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boundary value problems ∗
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Abstract

In this article we apply the minmax principle we developed in [6] to
obtain sign-changing solutions for superlinear and asymptotically linear
Dirichlet problems. We prove that, when isolated, the local degree of any
solution given by this minmax principle is +1. By combining the results
of [6] with the degree-theoretic results of Castro and Cossio in [5], in the
case where the nonlinearity is asymptotically linear, we provide sufficient
conditions for: i) the existence of at least four solutions (one of which
changes sign exactly once), ii) the existence of at least five solutions (two
of which change sign), and iii) the existence of precisely two sign-changing
solutions.
For a superlinear problem in thin annuli we prove: i) the existence of

a non-radial sign-changing solution when the annulus is sufficiently thin,
and ii) the existence of arbitrarily many sign-changing non-radial solutions
when, in addition, the annulus is two dimensional.
The reader is referred to [7] where the existence of non-radial sign-

changing solutions is established when the underlying region is a ball.

1 Introduction

Let Ω be a smooth bounded region in RN . Let f : R → R be a differentiable
function such that f(0) = 0 and f ′(0) < λ1, where λ1 < λ2 ≤ . . . are the
eigenvalues of −∆ with zero Dirichlet boundary condition in Ω. Let F : R→ R
be given by F (u) =

∫ u
0 f(s) ds. We assume that f

′, f , and F have subcritical
growth, i.e., that there exist A > 0 and p ∈ [1, (N + 2)/(N − 2)) such that

|f ′(u)| ≤ A(|u|p−1 + 1) for u in R . (1.1)

When necessary we will assume the following additional hypotheses:

(h1) lim|u|→∞ f(u)/u =∞, i.e., f is superlinear.
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(h2) f
′(u) > f(u)/u for all u 6= 0.

(h3) There exist m ∈ (0, 1) and ρ > 0 such that
m
2 uf(u)−F (u) ≥ 0 for |u| > ρ.

From these hypotheses it follows that there exists a positive constant K such
that

αtf(αt) ≥ Kα2/mtf(t), (1.2)

for α ≥ 1 and |t| > ρ. The proof of this inequality is deferred to Section 5.
Let H denote the Sobolev space H1,20 (Ω) (see [1]). Let J : H → R be defined

by

J(u) =

∫
Ω

(
1

2
|∇u|2 − F (u)

)
dx, (1.3)

so that

〈∇J(u), v〉 =

∫
Ω

(∇u · ∇v − vf(u)) dx, for all v ∈ H .

Because of (1.1), we see that J ∈ C2(H,R) (see [21]). Letting γ : H → R be
defined by γ(u) = 〈∇J(u), u〉 =

∫
Ω
{|∇u|2 − uf(u)} dx, one sees that

γ′(u)(v) = 〈∇γ(u), v〉 = 2

∫
Ω

∇u · ∇v dx−

∫
Ω

f(u)v dx −

∫
Ω

f ′(u)uv dx . (1.4)

Recall that for u ∈ H , u+(x) = max{u(x), 0} ∈ H and u−(x) = min{u(x), 0} ∈
H (see [19]). We say that u ∈ H changes sign if u+ 6= 0 and u− 6= 0. For u 6= 0
we say that u is positive (and write u > 0) if u− = 0, and similarly, u is negative
(u < 0) if u+ = 0. As noted in [6], the transformations u → u+ and u → u−
are continuous from H into H . Let

S = {u ∈ H −{0} : γ(u) = 0} and S1 = {u ∈ S : u+ 6= 0, u− 6= 0, γ(u+) = 0}.

In [6] we proved the following minmax principle:

Theorem 1.1 If (h1) − (h3) hold, then there exists w ∈ H ∩ C2(Ω) such that
J ′(w) = 0 and J(w) = min{J(u) : u ∈ S1}. In addition, w changes sign exactly
once, i.e., {x : w(x) > 0} and {x : w(x) < 0} are connected. Moreover, there
exist w1 > 0 and w2 < 0 such that J(w1) = min{J(u) : u ∈ S, u = u+},
J(w2) = min{J(u) : u ∈ S, u = u−}, J ′(w1) = J ′(w2) = 0, w1 and w2 are local
minima of J |S, and J(w) ≥ J(w1) + J(w2).

By the definition of weak solution and regularity theory for second order
elliptic boundary value problems (see [19] and [15]), the critical points of J are
the solutions to the boundary value problem

∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω .
(1.5)

We note that nontrivial solutions to (1.5) are in S (a closed subset of H) and
sign-changing solutions to (1.5) are in S1 (a closed subset of S).
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When defined, we denote by d(v,W, 0) the Leray-Schauder degree of the
vector field v on the bounded region W with respect to 0 (see [11]). In Section
2 we prove that if the critical point w given by Theorem 1.1 is isolated then
its Leray-Schauder index (degree of ∇J with respect to zero in any region con-
taining w but no other critical point of J) is +1. More precisely we prove the
following result.

Theorem 1.2 Let w be as in Theorem 1.1. If A ⊂ H is a bounded region
containing w and no other critical point of J in its closure, then

d(∇J,A, 0) = +1.

In Section 3 we consider arbitrary smooth bounded regions Ω in the case
where f is asymptotically linear, i.e., we assume f ′(+∞) ≡ limu→+∞ f ′(u) ∈ R,
f ′(−∞) ≡ limu→−∞ f ′(u) ∈ R. In addition we assume that tf ′′(t) > 0 for t 6= 0.
The latter hypothesis implies (h2). Because we assume f to be asymptotically
linear it satisfies (h3) but not (h1). By again applying Theorem 1.1 we establish
the following result.

