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A coupled Cahn-Hilliard particle system ∗

Tony Shardlow

Abstract

A Cahn-Hilliard equation is coupled to a system of stochastic differ-
ential equations to model a random growth process. We show the model
is well posed and analyze the model asymptotically (in the limit of the
interfacial distance becoming small), to recover a free boundary problem.
A numerical method together with example solutions is presented.

1 Introduction and background

Stochastic PDEs have been used to model random growth processes since the
introduction of the Kardar-Parisi-Zhang (KPZ) equation [?]. This equation
restricts the topology of an aggregate in Rd, so that its interface may be repre-
sented as a graph R→ R

d−1. The KPZ equation describes the evolution of this
graph as a fourth order stochastic PDE in d− 1 dimensions.

Models based on the evolution of a graph are very restrictive on the topology.
By introducing an extra dimension to the model, arbitrary topologies may be
described by writing a PDE for a phase variable u(t, x) : R+ × Rd → R. Then,
the growth will be that of an aggregate {x ∈ Rd : u(t, x) ≈ u+}, where u+

depends on the model under consideration, and the boundary of the aggregate
will be a level set {u = 0} (say). Such phase fields models have been used
to described pattern formation. One well known example is the Cahn-Hilliard
equation [?] for a region Ω:

ut = ∆θ

−θ = ε2∆u− f(u),

where homogeneous Neumann boundary conditions are placed on u and θ. The
function f is the gradient of a double well potential. The parameter ε� 1 and
measures the interfacial thickness. The total phase

∫
Ω
u dx is constant in this

model and no growth is included.
It is of interest to consider perturbing these equations by noise [?, ?]. For

example, the equation

ut = −ε2∆2u+ ∆(u− u3) + I, (1.1)
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with appropriate boundary conditions. For I = 0, this is the standard Cahn-
Hilliard equation. The driving term I models the random deposition onto the
aggregate. The function I is expressed in terms of ∇u, to encourage growth
normal to the surface of the aggregate and to concentrate the effects of the
noise at the interface. Two forms for I are suggested,

I1 := c1|∇u|+ c2
√
|∇u|Ẇ (t) or I2 := |∇u|2

(
c3 + c4Ẇ (t)

)
,

where c1, . . . , c4 are constants and Ẇ (t) is a “derivative” of a space-time Wiener
process. Numerical simulations [?] for I1 suggest behaviour similar to the Eden
model, which is characterised by uniform growth rates. The I2 model is seen to
depend on curvature effects at the interface. (For examples of perturbing the
Cahn-Hilliard by thermal fluctuations, see [?, ?]).

This model includes random deposition of particles, the effect of surface
diffusion, and makes no topological assumptions on the aggregate. One further
important physical feature of these systems is shadowing, where certain areas
are free from deposition (because the flow of material is blocked). This effect is
not included in equation (1.1), but by coupling a second equation, Keblinski et
al. [?] have modelled shadowing.

Defining solutions of the above equation in a mathematically precise way
is very difficult, because of the multiplicative forcing functions I. Weak exis-
tence theory by standard Faedo-Galerkin convergence arguments depends on
estimates of the type E(I, u(t)) (where E denotes average over realisations of
W (t) and (·, ·) is the L2 inner product). Space time white noise will never satisfy
such a property because it does not give a well behaved process in the mean
square sense. A smooth process W (t) would need to be introduced.

Another approach to introducing noise into a PDE is the use of particle
systems. Directly modelling the evolution of the depositions before they hit the
aggregate is a natural technique for introducing noise to the system. Indeed,
Diffusion Limited Aggregation (see [?]) is a spatially discrete model that uses
this technique and incorporates shadowing and arbitrary topologies in a natural
way.

We propose a model for the interaction of a set of particles evolving according
to Itô stochastic differential equations (SDEs) with a Cahn-Hilliard system. The
particles represent material that is deposited onto an aggregate, represented by
the field u. It is a mean field theory, in that we neglect thermal fluctuations
in the aggregate. In the context of depositions, it is the fluctuations in the
trajectories of the particles that is responsible for the complex morphology of
the aggregate.

Consider the following coupled Cahn-Hilliard particle system on a domain
Ω = [0, L]d.

ut = ∆θ + γ1

∑
i∈P(t)

|∇u|δXi

−θ = ε2∆u− f(u),
(1.2)

where ε � 1 is the interfacial parameter, γ1 > 0 is the coupling strength,
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δX(x) = 1 if |x−X| ≤ R and = 0 otherwise. The function f is the gradient of
a double well potential F with minima u±, often f(u) = (u3 − u); throughout
we suppose that f is an odd polynomial with positive leading order coefficient.
The particles have radius R with centres Xi ∈ Ω. Particle i is said to be alive
at time t if i ∈ P(t). Further, we assume that i ∈ P(t) if and only if t ∈ [τ si , τ

e
i ].

Particles are introduced to the system at positions Xs
i at times τ si and are

annihilated independently at times τei with rate

γ2

Rd

∫
Ω

|∇u|(x)δXi(x) dx.

