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REGULARITY OF SOLUTIONS TO

THE NAVIER-STOKES EQUATION

Dongho Chae & Hi-Jun Choe

Abstract. Recently, Beirão da Veiga [15] obtained regularity for the Navier-Stokes

equation in R3 by imposing conditions on the vorticity rather than the velocity. In
this article, we obtain regularity by imposing conditions on only two components of

the vorticity vector.

1. Introduction

We are concerned with the initial value problem of the Navier-Stokes equation
in R3 × (0, T ),

∂v

∂t
+ (v · ∇)v = −∇p+ ν∆ , , (1)

div v = 0 , (2)

v(x, 0) = v0(x) , (3)

where v(x, t) = (v1(x, t), v2(x, t), v3(x, t)), x ∈ R3, and t ∈ (0, T ). For simplicity we
assume that the external force is zero, but it is easy to extend our results to the
nonzero-external-force case.
Recall that a weak solution to the Navier-Stokes equation, which is called the

Leray-Hopf weak solution, is defined as a vector field v ∈ L∞(0, T ;L2(R3)) ∩
L2(0, T ;H1(R3)) satisfying div v = 0 in the distributional sense, and

∫ T
0

∫
R3

[v · φt + (v · ∇)φ · v + v ·∆φ]dx dt = 0

for all φ ∈ [C∞0 (R
3 × (0, T ))]3 with divφ = 0.

For v0 ∈ L2(R3) with div v0 = 0, the existence of weak solutions was established
by Leray[13] and Hopf in [11]. A weak solution of the Navier-Stokes equation that

belongs to L∞
(
0, T ;H1(R3)

)
∩ L2

(
0, T ;H2(R3)

)
is called a strong solution. It

is well-known that for v0 ∈ H1(R3) with div v0 = 0 there exists a local unique
strong solution v ∈ C([0, T );H1(R3)), and that the maximal time of existence T∗
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depends on the initial data ‖v0‖H1/2(R3). Moreover, the strong solution belongs to

the class C
(
(0, T∗);C

∞(R3)
)
, i.e., the solution becomes regular in the space variable

immediately after the initial moment. The global-in time continuation of the local
strong solution is an outstanding open problem in mathematical fluid mechanics.
Another notion of solution, useful for the study of the Navier-Stokes equation, is
that of mild solution initiated by Fujita and Kato [9].
In this note we are concerned with obtaining a sufficient condition for the global

continuation of strong solutions. In this direction there is a classical result due to
Serrin[14], which states that if a weak solution belongs to Lα,γT , then v becomes the
strong solution in (0, T ]. Here Lα,γT = Lα,γ[0,T ] = L

α(0, T ;Lγ(R3) with 2
α
+ 3
γ
< 1,

and α <∞. Later, Fabes-Jones-Riviere [8] extended the above criterion to the case
2
α
+ 3
γ
= 1. The problem of regularity and uniqueness for the marginal case α =∞,

γ = 3 in Serrin’s condition has been extensively studied by many authors; see for
example [3], [10], and [12]. Recently, Beirão da Veiga [15] obtained a sufficient
condition for regularity using the vorticity rather than the velocity. His result says
that if the vorticity ω = curl v of a weak solution v belongs to the space Lα,γT with
2
α
+ 3
γ
≤ 2 with 1 < α <∞, then v becomes the strong solution on (0, T ]. Here we

prove that it is sufficient to control only two components of the vorticity vector, or
the gradients of the two components of the velocity vector. See Theorem 1 below.
Given a velocity field v, the two-component vorticity field is denoted by ω̃ =

ω1e1 + ω2e2, where e1 = (1, 0, 0), e2 = (0, 1, 0).

Theorem 1. Let v0 ∈ L2(R3) with div v0 = 0 and ω0 = curl v0 ∈ L2(R3). If a
Leray-Hopf weak solution v, satisfies ω̃ ∈ Lα,γT with 2

α
+ 3
γ
≤ 2, 1 < α < ∞ and

3
2
< γ <∞, or if ‖ω̃‖

L
∞, 3

2
T

is sufficiently small, then v becomes the classical solution

on (0, T ].