Theorem 1.3 If tf ′′(t) > 0 for t 6= 0 and f ′(−∞), f ′(+∞) ∈ (λ2,∞), then
(1.5) has at least four solutions. One of these solutions changes sign exactly
once and, if isolated, its local Leray-Schauder degree is +1.

We emphasize that the latter theorem includes the case where (1.5) has
jumping nonlinearities, i.e., the interval (f ′(−∞), f ′(+∞))∪ (f ′(+∞), f ′(−∞))
contains an eigenvalue λk. In turn, Theorem 1.3 allows us to extend the results
of [5] by proving:

Theorem 1.4 If tf ′′(t) > 0 for t 6= 0 and f ′(−∞), f ′(+∞) ∈ (λk, λk+1) for
k ≥ 2, then (1.5) has at least five solutions, two of which change sign. Moreover,
one of these two sign-changing solutions changes sign exactly once.

In addition, we show that Theorem 1.4 is sharp in the sense that no more
than two sign-changing solutions need exist. In fact we have:

Theorem 1.5 If k = 2 in Theorem 1.4, then (1.5) has precisely two solutions
which change sign; both change sign exactly once.

The reader is referred to [7] where the authors showed the existence of non-
radial sign-changing solutions when Ω is a ball in RN and f is asymptotically
linear. More precisely, let λr1 < λ

r
2 < . . . be the eigenvalues of −∆ acting on

radial functions of H10 (Ω) and recall that λ1 = λ
r
1 and λ2 < λ

r
2. In [7] we proved

the following theorem.

Theorem 1.6 If tf ′′(t) > 0 for t 6= 0, f ′(∞) ∈ (λk, λk+1) with k ≥ 2, f ′(t) ≤
γ < λk+1 for all t ∈ R, and λ1 < λk < λk+1 ≤ λr2, then the boundary value
problem (1.5) has at least two solutions which are non-radial and change sign.
Moreover, one of these two sign-changing solutions changes sign exactly once.
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For related results on asymptotically linear problems we refer the reader to
[3] and [10].
In Section 4 we consider the case in which f is superlinear and Ω ≡ Ω(ε) is

the thin annulus given by Ω = {x; 1− ε < ‖x‖ < 1}, where ε is a small positive
number. We prove the following theorems.

Theorem 1.7 Let (h1) - (h3) hold and let Ω be as above. There exists ε1 > 0
such that if 0 < ε < ε1 then (1.5) has a sign-changing non-radial solution.

For the special case N = 2 we further prove the following result.

Theorem 1.8 Let (h1)–(h3) hold and let Ω be as above. If N = 2 then for any
positive integer k there exists ε1(k) > 0 such that if 0 < ε < ε1(k) then (1.5) has
k sign-changing non-radial solutions.

2 The Leray-Schauder Index of the Critical Point

Throughout this section w denotes a critical point of J satisfying the variational
characterization of Theorem 1.1. We further assume that w is an isolated critical
point. We let X denote the linear subspace of H generated by {w+, w−}. Since
w is a sign-changing function, X is a two dimensional subspace. We denote by
Y the orthogonal complement of X in H .
By the definition of J and (h2) we have

〈J ′′(w)w+, w+〉 =

∫
Ω

(
∇w+ · ∇w+ − f

′(w)w2+
)
dx

=

∫
Ω

(
w+f(w)− f

′(w)w2+
)
dx (2.1)

=

∫
Ω

w2+

(
f(w+)

w+
− f ′(w+)

)
dx < 0 .

Similarly 〈J ′′(w)w−, w−〉 < 0. Since w− and w+ are orthogonal in H , J ′′(w)
is negative definite on X . By the continuity of J ′′ and the assumption that w
is an isolated critical point, we may assume that there exist ε > 0 and K > 0
such that ∇J(u) 6= 0 if 0 < ‖u−w‖ <

√
2ε and 〈J ′′(w + x+ y)v, v〉 ≤ −K‖v‖2

for all x ∈ X , x ∈ B(0, ε), and y ∈ B(0, ε). Since ∇J(w) = 0 we may assume,
without loss of generality, that

J(x+ w) < J(w) for ‖x‖ = ε. (2.2)

Lemma 2.1 There exists δ ∈ (0, ε) such that if y ∈ B(0, δ) ∩ Y and ‖x‖ = ε
with x ∈ X then J(w + y + x) < J(w).

Proof. We prove this lemma by contradiction. Suppose {yj} ⊂ Y and {xj} ⊂
X are sequences with limj→∞ yj = 0, ‖xj‖ = ε for all j, and J(w + yj + xj) ≥
J(w). Since X is finite-dimensional, without loss of generality we may assume
that limj→∞ xj = x̂ and ‖x̂‖ = ε. By the continuity of J we have J(w + x̂) ≥
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J(w), but this is a contradiction since ∇J(w) = 0 and J ′′(w + x) is negative
definite for all x ∈ X with ‖x‖ ≤ ε.

Lemma 2.2 There exists a continuous function φ : B(0, δ1)∩Y → B(0, ε1)∩X
such that J̃(y) := J(w + y + φ(y)) = max||x||<ε1 J(w + y + x) is of class C

1.
Furthermore, w + x+ y is a critical point of J if and only if x = φ(y) and y is
a critical point of J̃ . Moreover, d(∇J̃ , B(0, δ1) ∩ Y, 0) = d(∇J,Σ, 0).

