Let X = Xω and s = [n,w] be
the last switch of X. Let X ′ = X \{s} and assume the result for X ′, i.e., X ′ ∼ S(X ′)◦P ′0
and the right outgoing lines are on the wires specified by P ′0. We distinguish several cases:

Case 1. If s creates a new highest layer and no skeleton switch. Then S(X) = S(X ′)
and P0 = P ′0, w.

Case 2. If s is touched by its jump line. Let P ′0 = x1, . . . , xi, xi+1, . . . , xk with w = xi
and since X is good xi+1 = w+ 1. In this case P0 = P ′0 and the skeleton switch generated
by s is s1 = [n,w + 1]. We show that P ′0, w ∼ (w + 1), P0.

x1, . . . , xi, xi+1, . . . , xk, w ∼ (a sequence of COX 1 moves)

x1, . . . , xi, xi+1, w, . . . , xk ∼ (a single COX 2 move)

x1, . . . , (w + 1), xi, xi+1, . . . , xk ∼ (a sequence of COX 1 moves)

(w + 1), x1, . . . , xi, xi+1, . . . , xk.
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Case 3. If s is taken by its jump line. Again let P ′0 = x1, . . . , xk and let xi be the first
index such that w < xi, note that xi−1 < xi − 1. Since P0 = x1, . . . , xi−1, w, xi+1, . . . , xk
and the skeleton switch generated by s is s1 = [n, xi] we have to show that P ′0, w ∼ xi, P0.

x1, . . . , xi, . . . , xk, w ∼ (a sequence of COX 1 moves)

x1, . . . , xi, w, xi+1, . . . , xk ∼ (a sequence of COX 1 moves)

xi, x1, . . . , xi−1, w, xi+1, . . . , xk.

We complete the proof of (1) by showing that if ω is a reduced quasi-word and Y = S(Xω)
then ωY is again a reduced quasi-word. Since ωY ◦ P0 is a reduced word for the same
permutation as ω and both words have the same length ωY ◦ P0 is reduced. Since every
initial segment of a reduced word is reduced we conclude that ωY is reduced.

Iterated application of Lemma 5 shows that a very good word ω with P-symbol P is
equivalent to Pµ−1 ◦ . . . P1 ◦ P0 = reading(P). This is statement (2) of the theorem.

4 Concluding Remarks

Let ω be a reduced decomposition of w0. The P-symbol of Xω is a Young tableaux with(
n
2

)
entries from N = {1, . . . , n− 1}. It is easy to see that there is only one such tableau.

The shape of this tableau is the staircase shape λ = {n− 1, n− 2, . . . , 1}. Therefore ω is
uniquely determined by its Q-symbol. This proves the formula of Stanley shown in the
introduction.

Edelman and Greene have also given nice descriptions of the two tableaux associated to
the reverse wk, wk−1, . . . , w1 and the reflection n−w1, n−w2, . . . , n−wk of a reduced word
ω = w1, w2, . . . , wk. These descriptions involving Schützenberger’s slide and evacuation
operation and transposes largely resemble the corresponding statements for permutations.
We need some preparatory definitions to state these results.

The transpose TT of tableau T is obtained by reflecting T on the diagonal x = −y,
just as matrices are transposed. The slide s(T) of a Young tableau T is obtained by
deleting the corner cell c = (0, 0) and then filling the gap. To fill a gap in cell c = (i, j)
look at cells (i + 1, j) and (i, j + 1), i.e., at the cell below and that to the right of c. If
both contain elements move the smaller one to c. If only one contains an element, take
that. The new gap is treated similarly until there is no element below and to the right
of the cell with the gap, i.e., until the gap has moved into an upper corner cell. If all
entries of T are different this process is well defined and actually yields a Young tableau.
The evacuation tableau evac(T) of a standard Young tableau T is the recording tableau
for the sequence of shapes obtained by iterating the slide operation, i.e., the recording
tableau for the sequence

∅, sn−1(T), sn−2(T), . . . , s2(T), s(T),T
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Proposition 6. Let π be a permutation and π its reverse then

(P(π),Q(π)) = (P(π)T , evac(Q(π))T )

Proposition 7. Let ω be a reduced word with reverse ω and reflection ω̂ then

(P(ω),Q(ω)) = (P(ω)T , evac(Q(ω))T ) and Q(ω̂) = Q(ω)T .

A planarized proof for Proposition 6 was given by Wernisch [19]. The main tool for
his proof is a lemma showing that the skeleton operator S↖ with respect to north-west
shadows and the standard skeleton operator S, which is defined with respect to north-
east shadows, commute. He shows that S↖(S(X)) = S(S↖(X)) for every point set
X. Furthermore the right outgoing line Li(X) coincides with that of Li−1(S↖(X)), for
1 ≤ i < λ0(X).

A proof of Proposition 7 can be given along the lines of Wernisch’s argument. For a
switch diagramX let S↖(X) and S↘ be defined with respect to north-west and south-east
shadows. Alternatively these skeletons could be defined by the relations

S↖(X) = S(X) and S↘(X) = Ŝ(X̂).

If switch diagram X corresponds to a reduced word then S↖(S(X)) = S(S↖(X)) and
S↘(S(X)) = S(S↘(X)). Furthermore the right outgoing line Li(X) coincides with that
of Li−1(S↖(X)) and the top outgoing line Li(X) coincides with that of Li−1(S↘(X)),
for 1 ≤ i < λ0(X). Unfortunately, the proof of these statements requires a lengthy case
analysis.
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