The position of the particle Xi satisfies the Itô SDE

dXi = λ(Xi) dt+ σ(Xi) dBi(t), (1.3)

where λ ∈ C∞(Rd,Rd) and σ ∈ C∞(Rd,Rd×d) and Bi are IID standard Brow-
nian motions in Rd and with (for simplicity) periodic boundary conditions on
Ω. The Brownian motions Bi(t) live on a probability space with measure P and
are adapted to a filtration Ft. Expectations with respect to P are denoted E.

The outline of this paper is as follows. §2 considers the existence and unique-
ness of (1.2), first deriving an a priori bound for the solution and then sketching
the steps necessary to prove weak solutions exist. This is sketched as many of
the steps are quite standard. §3 describes some basic properties of (1.2) in a
non-rigorous manner, by using asymptotic analysis and looking for an approx-
imating free boundary problem. §4 describes a finite element scheme for this
system and how it has been implemented using the deal.II software package [?].
The final section §5 gives some numerical simulations.

2 Existence of solutions

We now discuss the existence of solutions for the coupled Cahn-Hilliard sys-
tem (1.2). We show how to derive a priori bounds for this equation, following
a standard argument, see for example [?]. With the a priori bound, standard
Faedo-Galerkin arguments can be applied to prove existence of solutions to the
equations. We build up the argument for the following deterministic equation,
before adding in the random components:

ut = ∆θ + γ1

∑
i∈P(t)

|∇u|δXi

−θ = ε2∆u− f(u),

subject to homogeneous Neumann boundary conditions on u and θ on ∂Ω and
where Xi : R+ → Ω are continuous functions of time and δXi is the indica-
tor function on a ball of radius R centred on Xi. For the present Xi may
be considered to be deterministic; we do not discuss the random aspect until
Theorem 2.2.
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Throughout the present section, we use K to denote a generic constant. We
work with the function space

V :=
{
φ ∈ H2(Ω):

∂φ

∂n
= 0 on ∂Ω

}
and denote by | · | and (·, ·) the standard norm and inner product on L2(Ω).

The weak formulation of the above equation is achieved by multiplying by
v ∈ V and applying the boundary conditions with Green’s formula:

(v, ut) =(v,∆θ) + γ1

∑
i∈P(t)

(v, |∇u|δXi) = −(∇v,∇θ) + γ1

∑
i∈P(t)

(v, |∇u|δXi).

Now,
−(∇v,∇θ) = (∆v, (−ε2∆u))− (∇v,∇f(u)). (2.1)

Take v = u:

1
2

d

dt
|u|2 + ε2(∆2u, u) + (∇u, f ′(u)∇u) = γ1

∑
i∈P(t)

(|∇u(x)|δXi , u).

Write f(s) = bps
2p−1 + bp−1s

2p−3 + · · · + b1s. The leading term of f ′(s) is
(2p− 1)bps2p−2 and we can find c > 0 such that

f ′(s) ≥ (2p− 1)bps2p−2 − c.

Substituting for f ′(s) and applying Cauchy-Schwartz, we have

1
2

d

dt
|u|2+ε2|∆u|2+(2p−1)bp

∫
Ω

u2p−2|∇u|2 dx ≤ c|∇u|2+ 1
2 |∇u|

2+ 1
2 (γ1N)2|u|2,

where N denotes the maximum number of particles in P(t). Standard inter-
polation estimates give |∇u|2 ≤ K|u| ‖u‖H2(Ω). Lemma 4.2 [?] gives that the
norm ‖ · ‖H2(Ω) is equivalent to |∆u|+ |u|. Hence, for some constant K

(c+ 1
2 )|∇u|2 ≤ K|u|(|∆u|+ |u|) ≤ 1

2ε
2|∆u|2 + (K +K2/2ε2)|u|2.

Finally, we obtain for a different constant K

d

dt
|u|2 + ε2|∆u|2 + 2(2p− 1)b2p

∫
Ω

u2p−2|∇u|2dx ≤ K |u|2.

By the Gronwall Lemma, we have uniform bounds on [0, T ] in L2(Ω) and by
integrating we have ∫ T

0

‖u(s)‖2H2(Ω) ds ≤ K.

Arguing further, we define the Lyapunov function

V(u) := 1
2ε

2|∇u|2 +
∫

Ω

F (u(x)) dx.
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Arguing formally for a moment (because the integral above need not be defined
for u ∈ V ), we note that

d

dt
V(u) = (θ, ut)

and

(θ, ut) =ε2(∆θ, θ) + γ1(θ,
∑
i∈P(t)

|∇u|δXi)

=− ε2|∇θ|2 + γ1(θ,
∑
i∈P(t)

|∇u|δXi).

Then,

d

dt
V(u(t)) ≤− ε2|∇θ|2 + 1

2 |θ|
2 + 1

2γ
2
1N

2|∇u|2

≤− ε2|∇θ|2 + 1
2 (2|ε2∆u|2 + 2|f(u)|2) + 1

2γ
2
1N

2|∇u|2

≤− ε2|∇θ|2 +K‖u‖2H2(Ω),

where the last inequality uses the fact that W 2(Ω) can be continuously embed-
ded in C0(Ω) for d = 2, 3. Thus, V(u(t)) is bounded on [0, T ] as

∫ T
0
‖u(s)‖2H2(Ω)ds

is finite. The argument can be made rigorous by truncating f and showing con-
vergence in the limit of the truncation.