Proof. By Lemma 2.1, for y ∈ B(0, δ)∩Y there exists x̂ ∈ B(0, ε)∩X such that
J(w+y+x̂) = max{J(w+y+x); ‖x‖ < ε, x ∈ X}. Hence 〈∇J(w+y+x̂), x1〉 = 0
for all x1 ∈ X . Assuming that 〈∇J(w+ y+x0), x1〉 = 0 for all x1 ∈ X , we have
0 = 〈∇J(w+y+x̂)−∇J(w+y+x0), x̂−x0〉 = 〈J ′′(w+y+x′)(x̂−x0), (x̂−x0)〉 ≤
−K‖x̂− x0‖2. This proves the uniqueness of x̂. Thus we may write x̂ = φ(y).
Arguing as in [20] using the implicit function theorem one sees that φ is a
function of class C1. For the proof that w + x+ y is a critical point of J , with
‖x‖ < ε and ‖y‖ < ε, if and only if x = φ(y) and w + y is a critical point of J̃ ,
we refer the reader to [2] and [4].
For the proof of the last assertion of the lemma we refer the reader to The-

orem 3 of [17] and Lemma 2.6 of [20].

Lemma 2.3 For each y ∈ B(0, δ) ∩ Y , the set S1 ∩ {w + y + x; ‖x‖ < ε} is
nonempty.

Proof. For ‖y‖ ≤ δ let P (y, s, t) = (〈∇J(w + y + sw+ + tw−), w + y + sw+ +
tw−〉, 〈∇J(w + y + sw+ + tw−), (w + y + sw+ + tw−)+〉). It is easily seen that
P (0, s, t) = 0 if and only if (s, t) = (0, 0). Therefore there exists ρ > 0 such that

‖P (0, s, t)‖ ≥ ρ if ‖sw+ + tw−‖ = ε. (2.3)

Since P (0, s, t) is equal to

(〈∇J(w+sw++ tw−), (1+s)w++(1+ t)w−〉, 〈∇J(w+sw++ tw−), (1+s)w+〉) ,

we see that f ≡ P (0, ·, ·) is a differentiable function. An elementary calcu-
lation shows that det(f ′(0, 0)) = −〈J ′′(w)w+, w+〉〈J ′′(w)w−, w−〉 < 0. Thus
d(f, {(s, t); ‖sw+ + tw−‖ ≤ ε}, 0) = −1. Also by (2.3) there exists δ1 ∈ (0, δ)
such that if ‖y‖ ≤ δ1 then ‖P (y, s, t)‖ ≥ ρ/2 for ‖sw++ tw−‖ = ε. By the exis-
tence and homotopy invariance properties of the Brouwer degree, for ‖y‖ ≤ δ1
there exists (s, t) such that P (y, s, t) = 0. This and the definition of S and S1
prove the lemma.

Proof of Theorem 1.2 Arguing as in Theorem 3 of [17] or Lemma 2.6 of [20]
one sees that

d(∇J,B(w, ε), 0) = d(∇J̃ , B(0, δ1) ∩ Y, 0) · (−1)dimX

= d(∇J̃ , B(0, δ1) ∩ Y, 0).
(2.4)
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On the other hand, by Lemma 2.3, for each y ∈ B(0, δ1) there exists x ∈ B(0, ε)
such that w+y+x ∈ S1. Hence J̃(y) = J(w+y+φ(y)) ≥ J(w+y+x) > J(w) =
J̃(w). Since this shows that J̃ has a local minimum at 0 we have d(∇J̃ , B(0, δ1)∩
Y, 0) = 1 (see [2] or [9]). Hence d(∇J,B(w, ε), 0) = 1. By the excision property
of the Leray-Schauder degree, if Σ is a bounded region containing w but no other
critical point we have d(∇J,Σ, 0) = d(∇J,Σ−B(w, ε), 0) + d(∇J,B(w, ε), 0) =
0 + 1 = 1. This proves the theorem.

3 Asymptotically Linear Problems on General
Regions

Proof of Theorem 1.3 Assume that tf ′′(t) > 0 for t 6= 0, and that f ′(+∞),
and f ′(−∞) are in (λ2,+∞). As pointed out in [5], the latter assumptions imply
that (1.5) has a positive and a negative solution. Since 0 is also a solution to
(1.5) it remains only to show the existence of a sign-changing solution.

Let σ ∈ (1, 1 + (2/N)). For n = 1, 2, . . . let

fn(t) =



f(t) |t| < n

f(n) + f ′(n)(t − n) + (t− n)σ t ≥ n

f(−n) + f ′(−n)(t+ n) + (t+ n)σ t ≤ −n .

(3.1)

Since σ > 1 there exists C1 ∈ R such that |f(t)| ≤ C1(|t|σ + 1) for all t ∈ R.
Also, since nf ′(n) > f(n) (see (h2)), fn(t) ≤ f ′(+∞)t+(t−n)σ ≤ (f ′(∞)+1)tσ

for t > n. Similarly fn(t) ≥ −(f ′(−∞) + 1)|t|σ for t < −n. Therefore,

|fn(t)| ≤ C2(|t|
σ + 1) for all t ∈ R,and all positive integer n , (3.2)

where C2 = max{C1, f ′(−∞) + 1, f ′(+∞) + 1}.

We let Fn(t) =
∫ t
0 fn(s) ds. Let gn(t) = tfn(t) − 2Fn(t) − afn(t) + tfn(a).