Remark 1. As an immediate corollary of the above theorem, we find that if the
classical solution of the 3-D Navier-Stokes equations blows up at time T , then
‖ω̃‖Lα,γ

T
= ∞, where ω̃ is any two component vector of ω, and (α, γ) is a pair of

real numbers satisfying 2
α
+ 3
γ
≤ 2, 1 < α < ∞. In other words, at finite blow-up

time at least two components of the vortices must simultaneously blow up.
A related result is studied by Beale-Kato-Majda [1]. They show that for 3-D

Euler equations, the blow up of full gradients of the velocity field is controlled by
only three components of the vorticity field.

Remark 2. As another immediate corollary we obtain the global regularity for the
2-D Navier-Stokes equations, since in this case ω̃(x, t) = 0, for all (x, t) ∈ R3×(0, T ).
Our second theorem concerns the regularity criterion in terms of gradients of the

two components of velocity.

Theorem 2. Let ṽ = v1e1 + v2e2 be the first two components of a Leray-Hopf
weak solution of the Navier-Stokes equation corresponding to v0 ∈ H1(R3) with
div v0 = 0. Suppose that Dṽ ∈ L

α,γ
T with 2

α
+ 3
γ
≤ 1, where 2 ≤ α ≤ ∞, and

3 ≤ γ ≤ ∞, then v becomes a classical solution in (0, T ].

2. Proof of Main Theorems

The key idea in booth proofs is a careful observation of the structure of the
nonlinear terms of the vorticity equations for the Navier-Stokes system. The struc-
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ture of the nonlinear term has been emphasized in the works by Constantin and
Fefferman [4], [5], [6], and [7].
Below we use the notation

‖u‖p =

(∫
R3

|u(x)|pdx

)1/p
, 1 ≤ p <∞ .

We also use C for various constants in the estimates below.

Proof of Theorem 1. Taking the curl on (1), we obtain

ωt + (v · ∇)ω = (ω · ∇)v + ν∆ω. (4)

Multiplying (4) by ω in L2(R3), and integrating by parts, we obtain

1

2

d

dt
‖ω(t)‖22 + ν‖∇ω(t)‖

2
2 =

∫
R3

(ω · ∇)v · ω dx . (5)

Using the Biot-Savart law, v is written in terms of ω:

v(x, t) = −
1

4π

∫
R3

(x− y)× ω(y, t)

|x− y|3
dy . (6)

Substituting this into the right hand side of (5), we have∫
R3

(ω · ∇)v · ω dx =
3

4π

∫∫
y

|y|
· ω(x, t)

{
y

|y|4
× ω(x+ y, t) · ω(x, t)

}
dy dx(

We decompose ω = ω̃ + ω′, ω̃ = ω1e1 + ω2e2, ω
′ = ω3e3

for the vorticities in {·}
)

=
3

4π

∫∫
y

|y|
· ω(x, t)

{
y

|y|4
× ω̃(x+ y, t) · ω′(x, t)

}
dy dx

+
3

4π

∫∫
y

|y|
· ω(x+ y, t)

{
y

|y|4
× ω̃(x+ y, t) · ω̃(x, t)

}
dy dx

+
3

4π

∫∫
y

|y|
· ω(x, t)

{
y

|y|4
× ω′(x+ y, t) · ω̃(x, t)

}
dy dx ,

(7)
where all the integrations with respect to y are in the sense of principal value.
We have thus∣∣∣∣

∫
R3

(ω · ∇)v · ωdx

∣∣∣∣ ≤ C
∫
R3

|ω(x, t)||P (ω̃)||ω′(x, t)|dx

+ C

∫
R3

|ω(x, t)||P (ω̃)||ω̃(x, t)|dx

+ C

∫
R3

|ω(x, t)||P (ω′)||ω̃(x, t)|dx

≤ C

∫
R3

|ω|2|P (ω̃)|dx+ C

∫
R3

|ω||P (ω′)||ω̃|dx.