This time take v = ∆2u in (2.1) to gain

1
2

d

dt
|∆u|2 + ε2|∆2u|2 =(∆f(u),∆2u) + (γ1

∑
i∈P(t)

|∇u(x)|δXi ,∆2u)

=
1
ε2
|∆f(u)|2 + 1

4ε
2|∆2u|2 +

γ2
1N

2

ε2
|∇u|2 + 1

4ε
2|∆2u|2.

Thus,
d

dt
|∆u|2 + ε2|∆2u|2 ≤ 2

ε2
|∆f(u)|2 +

γ2
1N

2

ε2
|∇u|2.

It is proved that (see [?]), by restricting p = 2 in three dimensions and taking
an arbitrary positive integer p in dimensions d = 1, 2, that

|∆f(u)|2 ≤ 1
2ε

2|∆2u|2 +K.

Then, we have a differential inequality

d

dt
|∆u|2 + ε2|∆2u|2 ≤ K,

after using the boundedness of V. This gives a priori estimates in
L∞(0,∞;H2(Ω)) and L2(0, T ;H4(Ω)).
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Theorem 2.1 Consider dimension d = 1, 2, 3. For every u0 ∈ L2(Ω), the
initial value problem (1.2) has a unique weak solution u in

L∞([0, T ];H) ∩ L2([0, T ];V )).

The mapping u(t) is continuous in t. Let p be a positive integer, with p = 2
(i.e., f has degree three) when d = 3, arbitrary for dimension 1 and 2. Choose
initial data u0 ∈ V . Then

u(t) ∈ C([0, T ], V ) ∩ L2([0, T ];D(A)).

Proof This is a standard Faedo-Galerkin approximation argument. Let φi
denote the eigenfunctions of A. The idea is to seek solutions um of the form

um(t) =
m∑
i=1

gim(t)φi,

satisfying

(
dum
dt

, φj) + ε2(∆um,∆φj)− (f(um), φj) = (γ1

∑
i

|∇um|δXi , φj), j = 1, . . . ,m.

This is an ODE and existence of solutions is elementary. Further, the a priori
bounds developed above holds for um and allow us to take limits of um. Stan-
dard functional analytic arguments give convergence to a solution u having the
properties described above. �

Theorem 2.2 Let d = 2 or 3 and let f be cubic (p = 2). Suppose that λ ∈
C∞(Rd,Rd) and σ ∈ C∞(Rd,Rd×d) and both functions are globally Lipschitz.
Consider initial data u0 ∈ V , initial times τ si ∈ R+, and initial positions Xs

i ,
for i = 1, . . . , N (N the number of particles). Then, there exists a solution
of (1.2) consisting of the phase variable u(t) ∈ C([0, T ], V )∩L2(0, T ;D(A)), the
conditional densities pi(t, y;u) on [τ si , T ) × C([0, T ], V ) (for the probability the
particle is at y at time t given a phase trajectory u), and the particle trajectories
Xi(t) : [τ si , τ

e
i ]→ R

d. The solution (u(t), pi(t, y;u), Xi(t)) is uniquely defined by
the following properties: (i) the phase variable obeys u(0) = u0 and for each
v ∈ V ,

(v, ut) =(∇v,∇θ) + γ1

∑
i∈P(t)

(v, |∇u|δXi(t)),

−(v, θ) =ε2(∇v,∇u)− (v, f(u));

(ii) the particle trajectories Xi(t) are continuous functions [τ si , τ
e
i ] → R

d satis-
fying for τ si ≤ t ≤ τei

Xi(t)−Xi(τ si ) =
∫ t

τsi

λ(Xi(s)) ds+
∫ t

τsi

σ(Xi(s)) dBi(s),
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for independent Brownian motions Bi. The annihilation time τei = τei (u), where
τei (u) are independent random variables on [τ si , T ) satisfying

Pτei (u) > t =
∫

Ω

pi(t, y;u) dy, u ∈ C([0, T ], V ).

(iii) pi(t, y;u) is a delta function at Xs
i at t = τ si and for t > τei satisfies

dpi(t, y;u)
dt

= Lpi(t, y;u)− γ2

Rd

∫
Ω

|∇u(x, s)|δy(x)pi(t, y;u) dx,

where L is the generator for an SDE with drift λ and diffusion σ with periodic
boundary conditions on [0, L]d.

Proof The solution is constructed as follows. Let the Bi(t) be indepen-
dent standard Brownian motions on a probability space (Ω1,F1). Let X∗i for
i = 1, . . . , N be the (Ω1,F1) random variables taking values in C([τ si ,∞),Rd)
which are solutions of (1.3) subject to X∗i (τ si ) = Xs

i . The existence and unique-
ness of such solutions are guaranteed by classical theory under the smooth-
ness assumptions on λ and σ. Let u(1)(t) denote the unique weak solution of
equation (1.2) where the particle variables Xi are replaced by X∗i , given by
Theorem 2.1. Define independent random variables

τi : C([0, T ], V )→ [τ si ,∞)

on a second probability space (Ω2,F2) such that Pτi(u) > t =
∫

Ω
pi(t, y;u) dy.