Using the convexity of fn on (0,∞), we see that for 0 < a < t we have g′n(t) > 0.
Thus tfn(t) − 2Fn(t) ≥ afn(t) + tfn(a). Since f ′(0) < λ1, there exists a1 > 0
such that f(a1) = λ1a1. Let ε ∈ (0,min{f ′(+∞)− λ2, f ′(−∞)− λ2}). Because
f ′(+∞) > λ2, there exists b1 > a1 such that f(t) > (f ′(+∞)− ε)t for all t > b1.
Again by the convexity of fn on (0,∞), for t > b1 we have

tfn(t)− 2Fn(t) ≥ a1fn(t)− tfn(a1) ≥ a1fn(t)[1− (λ1/(f
′(+∞)− ε))]. (3.3)

Similarly, there exists a2 < 0, and b2 < 0 such that if t < b2 then

tfn(t)− 2Fn(t) ≥ a2fn(t)[1 − (λ1/(f
′(−∞)− ε))]. (3.4)

Combining (3.3) and (3.4) we see that

tfn(t)− 2Fn(t) ≥ a|fn(t)|+D, (3.5)
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where a = min{a1, a2} and

D = min

{
min{tf(t)− F (t)− a|f(t)|; t ∈ [−b2, b1]}, (3.6)

min{tfn(t)− Fn(t)− a|fn(t)|; t ∈ [−b2, b1], n ∈ [1, b1 − b2]}

}
.

For u ∈ H we let Jn(u) =
∫
Ω{
1
2 |∇u|

2−Fn(u)} dx. By Theorem 1.1, the equation

∆u+ fn(u) = 0 in Ω

u = 0 on ∂Ω
(3.7)

has a solution wn which changes sign exactly once. Also,

Jn(wn) = min{Jn(u) : u ∈ H, 〈∇Jn(u), u±〉 = 0, u+ 6= 0, u− 6= 0} .

Let us see that, for n large enough, wn is a solution to (1.5). Let φ ∈ C1(Ω̄) ⊂ H
be an eigenfunction of −∆ with zero Dirichlet boundary condition correspond-
ing to the second eigenvalue λ2. By the Courant-Weinstein minmax princi-
ple (see [12], pp. 452), φ changes sign exactly once. Since f ′(+∞) > λ2,
limt→+∞ J(tφ+) = −∞. Thus there exists α > 0 such that γ(αφ+) = 0 (see
[6], Lemma 2.1). Similarly, there exists β > 0 such that γ(βφ−) = 0. Let m̄ ≥
||φ||∞(α+ β) be a positive integer. For n ≥ m̄ we have ∇J(αφ+) = ∇Jn(αφ+)
and∇J(βφ−) = ∇Jn(βφ−). Hence, Jn(wn) ≤ Jn(αφ++βφ−) = J(αφ++βφ−).
Thus,

Jn(wn) ≤M ≡ max{J1(w1), . . . , Jm̄−1(wm̄−1), J(αφ+ + βφ−)}. (3.8)

Let us see that there exists a positive integer K such that

||wn||∞ ≤ n for all n > K. (3.9)

This will establish that, for all n > K, wn is a solution to (1.5) that changes
sign exactly once. For the sake of simplicity of notation we write wn = w.
From (3.5) and (3.8) we have

M ≥ Jn(wn) =

∫
Ω

(
1

2
‖∇wn‖

2 − Fn(wn)

)

=
1

2

∫
Ω

(wn fn(wn)− 2Fn(wn)) (3.10)

≥
D

2
|Ω|+

a

2

∫
Ω

|fn(wn)| .

Let ν = 2N/(N − 2) if N ≥ 3 and ν = 4 if N = 2. By the Sobolev embedding
theorem there exists a real number C(Ω) such that

(∫
Ω

|u|ν
)2/ν

≤ C(Ω)

∫
Ω

‖∇(u)‖2 for all u ∈ H. (3.11)
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Multiplying (3.7) by |w|N−1w and integrating by parts we infer∫
Ω

|w|N−1wfn(w) = N

∫
Ω

|w|N−1‖∇(w)‖2

=
4N

(N + 1)2

∫
Ω

(
‖∇(|w|(N+1)/2)‖

)2
(3.12)

≥ M2

(∫
Ω

|w|(N+1)ν/2
)2/ν

,

whereM2 = 4N/(C(Ω)(N+1)
2). Let s = (ν(N+1)−2N−2σ)/(ν(N+1)−2σ).

By the definition of ν and σ we have s ∈ (0, 1) and σ(1 − s) < 1. Let p = 1/s
and q = p/(p− 1). Thus Hölder’s inequality, (3.2), (3.10), and (3.12) imply

(

∫
Ω

|w|(N+1) ν/2) 2/ν (3.13)

= (1/M2)

∫
Ω

|fn(w)|
s |w|N |fn(w)|

1−s

≤ (1/M2)(

∫
Ω

|fn(w)|)
1/p (C2

∫
Ω

(|w|Nq+σ + |w|Nq))(1−s)

≤ M3(

∫
Ω

|w|Nq+σ + (

∫
Ω

|w|Nq+σ)
Nq
Nq+σ |Ω|r)1−s

≤ M4(

∫
Ω

|w|(N+1)ν/2)(1−s) +M5(

∫
Ω

|w|(N+1)ν/2)((1−s)Nq)/(Nq+σ),

where M3, M4, and M5 are constants independent of n. Therefore,(∫
Ω

|w|(N+1)ν/2
)2/(ν(N+1))

≤M6 , (3.14)

with M6 independent of n, since 2/ν > (1 − s) > (1− s)Nq/Nq + σ.
This and (3.2) imply that {fn(wn);n = 1, 2, . . .} is bounded in the space

L(N+1)ν/(2σ)(Ω). Hence, by a priori estimates for elliptic boundary value prob-
lems, {wn;n = 1, 2, . . .} is bounded in the Sobolev space W 2,(N+1)ν/(2σ)(Ω).
Since by the choice of σ, (N + 1)ν/(2σ) > (N/2), we see by the Sobolev em-
bedding theorem (see [1]) that {wn;n = 1, 2, . . .} is bounded in L∞(Ω). This
proves that for n sufficiently large we have |wn(x)| ≤ n for all x ∈ Ω. Thus by
the definition of fn the function wn is actually a solution to (1.5). This shows
that (1.5) has a solution that changes sign exactly once. Finally, if wn is an
isolated critical point of J then it is also an isolated critical point of Jn. Thus,
by Theorem 1.2, its Leray-Schauder index is +1. This proves Theorem 1.3.