=: I1 + I2,
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where P (·) denotes the singular integral operator defined by the integrals with
respect to y in (7). We first consider the case 32 < γ <∞.
We have the following estimates

I1 ≤ ‖P (ω̃)‖γ‖ω‖
2
2γ
γ−1

(by Hölder’s inequality)

≤ C‖ω̃‖γ‖ω‖
2γ−3
γ

2 ‖∇ω‖
3
γ

2

≤ C‖ω̃‖
2γ
2γ−3
γ ‖ω‖22 +

ν

4
‖∇ω‖22 (by Young’s inequality),

(8)

where we used the Calderon-Zygmund and the Gagliardo-Nirenberg inequalities in
the second inequality. For the second term of the right hand side of (8) we have by
the Höder inequality and the Calderon-Zygmund inequality,

I2 ≤ ‖ω̃‖γ‖P (ω
′)‖ 2γ

γ−1
‖ω‖ 2γ

γ−1
(by Hölder’s inequality)

≤ C‖ω̃‖γ‖ω
′‖ 2γ
γ−1
‖ω‖ 2γ

γ−1
(by the Calderon-Zygmund inequality)

≤ C‖ω̃‖γ‖ω‖
2
2γ
γ−1

≤ C‖ω̃‖
2γ
2γ−3
γ ‖ω‖22 +

ν

4
‖∇ω‖22 (by the similar estimates to (8)).

(9)

Thus, combining (8)-(9) with (5), we obtain

d

dt
‖ω(t)‖22 + ν‖∇ω(t)‖

2
2 ≤ C‖ω̃(t)‖

2γ
2γ−3
γ ‖ω(t)‖22.

Applying the standard Gronwall lemma, we have

‖ω(t)‖22 +

∫ t
0

‖∇ω(τ)‖22 exp

(
C

∫ t
τ

‖ω̃(s)‖
2γ
2γ−3
γ ds

)
dτ

≤ ‖ω0‖
2
2 exp

(
C

∫ t
0

‖ω̃(s)‖
2γ
2γ−3
γ ds

)
.

Since 0 < 2γ
2γ−3 ≤ α, by the Hölder inequality we obtain

sup
0≤t≤T

‖ω(t)‖22 + ν

∫ T
0

‖∇ω(t)‖22dt ≤ ‖ω0‖
2
2 exp

(
C

∫ T
0

‖ω̃(t)‖
2γ
2γ−3
γ dt

)

≤ ‖ω0‖
2
2 exp

(
C‖ω̃‖

2γ
2γ−3

Lα,γ
T

T
2γ
2γ−3 (2−

2
α−

3
γ )

)
.

Thus, in this case ‖ω̃‖Lα,γ
T
<∞ implies

ω ∈ L∞
(
0, T : L2(R3)

)
∩ L2

(
0, T : H1(R3)

)
.

Using the regularity of the strong solution, we obtain the conclusion of the theorem
for 1 < α <∞, 32 < γ <∞.
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Next, we consider the case α =∞, γ = 3/2. In this case, instead of (8) and (9),
we estimate as follows:

{1} ≤ ‖P (ω̃)‖ 3
2
‖ω‖26 ≤ C‖ω̃‖ 32 ‖∇ω‖

2
2, (10)

and
I2 ≤ ‖ω̃‖ 3

2
‖P (ω′)‖6‖ω‖6

≤ C‖ω̃‖ 3
2
‖ω′‖6‖ω‖6

≤ C‖ω̃‖ 3
2
‖ω‖26 ≤ C‖ω̃‖ 32 ‖∇ω‖

2
2.

(11)

Combining (10)-(11) with (5), integrating over [0, T ], we deduce

sup
0≤t≤T

‖ω(t)‖22 + ν

∫ T
0

‖∇ω(t)‖22dt ≤ C‖ω̃‖
L
∞, 3

2
T

∫ T
0

‖∇ω(t)‖22dt .