Let j(u) minimise τi(u) over i = 1, . . . , N (i.e., be the first particle to be
annihilated given a phase trajectory). Now on the joint probability space
(Ω1 ×Ω2,F1 ×F2), define the [0,∞) valued random variable τe

j(u(1))
:= τj(u(1)).

Finally, let u(x, s) = u(1)(x, s) and Xi(s) = X∗i (s) for 0 ≤ s ≤ T (1) := τe
j(u(1))

.

To generate solutions over the next time period, let u(2) = u(1) on [0, T (1)].
For time t > T (2), let u(2) equal the weak solution of equations (1.2) again with
particles X∗i but this time with initial data

u(2)(T (1), x) = u(1)(T (1), x).

Let k(u) minimise τi(u) over i 6= j(u) and set τe
k(u(2))

:= τk(u(2)). Finally, let

u(x, s) = u(2)(x, s), Pi(t, u) = P
(2)
i (t, u), and Xi(s) = X∗i (s) for T (1) ≤ s ≤

T (2) := τe
k(u(2))

.
This process can be iterated N times to generate solutions up to the time

when all particles have died. A solution is generated on the time interval [0, T ],
by solving the Cahn-Hilliard equation on the interval where all particles are
dead. We have illustrated how the solution for the phase variable u, parti-
cle positions Xi, and annihilation times τei can be constructed, with the solu-
tions pieced together by restarting the processes at the annihilation times τei .
The construction specifies u,Xi, and Pi uniquely on each time interval [0, T (1)],
(T (1), T (2)], . . . , [T (N), T ]. �
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3 Asymptotic Analysis

We present a non-rigorous explanation of the properties of the coupled Cahn-
Hilliard particle system (1.2). We show that the total phase, taken as the sum of
that in the PDE

∫
Ω
u(t, x)dx and a constant amount for each alive particle, Xi

for i ∈ P(t), is conserved. We perform an asymptotic analysis of the equations
to gain a free boundary problem. The analysis provides conditions that the
probability that phase is transferred from particle to u only at the boundary
{u ≈ 0} tends to one.

Conservation of Phase Let the total phase of the coupled Cahn-Hilliard
particle system be denoted

W(t) =
∫

Ω

u(t, x)dx+
∑
i∈P(t)

γ1

γ2
Rd. (3.1)

We show that on average the total phase is constant.
For t > τ si , we have from Theorem 2.2

dpi(t, y;u)
dt

= Lpi(t, y;u)− γ2

Rd

∫
Ω

|∇u|(x)δy(x)pi(t, y;u) dx.

Denote the probability the particle is alive at time t (given a phase trajectory
u) by Pi(t) (resp. Pi(t;u)), so that Pi(t;u) = 0 for t < τ si and =

∫
Ω
pi(t, y;u) dy

for t ≥ τ si and Pi(t) = EPi(t;u). Then for t > τ si ,

dPi(t;u)
dt

=
∫

Ω

Lpi(t, y;u) dy − γ2

Rd

∫
Ω

∫
Ω

|∇u|(x)δy(x)pi(t, y;u) dxdy

=− γ2

Rd
E
[ ∫

Ω

|∇u∗|(x)δXi(t)(x) dx
∣∣∣u∗ = u

]
,

where we have used the boundary conditions to eliminate the first term. Now
average over the phase variable

dEPi(t;u)
dt

=
dPi(t)
dt

=− γ2

Rd
E
∫

Ω

|∇u|(x)δXi(t)(x) dx.

The equation for U(t) := E
∫

Ω
u(t, x) dx is

dU = 0dt+ γ1

∑
i∈P(t)

∫
Ω

E|∇u|(x)δXi(t)(x) dx,

by using the boundary conditions in the Cahn-Hilliard equation to eliminate
terms. Adding the terms together, we have for t 6= τ si

d

dt
(U(t) +

γ1

γ2
Rd
∑
i

Pi(t)) = 0. (3.2)

Thus, we have that rate of change of the expected value of W(t) is zero for
t 6= τ si . When t = τ si some i, further particles are added to the system and the
value of W(t) increase by the number of particles added times γ1R

d/γ2.
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Asymptotic expansion We now perform an asymptotic expansion in small
ε in an effort to gain a related free boundary problem. The analysis follows [?].
Assume that the domain Ω can be split up into sets Ω+∪Γ∪Ω−, where u ≈ u±
on Ω± and Γ = {u = (u+ + u−)/2}.

First, we perform an outer expansion away from the interface Γ. Write

u = u0 + εu1 + · · · ; θ = θ0 + εθ1 + · · · .

Outer order 1 expansion

u0
t =−∆θ0 + γ1

∑
i∈P(t)

|∇u0|δXi

−θ0 =− f(u0).

In the outer layer, u0 ≈ u± (the minima of the potential F ). Thus the order 1
expansion is simplified to

u0
t = ∆f(u0) + γ1

∑
i∈P(t)

|∇u0|δXi ; θ0 = f(u0). (3.3)

Note that the second equation is invertible for u0 ≈ u± and u0 may be eliminated
from these equations. We cannot assume the driving term appears at lower
order. The equations are parabolic PDEs; this contrasts with the Cahn-Hilliard
equation where the interface motion is velocity order ε and the slow motion in
the first order expansion can be treated as an elliptic problem.