Proof of Theorem 1.4 Because f ′(+∞), f ′(−∞) ∈ (λk, λk+1), using argu-
ments from [5], one sees that there exists r1 > 0 such that if ∇J(u) = 0 then
‖u‖ < r1. Moreover J has at least five critical points and

d(∇J,B(0, r1), 0) = (−1)
k. (3.15)
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Since f ′(0) < λ1 the functional J has a local minimum at 0 and 0 is an isolated
critical point of J . Let r2 ∈ (0, r1) be such 0 is the only critical point of J in
B(0, r2). Then

d(∇J,B(0, r2), 0) = 1. (3.16)

Because k > 1 and f ′(0) < λ1, if P is any region containing the positive solutions
to (1.5) and no other critical point of J , then

d(∇J, P, 0) = −1. (3.17)

Similarly

d(∇J,N, 0) = −1, (3.18)

where N is any subregion containing the negative solutions to (1.5) and no other
critical point of J . If we assume that w is the only solution to (1.5) that changes
sign, by Theorem 1.2 we have d(∇J,B(0, r1)− [B(0, r2) ∪ P ∪N ], 0) = 1. Thus

(−1)k = d(∇J,B(0, r1)− (B(0, r2) ∪ P ∪N, 0) (3.19)

+d(∇J, P, 0) + d(∇J,N, 0) + d(∇J,B(0, r2) ,

which contradicts (3.15)–(3.17), and this proves the theorem.

Proof of Theorem 1.5 Let z be any sign-changing solution. Since by as-
sumption uf ′′(u) > 0 for u 6= 0, it follows that

〈D2J(z)z±, z±〉 =

∫
Ω

|∇z±|
2 − f ′(z)z2± dx

=

∫
Ω

z±f(z)− f
′(z)z2± dx

=

∫
Ω

(z2±)

{
f(z±)

z±
− f ′(z±)

}
dx < 0.

Thus, D2J is negative definite on the two-dimensional subspace spanned by
{z+, z−}. On the other hand, since f ′(t) < λ3 for all t ∈ R we see that D2J(ζ) is
positive definite on the subspace spanned by {φ3, φ4, . . .}. Thus, D2J(z) is non-
degenerate and deg(∇J,B(z, δ), 0) = (−1)2 = 1 for any sign-changing solution z,
where δ is sufficiently small. In particular, every sign-changing solution changes
sign exactly once (otherwise the dimension of the negative-definite space would
be greater than 2.) Also, since deg(∇J(z), B(0, R)−[B(0, ε) ∪ P ∪ (−P )] , 0) = 2
(see [5]), there are exactly two sign-changing solutions. This concludes the proof
of Theorem 1.5.

4 A Superlinear Problem on Thin Annuli

The purpose of this section is to prove Theorems 1.7 and 1.8. Given ε ∈ (0, 1)
and k ∈ N, let Ωε ≡ {x ∈ RN : 1− ε < ‖x‖ < 1} and Ωεk = {x ∈ Ω

ε : θ ∈ (0, π
k
)},
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where (r, φ1, · · · , φN−2, θ) ≡ (r,Φ, θ) denote the spherical coordinates of x ∈ RN

given by

r = (x21 + · · ·+ x
2
N )
1/2

x1 = r cos(φ1)

... (4.1)

xN−1 = r sin(φ1) · · · sin(φN−2) cos(θ)

xN = r sin(φ1) · · · sin(φN−2) sin(θ) .

We recall that φi ∈ [0, π] whereas θ ∈ [0, 2π). Also we define

Hεk = {u ∈ H
1,2(Ωεk) : u(x) = 0 if ‖x‖ ∈ {1− ε, 1}} .

For u ∈ Hεk we define

Jεk(u) =
∫
Ωεk
( |∇u|

2

2 − F (u))dx, γεk(u) = (J
ε
k)
′(u)(u) =< ∇Jεk(u), u >

S(ε, k) = {u ∈ Hεk − {0} : γ
ε
k(u) = 0} ,

S1(ε, k) = {u ∈ S(ε, k) : u+, u− ∈ S(ε, k)} .

Imitating the proof of Poincaré’s inequality one sees that∫
Ωεk

u2(x)dx ≤ 4ε2
∫
Ωεk

|∇u(x)|2dx for all u ∈ Hεk. (4.2)

Let λ1(ε, k) denote the smallest eigenvalue of −∆ subject to the boundary con-
dition

u(1− ε,Φ, θ) = u(1,Φ, θ) =
∂u

∂η
u(r,Φ, 0) =

∂u

∂η
u(r,Φ, π/k) = 0. (4.3)

From (4.2) and (4.3) we see that λ1(ε, k) tends to infinity as ε tends to 0. Thus
there exists ε0 > 0 such that if ε ∈ (0, ε0) then

f ′(0) < λ1(ε, k). (4.4)

Hence, as in [6], one sees that that for ε < ε0 the functional J
ε
k has a critical

point wε,k that satisfies J
ε
k(wε,k) = minS1(ε,k) J

ε
k and changes sign. By regularity

theory for second order elliptic operators (see [18]), it follows that wε,k is a
classical solution to

(a) ∆u+ f(u) = 0 in Ωεk

(b) u(r,Φ, θ) = 0 for r ∈ {1− ε, 1}

(c) uθ(r,Φ, θ) = 0 for k > 0, θ ∈ {0, π
k
}.