Thus, if C‖ω̃‖
L
∞,3/2
T

< ν
2
, then we have again

ω ∈ L∞
(
0, T : L2(R3)

)
∩ L2

(
0, T : H1(R3)

)
,

which implies the regularity of v as previously. �
Proof of Theorem 2. We set ṽ = (v1, v2, 0). Then, taking the first two components
of the vorticity equation (4), we obtain

ω̃t + (v · ∇)ω̃ = (ω · ∇)ṽ + ν∆ω̃ .

Taking L2(R3) inner product (12) with ω̃, we have, after integration by part,

1

2

d

dt
‖ω̃(t)‖22 + ν‖∇ω̃(t)‖

2
2 =

∫
R3

(ω · ∇)ṽ · ω̃ dx . (12)

We first consider the case 2 ≤ α < ∞, 3 < γ ≤ ∞. Using the Hölder and the
Gagliardo-Nirenberg inequalities, we estimate∣∣∣ ∫

R3

(ω · ∇)ṽ · ω̃ dx
∣∣∣ ≤ ‖ω‖2‖∇ṽ‖γ‖ω̃‖ 2γ

γ−2

≤ C‖ω‖2‖∇ṽ‖γ‖ω̃‖
γ−3
γ

2 ‖∇ω̃‖
3
γ

2

≤ C‖ω‖22 + C‖∇ṽ‖
2γ
γ−3
γ ‖ω̃‖22 +

ν

2
‖∇ω̃‖22,

(13)

where the case γ = ∞ corresponds to the obvious limit γ → ∞ for the norms of
the estimates. The estimates (13), combined with (12), yield

d

dt
‖ω̃(t)‖22 + ν‖∇ω̃(t)‖

2
2 ≤ C‖ω(t)‖

2
2 + C‖∇ṽ(t)‖

2γ
γ−3
γ ‖ω̃(t)‖22.

Using the Gronwall lemma similarly to the proof of Theorem 1, we obtain

sup
0≤t≤T

‖ω̃(t)‖22 + ν

∫ T
0

‖∇ω̃(t)‖22dt

≤

(
‖ω0‖

2
2 +

∫ T
0

‖ω(t)‖22dt

)
exp

(
C

∫ T
0

‖∇ṽ(t)‖
2γ
γ−3
γ dt

)

≤

(
‖ω0‖

2
2 +

∫ T
0

‖Dv(t)‖22dt

)
exp

(
C‖∇ṽ‖

2γ
γ−3

L
α,γ
T

T
2γ
γ−3 (1−

2
α−

3
γ )

)
,
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where we used the fact 2γ
γ−3 ≤ α in the second inequality. Thus, if ∇ṽ ∈ L

α,γ
T , then

we have by the Sobolev embedding, H1(R3) ↪→ L6(R3),

ω̃ ∈ L∞
(
0, T : L2(R3)

)
∩ L2

(
0, T : L6(R3)

)
.

Since α = 2 and γ = 6 satisfy 2
α
+ 3
γ
≤ 2, the conclusion of Theorem 2 for the case

2 ≤ α <∞, 3 < γ ≤ ∞ follows from Theorem 1.
Next, we consider the case α =∞, γ = 3. In this case we estimate

∣∣∣ ∫
R3

(ω · ∇)ṽ · ω̃ dx
∣∣∣ ≤ ‖ω‖2‖∇ṽ‖3‖ω̃‖6
≤ C‖ω‖2‖∇ṽ‖3‖∇ω̃‖2

≤ C‖ω‖22‖∇ṽ‖
2
3 +
ν

2
‖∇ω̃‖22 .

This, together with (12), provide us with

sup
0≤t≤T

‖ω̃(t)‖22 + ν

∫ T
0

‖∇ω̃(t)‖22dt ≤ C‖∇ṽ‖
2
L∞,3
T

∫ T
0

‖Dv(t)‖22dt

after integrating over [0, T ]. This inequality, in turn, implies that if ‖∇ṽ‖L∞,3
T
<∞,

then
ω̃ ∈ L∞

(
0, T : L2(R3)

)
∩ L2

(
0, T : L6(R3)

)
.

In a similar manner to the previous case, we conclude the present proof. �
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