Near to the interface Γ, the solution u varies from u+ to u− over an interface
of width ε. To analyse this asymptotically, we introduce new coordinates: let r
denote the signed distance from Γ (with r > 0 denoting points in Ω+) and s arc
length along the interface Γ. Change variables to (r, s) space by setting

|∇u|2 = u2
r + 2urus(rx sx + ry sy) + u2

s|∇s|2

∆u = urr + uss|∇s|2 + ur∆r + us∆s
d
dtu(x1, x2, . . . ) = d

dtu(r, s) + urrt + usst.

The inner expansion is performed by choosing z = r/ε and expanding

U = U0 + εU1 + · · · ; Θ = Θ0 + εΘ1 + · · · .

Then, substituting into the PDE, we have

(Ut+ε−1Uzrt + Usst)

=(ε−2Θzz + Θss|∇s|2 + ε−1Θz ∆r + Θs∆s)

+ γ1

∑
i∈P(t)

(ε−2U2
z + 2ε−1UzUr(rxsx + rysy) + U2

s |∇s|2)1/2δXi

−Θ = ε2(ε−2Uzz + Uss|∇s|2 + ε−1Uz∆r + Us∆s)− f(U).
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Hence

Θzz + ε(−Uzrt + ∆rΘz)− ε2(Ut + Usst − (Θss|∇s|2 + Θs∆s))

+γ1

∑
i∈P(t)

(ε2U2
z + 2ε3UzUr(rxsx + rysy) + ε4U2

s |∇s|2)1/2δXi = 0

Uzz − f(U) + Θ + εUz∆r + ε2(Uss|∇s|2 + Us∆s) = 0.

Inner order 1 expansion:

Θ0
zz = 0;

Uzz − f(U) + Θ0 = 0.

The only bounded solutions that give an interfacial profile for U are Θ0 = 0.
Then the first order term U0(s, z) = ψ(z), where ψ obeys

ψzz − f(ψ) = 0, ψ(±∞) = u±, ψ(0) = 0. (3.4)

As f is odd, ψ(x) = −ψ(−x).

Inner order ε expansion:

Θ1
zz = U0

z rt −∆rΘ0
z − γ1

∑
i∈P(t)

|U0
z |δXi .

Using Θ0 = 0 and U0(z) = ψ(z), we can integrate to find for z > 0[
Θ1
z

]z
0

= rtψ(z)− γ1

∑
i∈P(t)

∫ z

0

ψ′(z′) δXi(z
′ε, s) dz′ + c1(s, t) (3.5)

and again

Θ1(z) = rtΨ(z)− γ1

∑
i∈P(t)

Pi(z, s, ε) + c1(s, t)z + c2(s, t), (3.6)

where c1(s, t) and c2(s, t) are constants of integration,

Pi(s, z, ε) :=
∫ z

0

∫ z′

0

ψ′(z′′)δXi(z
′′ε, s) dz′′

and Ψ(z) :=
∫ z

0
ψ(z) dz. Consider the second equation

U1
zz − f ′(U0)U1 + Θ1 = −κψ′(z),

where κ = ∆r (the mean curvature of Γ, evaluated at z = 0). Let Λ :=
(∂z)2 − f ′(ψ(z)) with domain L2(−∞,∞); then

ΛU1 = −Θ1 − κψ′(z).



EJDE–2002/73 Tony Shardlow 11

Λ is an operator with one eigenfunction ψ′ that has zero eigenvalue (because
of (3.4)). Thus the solvability condition for ΛΦ = g is orthogonality of g with
respect to ψ′. The solvability condition is∫ ∞

−∞
Θ1(z)ψ′(z) dz + κ

∫ ∞
−∞

(ψ′(z))2 dz = 0.

Now, substitute from (3.6), to get∫ ∞
−∞

(
rtΨ(z)− γ1

∑
i∈P(t)

Pi(z, s, ε) + c1(s, t)z + c2(s, t)
)
ψ′(z) dz

+ κ

∫ ∞
−∞

(ψ′(z))2 dz = 0.

This implies as the integral of the odd term zψ′(z) disappears that∫ ∞
−∞

c2(s, t)ψ′(z) dz

= −rt
∫ ∞
−∞

Ψ(z)ψ′(z) dz + γ1

∑
i∈P(t)

∫ ∞
−∞

Pi(z, s, ε)ψ′(z) dz − κA,

where A :=
∫∞
−∞(ψ′(z))2dz. Thus,

(u+−u−)c2(s, t) = −rt
∫ ∞
−∞

Ψ(z)ψ′(z) dz+γ1

∑
i∈P(t)

∫ ∞
−∞

Pi(z, s, ε)ψ′(z) dz−κA.

Matching conditions Consider an interface at position Y (t, ε) and suppose
that Y (t, ε) = Y 0 + εY 1,ε + tY 1,t +O(tε+ ε2 + t2) . By choosing Y (0, ε) = Y 0,
we have Y 1,ε = 0. Look for matching conditions at z = (x− Y (t))/ε by writing

Θ(z, t, ε) =θ(Y (t, ε) + εz, t, ε)

=θ0(Y 0, t) + εθ1(Y 0, t) + z ε θ0
x(Y 0, t)) +O(ε2 + ε2z + εt) .