(4.5)

Now we extend evenly wε,k to Ω
ε by

uε,k(r,Φ, θ) =




wε,k(r,Φ, θ) if θ ∈ [0, π
k
]

wε,k(r,Φ,
2π
k − θ) if θ ∈ [

π
k ,
2π
k ]

uε,k(r,Φ, θ) if θ = sπ
k + t with s ∈ N

and t ∈ [0, 2πk ] .

(4.6)



EJDE–1998/02 A. Castro, J. Cossio, & J. M. Neuberger 11

For j ∈ N , we will denote by uε,k,2jk the restriction of uε,2jk to Ωεk. We note
that uε,k is a solution to (1.5) in Ω = Ω

ε, whereas uε,k,2jk ∈ Hεk satisfies (4.5).

Lemma 4.1 If ∂
∂θ
wε,2jk 6≡ 0, then uε,k,2jk 6= wε,k.

Proof. Let θ0 ∈ (0, π/(2jk)) be such that
∂
∂θwε,2jk(r,Φ, θ0) 6= 0 for some

(r,Φ, θ0) ∈ Ωε2jk. Define

y(r,Φ, θ) =

{
uε,k,2jk(r,Φ, θ + θ0) for θ ∈ [0, π

k
− θ0)

uε,k,2jk(r,Φ, θ −
π
2k + θ0) for θ ∈ [

π
k
− θ0,

π
k
] .

Since uε,k,2jk(r,Φ, 0) = uε,k,2jk(r,Φ,
π
k
) and

∂

∂θ
uε,k,2jk(r,Φ, 0) =

∂

∂θ
uε,k,2jk(r,Φ,

π

k
) = 0 ,

we see that y is a function of class C1. In particular y ∈ Hεk. Since wε,2jk
changes sign, and by invariance of the integral Jεk(y) = J

ε
k(uε,k,2jk), we have

y ∈ S1(ε, k). However, since y does not satisfy the boundary condition (4.5) (c),
it follows that Jεk(uε,k,2jk) = J

ε
k(y) > J

ε
k(wε,k). This proves the lemma.

Lemma 4.2 For each positive integer k, there exists ε1(k) such that if ε ≤ ε1(k)
then Jεk(wε,k) < J

ε
k(v) for any sign-changing radial solution v to (1.5).

Proof. Let v(x) = v(‖x‖) be a radial sign-changing solution to (1.5). Since
v(1− ε) = 0 we see that

∫ 1
1−ε
(v±)

2rN−1dr ≤ 4ε2
∫ 1
1−ε
(v±)

2
rr
N−1dr. (4.7)

for ε ∈ (0, 1/2).
Let k be a given positive integer. Let j be an even positive integer to be

chosen independent of (ε, k). Let

ẑ(r,Φ, θ) =

{
v(r) sin(Φ) sin(jkθ) for (r,Φ, θ) if θ ∈ (0, π

jk
)

0 for θ ∈ ( πjk ,
π
k ),

where sin(Φ) = sin(φ1) · · · sin(φN−2) if N > 2 and sin(Φ) = 1 if N = 2. Since v
changes sign, so does ẑ. By the chain rule and (4.1) we have

|∇ẑ±(r,Φ, θ)|
2

= (v±)
2
r(r)(sin(Φ) sin(jkθ))

2 (4.8)

+
(
r−1(v±)(r) sin(jkθ)

)2
ΣN−2i=1 (

sin(Φ) cos(φi)

sin(φi) sin(φ1) · · · sin(φi−2)
)2

+r−2(v±)
2(r)(sin(Φ)jk

cos(jkθ)

sin(φ1) · · · sin(φN−2)
)2
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if θ ∈ (0, π
jk
); otherwise ∇ẑ = 0.Thus

|∇ẑ±(r,Φ, θ)|
2 ≤ (v±)

2
r(r) + (N − 2)r

−2(v±)
2(r) + (jkr−1(v±)(r))

2 .

This and (4.7) imply∫
Ωεk

|∇(ẑ)+|
2dx ≤

∫
Ωεjk

(
(v+)

2
r(r) + (v+)

2(r)((N − 2) + j2k2)r−2
)
dx

≤ (1 + (16/9)((N − 2) + (jk)2)4ε2)

∫
Ωεjk

(v+)
2
rdx (4.9)

≤ 2

∫
Ωεjk

(v+)
2
rdx

for (see (4.4))

ε ≤ min{ε0, 1/4,
3

8((N − 2) + j2k2)1/2
}. (4.10)

Similarly
∫
Ωεk
|∇(ẑ)−|2dx ≤ 2

∫
Ωεjk
(v−)

2
rdx. Because of (h1) − (h2) there exist

positive numbers α and β such that γεk(αẑ+) = γ
ε
k(βẑ−) = 0. Let ρ > 0 and m

be as in (h3). Let

D = {(r,Φ, θ); v(r) ≥ ρ, φi ∈ (
π

4
,
3π

4
) for i = 1, . . . , N − 2, θ ∈ (

π

4jk
,
3π

4jk
)} .