(3.7)

It is easy to show that as z →∞ with εz → 0,∫ z

0

ψ′(z′)δXi(z
′ε, s) dz′ →

{
ψ(z), ‖Xi − (0, s)‖ ≤ R
0, otherwise

.

We introduce δd−1
Xi

(s), which takes value one when the ball of radius R centred
at Xi includes the point s on the interface Γ, value zero otherwise. Taking limits
with εz → 0 and z → ±∞, we have from (3.5) and (3.7)

θ0
r =u±

(
rt − γ1

∑
i∈P(t)

δd−1
Xi

)
+ c1(s, t). (3.8)
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Neglecting the O(εz) terms from (3.6), we have that

Θ1(z, s, t) = (rt−γ1

∑
i∈P(t)

δd−1
Xi

)
(∫ z

0

(ψ(z)−u+) dz′+u+z
)

+c1(s, t)z+c2(s, t).

(3.9)
Taking limits with εz → 0, we can pick out the following from (3.7), (3.9),
and (3.8):

θ1 =c2(s, t) +
(
rt − γ1

∑
i∈P(t)

δd−1
Xi

)∫ ∞
0

(ψ(z)− u+) dz. (3.10)

Finally then, substituting for c2(s, t)

θ1 =
−1

u+ − u−

((
rt − γ1

∑
i∈P(t)

δd−1
Xi

)∫ ∞
−∞

Ψ(z)ψ′(z) dz + κA
)

+ (rt − γ1

∑
i∈P(t)

δd−1
Xi

)
∫ ∞

0

(ψ(z)− u+) dz.

Now note that∫ Z

−Z
Ψ(z)ψ′(z) dz =

[
Ψ(z)ψ(z)

]Z
−Z
−
∫ Z

−Z
ψ(z)2 dz.

Using u+ = −u−, we have integrating by parts

−1
u+ − u−

∫ ∞
−∞

Ψ(z)ψ′(z) dz +
∫ ∞

0

ψ(z)− u+ dz

=
∫ ∞

0

2
u+ − u−

ψ2 − 2ψ + u+ dz =
∫ ∞

0

(√
u+ −

ψ
√
u+

)2

dz =: B.

Thus,

θ1 = −(rt − γ1

∑
i∈P(t)

δd−1
Xi

)B − 1
u+ − u−

κA. (3.11)

Define V to be the velocity of the interface Γ into Ω−, so that V = rt.
Collecting our results, for small ε, the dynamics of Γ can be determined by
the following free boundary problem: Inside Ω± (3.3) gives that θ obeys the
following PDE

(f−1(θ))t = ∆θ0 + γ1

∑
i∈P(t)

|∇f−1(θ)|δXi

subject to boundary conditions on Γ given by (3.11)

θ = − 1
u+ − u−

εAκ− V Bε+Bεγ1

∑
i∈P(t)

δd−1
Xi

.
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This is the analogue of the Gibbs-Thompson relation. The interface Γ moves
with velocity given by (3.8)

V =
1

u+ − u−

[ dθ
dn

]+
−

+
γ1

u+ − u−

∑
i∈P(t)

δd−1
Xi

, (3.12)

where [ ∂θ∂n ]+− denotes the jump in ∂θ
∂n on Γ. The particles Xi satisfy the SDE

dXi = λ(Xi) dt+ σ(Xi) dBi(t).

To understand the annihilation of the particles, we perform asymptotics on the
rate of annihilation.

Inner Expansion Under the condition ε � R, the time for a particle of
radius R with speed v to cross an interface of width ε is order R/v. Across the
interface u(r) ≈ ψ(r/ε). Thus, the rate of annihilation in crossing the interface
is

γ2

R

∫
|∇u|(x)δXi(x) dx ≈ γ2

Rd

∫
ψ′(r/ε)δ0((r, s)) dr ds

→ γ2

Rd
Rdπd−1(u+ − u−) =

γ2

R
(u+ − u−)πd−1,

as ε → 0, where πd denotes the volume of a ball of radius one in dimension d.
This holds on a time interval of order R/v. Consequently, the probability of
annihilation in crossing the interface is 1− exp(−Kγ2(u+ − u−)πd−1/v), some
constant K > 0. Thus, if we take limits with γ2 → ∞, the probability the
particles die when they hit the interface tends to one.

Outer expansion We expect |∇u| to be of order e−K/ε, some constant K,
in the interior of Ω± (for f(u) = u3 − u, the solution of (3.4) is a tanh profile).
Thus, for a particle X that is an order 1 distance from Γ,

γ2

Rd

∫
|∇u|(x)δX(x) dx ≈ πdR

dγ2

Rd
e−K/ε =

πd
R
γ2 e

−K/ε,

some constant K. Thus we expect the particles to live for an exponentially long
amount of time when moving about the interior of Ω±.