Suppose that α > 2(N−1)(4m+ 2)/m. Thus for (r,Φ, θ) ∈ D we have
α sin(Φ) sin(jkθ) ≥ (4m+ 2)/m. Using this, the fact that g(t) = tf(t) defines a
function bounded from below, and Lemma 5.2, we conclude∫

Ωε
k

α(ẑ)+f(α(ẑ+)) dx (4.11)

=

∫
Ωε
jk

α sin(jkθ) sin(Φ)v+(r)f(α sin(jkθ) sin(Φ)v+(r))dx

≥ E|Ωεjk|+K1(α)
2
m

∫
D

v+(r)f(v(r)) dx

≥ E|Ωεjk|+K1(α)
2
m (

∫
v+≥ρ

v+f(v+)r
N−1dr)(

∫
Σ

sin(Φ)dΦdθ) ,

where E = inf{g(t); t ∈ R}, K1 = K2(1−N)/m with K as in Lemma 5.2, and
Σ = {(Φ, θ); (π/4) ≤ φi ≤ (3π/4) for i = 1, . . . , N−2, (π/4jk) ≤ θ ≤ (3π/4jk)}.
Now from Lemma 5.1 we have, denoting rN−1dr by dr̂,∫

v+(r)≥ρ
v+(r)f(v(r)) dr̂ (4.12)

=

∫
v+(r)≥0

v+(r)f(v(r))dr̂ −

∫
v+(r)≤ρ

v+(r)f(v(r)) dr̂
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= [1−

∫
v+(r)≤ρ

v+(r)f(v(r))dr̂∫
v+(r)≥0

v+(r)f(v(r)) dr̂
]

∫
v+(r)≥0

v+(r)f(v(r)) dr̂

= [1−

∫
v+(r)≤ρ

v+(r)f(v(r))dr̂∫
v+(r)≥0

(v′(r))2dr̂
]

∫
v+(r)≥0

v+(r)f(v(r)) dr̂

≥ [1−
4N−1

∫
v+(r)≤ρ

v+(r)f(v(r))dr̂

3N−1
∫
v+(r)≥0

(v′(r))2dr̂
]

∫
v+(r)≥0

v+(r)f(v(r)) dr̂

≥ [1− C1ε
2(p+1)/(p−1)]

∫
v+(r)≥0

v+(r)f(v(r)) dr̂ ,

where C1 = (4/3)
N−1max{|tf(t)|; |t| ≤ ρ}/C and C is as in Lemma 5.1. Thus

for ε satisfying (4.10) and

ε ≤

(
1

2C1

)(p−1)/(2(p+1))
(4.13)

we have∫
v+(r)≥ρ

v+(r)f(v(r))dr̂ ≥ (1/2)

∫
v+(r)≥0

v+(r)f(v(r))dr̂. (4.14)

Let T = {(Φ, θ); 0 ≤ φi ≤ π for i = 1, . . . , N − 2, 0 ≤ θ ≤ (π/jk)}. Thus by
(4.14) we obtain

K1α
2/m

∫
Ωεjk

v+f(v+) dx (4.15)

= K1α
2/m(

∫
v≥0
v+f(v) dr̂)(

∫
T

sin(Φ) dΦ dθ)

≤ K1α
2/m2(

∫
v≥ρ
v+f(v) dr̂)(

∫
T

sin(Φ) dΦ dθ)

= K1α
2/m2(

∫
v≥ρ
v+f(v) dr̂)(2

N/2

∫
Σ

sin(Φ) dΦ dθ)

= 2
N+2
2

∫
D

K1α
2/mv+f(v) dx .

This and (4.11) imply

K1α
2/m

∫
Ωεjk

v+f(v+) dx ≤ 2(N+2)/2[

∫
Ωεjk

α(ẑ)f(α(ẑ+)) dx− E|Ω
ε
jk|]

≤ 2(N+2)/2[

∫
Ωεjk

|α∇ẑ+|
2 dx− E

K(N)εN

jk
] (4.16)

≤ 2(N+2)/2[2α2
∫
Ωεjk

v+f(v+) dx− E
K(N)εN

jk
],
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where, in addition, we have used the fact that |Ωεjk| ≤
K(N)εN

jk with K(N) a
constant depending only on N . On the other hand, using Lemma 5.1 we obtain∫

Ωε
jk
v+f(v+) dx = (

∫
v≥0 v+f(v) dr̂)(

∫
T
sin(Φ) dΦdθ)

≥ (3/4)N−1Cε−(3+p)/(p−1)2N−2 π
jk

≡ C2ε
−(3+p)/(p−1)(jk)−1,

(4.17)

with C2 independent of (ε, j, k). Replacing (4.17) in (4.16) and setting E1 =
−EK(N), we have

α ≤ max



(
2
N+2
2 +2

K1

)m/(2−2m)
,

(
2
N+2
2 +1E1

C2K1

)m/2
 ≡ K2. (4.18)

Similarly, β ≤ K2. Because of (h1) the function F is bounded below, say,
F (t) ≥M ∈ R for all t ∈ R. Let z = αẑ+ + βẑ−. Then

Jεk(z) =

∫
Ωεk

{
|∇(z)|2

2
− F (z)}dx

=

∫
Ωεjk

(
|∇(z)|2

2
− F (z)

)
dx (4.19)

≤

∫
Ωεjk

|∇(z)|2/2 dx−M |Ωεjk|

=
1

2

∫
Ωεjk

(
α2|∇(ẑ+)|

2 + β2|∇(ẑ−)|
2
)
dx−M |Ωεjk| .