Suppose that the time scale for the annihilation of particles at the boundary
(R/γ2(u+ − u−)πd−1) is much less than the time to cross the interface; that is,

γ2 �
v

(u+ − u−)πd−1
,

then near Γ a particle can be expected to live for a time R/γ2(u+ − u−)πd−1.
Hence, substitute our asymptotic expression for the interface velocity V ,

r
(
t+

R

γ2(u+ − u−)πd−1

)
− r(t) = R

γ1

γ2

1
(u+ − u−)2πd−1

∑
i∈P(t)

δd−1
Xi

+O(ε) .
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Thus in the γ2 = γ1 large limit, on impact of a particle at the boundary Γ, the
boundary moves by a distance Rγ1/γ2(u+−u−)2πd−1. Thus we see the impact
of a particle on the interface causes the interface to move by an amount linear
in the particle radius. Further, from (3.2), we have that each particle carries an
amount of phase linear in the particle volume (i.e., Rd).

4 A numerical method

The following numerical method has been implemented for dimension d = 2 and
results are presented in §5.

Consider a triangulation Th of Ω consisting of rectangular elements. As-
sociated with Th is the finite element space Sh of functions that are bilinear
functions on the rectangular elements of Th. Introduce the notation (·, ·)h to
be the L2(Ω) inner product evaluated by numerical quadrature based on nodal
values. The quadrate rule for (·, ·)h is chosen to give exactly (·, ·) for elements
of Sh. Mass lumping is denoted by (·, ·)L. Choose a basis χj for Sh such that∑
χj = 1 and equals one at exactly one nodal value and equals zero at other

nodal values. By mass lumping, we mean

(χk, χj)L =

{
(1, χj), k = j;
0, k 6= j.

If u has coordinates uj with respect to χj then (u, χj)L = (1, χj)uj . Fix a time
step ∆t > 0, our finite element method generates approximations Xn

i , θ
n, un to

Xi(n∆t), θ(n∆t), u(n∆t) as follows: Given particle positions Xn
i and (un, θn) ∈

Sh × Sh, find (un+1, θn+1) ∈ Sh × Sh such that

∆t−1(un+1 − un, χ)L + (∇θn+1,∇χ)h = γ1

∑
i∈P(t)

(|∇un|δXni , χ)h

−(θn+1, χ)L = −ε2(∇un+1,∇χ)h − (f(un+1), χ)L,

for all χ ∈ Sh, where u0 is take to be an approximation to u(0) in Sh. To
generate Xn+1

i , we use the explicit Euler method:

Xn+1
i −Xn

i = λ(Xn
i ) ∆t+ σ(Xn

i )Bn,i∆t ,

where Bn,i∆t are IID Gaussian random variables with mean 0 and variance I∆t.
The annihilation time of each particle is determined after computation of un+1

and Xn+1
i : generate IID uniform random variables Un,i on [0, 1] and annihilate

particle i if

Un,i ≤ ∆t
γ2

Rd
(|∇un|δXni , 1)h.

Let
Mij = (χi, χj)L, Aij = (∇χi,∇χj)h.
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Let ûn be such that

(ûn, χ)h = (un, χ)h + γ1∆tM
∑
i∈P(t)

(|∇un|δXni , χ)h, χ ∈ Sh.

Using un, ûn to denote coordinates of un, ûn with respect to χj , we are left to
solve the following nonlinear system:

1
∆t

M(un+1 − ûn) = −Aθn+1

−Mθn+1 = −ε2Aun+1 + c M ûn −Mφ(un+1),

where f(u) = φ(u) − c u, the difference of two monotone functions. To solve
this system, we apply an iterative method of Lions and Mercier [?] (see also
Copetti [?] and Barrett-Blowey [?] for applications to phase-field equations).

Combining the two equations, we have

A−1
(Mun+1 −M ûn

∆t

)
+ ε2M−1Aun+1 − c ûn + φ(un+1)− λ1 = 0.

Note that A has a one dimensional null space spanned by 1 as we work with
Neumann conditions and hence the Lagrange multiplier λ provides a solution.
Let

B(y) := A−1M
y − ûn

∆t
+ ε2M−1Ay − c ûn.

Then the equation becomes

B(un+1) + φ(un+1)− λ1 = 0. (4.1)

Consider a guess (un+1
j , λj) for un+1 and the Lagrange multiplier λ. In the

following iteration µ is a relaxation parameter.

1. Compute
Z1 := un+1

j − µB(un+1
j ) + λjµ1 = 0

and solve
un+1

j+
1
2

+ µφ(un+1

j+
1
2

) = Z1. (4.2)

This gives an approximation un+1
j+1/2.

2. Now compute un+1
j+1 , λj+1 such that

un+1
j+1 + µB(un+1

j+1 )− λj+1µ1 =u
n+

1
2

j+
1
2

− µφ(ûn
j+

1
2

)

=2un+1
j+1/2 − Z1,

To do this, note

un+1
j+1 + µB(un+1

j+1 )− λj+1µ1 = ξ, ξ := 2un+1
j+1/2 − Z1, (4.3)
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Multiply by A,
Aun+1

j+1 + µAB(un+1
j+1 ) = Aξ

and substituting for B

Aun+1
j+1 + µ

[
M

un+1
j+1 − ûn

∆t
+ ε2AM−1Aun+1

j+1 − cAûn
]

= Aξ.

Let
A1 = (∆t−1M + ε2AM−1A), B0 = (∆t−1M + c A) ûn.