Since j
∫
Ωεjk
(vr)

2dx =
∫
Ωεk
(vr)

2dx, by Lemma 5.1 (see also (4.9)) we have

Jεk(z) ≤
K22
2j
Jεk(v) (4.20)

for

ε ≤ min

{
1/4,

(
N4N−1CK22
2M2N−2π3N−1

)(p−10/((N−1)p+3−N)}
. (4.21)

Choosing j ≥ K22 , by the variational characterization of wε,k we see that it
cannot be radially symmetric. By the definition of K2 it is clear that j can be
chosen independent of (ε, k), which proves the lemma.

Proof of Theorem 1.7 Let ε ∈ (0, ε1(1)) with ε1(1) as in Lemma 4.2. By
Lemma 4.2 wε,1 is non-radial and changes sign. Extending evenly (see (4.6))
wε,1 to Ω

ε we see that this extension is a non-radial sign-changing solution to
(1.5), which proves the theorem.

Proof of Theorem 1.8 Let ε ∈ (0, ε1(2k)). By Lemma 4.2,
wε,2k , wε,2k−1 , . . . , wε,2 are k non-radial sign-changing functions. Since N = 2,
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if u is non-radial then ∂u/∂θ 6≡ 0. This and Lemma 4.1 imply that uε,2i,2j ·2i 6=
wε,2i for i = 1, . . . , k−1, i+ j ≤ k, j ≥ 1. Thus extending wε,2k , wε,2k−1 , . . . wε,2
evenly to Ωε we have k different non-radial sign-changing solutions to (1.5),
which proves the theorem.

5 Auxiliary lemmas

Lemma 5.1 There exist positive real numbers C and Λ ∈ (0, 1) such that if
v 6≡ 0 satisfies

v′′ + N−1
r
v′ + f(v) = 0, for Λ ≤ r1 < r < r2 ≤ 1 (5.1)

v(r1) = v(r2) = 0.

then ∫ r2
r1

(v′(r))2dr ≥ C(r2 − r1)
−(3+p)/(p−1).

Proof. An elementary calculation shows that for r1 < r < r2, the function
w(t) = t−(N−2)/2 sin(π ln(t/r1)/ ln(r2/r1)) satisfies

w′′ + N−1r w
′ + r−2(( π

ln(r2/r1)
)2 + ((N − 2)/2)2)w = 0 (5.2)

w(r1) = w(r2) = 0 .

Thus by the Sturm comparison theorem there exists ξ ∈ (r1, r2) with f(v(ξ))/v(ξ)
≥ (π/ ln(r2/r1))2. Thus if r1 ≥ max{.75, 1−

π

4
√
A
} then by (1) we have

|v(ξ)|p−1 ≥
π2

A(ln((r2/r1))2
− 1 ≥

π2r21
A(r2 − r1)2

− 1 (5.3)

≥
9π2

16A(r2 − r1)2
− 1 ≥

π2

2A(r2 − r1)2
.

Now integrating v on [r1, ξ] we conclude

(π2/(2A))1/(p−1)|r2 − r1|
−2/(p−1) ≤ |v(ξ)| ≤ |

∫ ξ
r1

v′(s)ds| (5.4)

≤ (

∫ r2
r1

(v′(s))2ds)1/2(r2 − r1)
1/2 .

Taking Λ = max{.75, 1− π

4
√
A
} and C = (π2/(2A))1/(p−1), the lemma is proven.

As stated in the introduction, now we prove inequality(1.2).

Lemma 5.2 There exists K > 0 such that svf(sv) > Ks2/mvf(v) for |v| > ρ
and s > 2.
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Proof. From hypothesis (h1) we may assume, without loss of generality, that
F (v) ≥ 0 for |v| > ρ. This and (h2) imply imply that f ′(v) > 0 for |v| > ρ.
Hence if |v| > ρ, s > 1 + 2(m+ 1)/m, and we let k = [s]− 1, then

F (sv) ≥ F ((s− 1)v) + vf((s− 1)v)

= F ((s− 1)v) +
1

s− 1
(s− 1)vf((s− 1)v)

≥ (1 +
2

m(s− 1)
)F ((s− 1)v) ≥ · · ·

≥ Πk−1j=1 (1 +
2

m(s− j)
)F ((s− k + 1)v) := ΠF ((s− k + 1)v)

≥ Π(F ((s − k)v) + vf((s− k)v)) ≥ Πvf((s− k)v) ≥ Πvf(v) .

Now by assumption (h3) we see that

svf(sv) ≥
2

m
Πvf(v). (5.5)

Since s > 2 and s− k + 1 < 3, we have

lnΠ =

k−1∑
j=1

ln(1 +
2

m(s− j)
)

>

∫ k−1
1

(ln(m(s− x) + 2)− ln(m(s− x))) dx

=
1

m

{∫ m(s−1)+2
m(s−k+1)+2

ln r dr −

∫ m(s−1)
m(s−k+1)

ln r dr

}

=
1

m

{∫ m(s−1)+2
m(s−1)

ln r dr −

∫ m(s−k+1)+2
m(s−k+1)

ln r dr

}
(5.6)

≥
2

m
{ln(m(s− 1))− ln(m(s− k + 1) + 2)}

=
2

m
ln

(
m(s− 1)

m(s− k + 1) + 2

)
> ln

(
ms

6m+ 4

)2/m
.

By letting K = 2
m

(
m
6m+4

)2/m
and combining (5.5) with (5.6), the proof is

complete.
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