Then we can find un+1
j+1 by solving

A2un+1
j+1 = Z2, A2 = A+ µA1, Z2 = Aξ + µB0.

and the Lagrange multiplier from (4.3)

λj+1 =
1

µ(1,1)
(1,un+1

j+1 − ξ + µB(un+1
j+1 )).

The iteration gives approximations un+1
j+1 and Lyapunov multipliers λj . It is

shown in Copetti [?] that the sequence un+1
j converges to un+1 and (4.2) and

(4.3) give that (4.1) holds.
The triangulation Sh is initially uniform but is adapted according to the size

of Eτ = ‖1τ‖−1(1τ , |∇u|), where 1τ is the indicator function on the element
τ . An element τ in the triangulation is coarsened if Eτ < Ecoarsen or refined
if Eτ > Erefine. The mesh is adapted every Nadapt time steps. The maximum
and minimum size of a rectangle is restricted. Further, regularisation of the
triangulation is performed by the software package (Deal.II [?]) itself.

The scheme further implements an elementary adaptive time stepping algo-
rithm. There are two time scales in the interfacial velocity as indicated in (3.12).
When a particle Xi is an order one distance from the interface Γ, the interface
moves on a time scale ε and a large time step ∆t+ is used. When the particles
Xi are near the interface, the interfacial dynamics are faster and to capture this
is a smaller time ∆t− is employed. The algorithm switches between ∆t± when
E∆t crosses a critical value Ecritical

∆t , where E∆t equals the maximum absolute
value of γ1∆t+

∑
i∈P(t) |∇un|δXni over nodal values.

5 Numerical results

Numerical approximations to (1.1) are now presented for the method developed
in §4. We present approximate solutions for the following parameter values: the
domain is [−2, 2]× [−2, 2]; the initial phase u(x, y) = tanh(−(y + 1.7)/ε); that
is, a band of aggregate is place on the bottom of the domain. The interfacial
parameter ε = 0.02; the coupling γ1 = 100; the annihilation rate γ2 = 50.
Particles are introduced into the system at the top of the domain, y = 2.0, at a
horizontal position x uniformly distributed on [−2, 2] at times 1/200, 2/200, . . . .
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Initially 10 particles are placed in the domain uniformly over [−2, 2]× [−1.2, 2].
The particles fall from the top to the bottom of the domain according to

dX =
(
λx
−λy

)
dt+

(
σx
0

)
dβ(t),

where λx, λy, σx ≥ 0 are varied in the three examples.
The parameters in the numerical method are chosen as follows: the time

steps ∆t+ = 5× 10−5 and ∆t− = 10−5. The time step was changed according
to critical value Ecritical

∆t = 0.2. The relaxation parameter µ = 0.8. Initially
the domain has five levels initially and the adaptive mesh has between 4 and
8 levels (so boxes of size 0.1252 to 0.00781252). The meshes are refined with
(Erefine, Ecoarsen, Nadapt) = (0.08, 0.03, 20).

The figures give the evolution of the u = 0 contour and the development
of complicated patterns is seen, including the appearance of overhangs and the
development of cavities in the aggregate. Figure ?? shows the growth of a large
overhang into a cavity. Figure ?? used a large value of the noise parameter σx.
Again a complex pattern develops. Figure ?? uses the same parameters as in
Figure ??, except for the introduction of a horizontal drift σx 6= 0. The patterns
are less complex than in Figures ??-??.

One feature of the figures is the occurrence of instabilities. In Figure ??,
an island of u ≈ −1 appears in the second time frame in the lower left hand
corner. The island is a result of instability in the numerical solution, rather
than the aggregation dynamics. The island disappears in the next time frame.
The particles can cause the phase to flip between u ± 1 even away from the
interface. This behaviour is not well understood, but is believed to be the result
of numerical approximation.

6 Conclusion

The paper has described a new model for aggregation, by using a phase field
equation coupled to a system of SDEs. The model very naturally incorporates
features of arbitrary topology and shadowing, as well as incorporating dynamics
within the aggregate itself. We have demonstrated that the equations can be
understood in a rigorous mathematical way, which contrasts with some of the
difficult equations suggested by other authors. A numerical method is suggested
for solving the equations and a number of examples solutions presented. The
numerical method suffers from instabilities and is also slow (it takes two days on
1 Ghz Linux box to generate each of the test cases). Further work should develop
the linear algebra and analyse the source of the instability. The numerical
solutions computed exhibit effects known to happen in aggregation processes,
such as fingering, but as the system is based on a diffuse interfaces, the patterns
occur on a large scale. The model will provide further insight when solutions
are computed for smaller ε and on longer time scales.
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Figure 1: λx = 0, λy = 200, σx = 5 at times t = 0.0547, 0.11615, 0.17925.
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ed., Birkhäuser Verlag, 1989.



20 A coupled Cahn-Hilliard particle system EJDE–2002/73

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3: λx = 50, λy = 200, σy = 5 at times t = 0.0547, 0.1094, 0.164, 0.21880.

[8] M. Kardar, G. Parisi, and Y. Zhang, Dynamic scaling of growing
interfaces, Physics Review Letters, 56 (1986), pp. 889–892.

[9] P. Keblinski, A. Maritan, F. Toigo, H. Koplik, and J. R. Banavar,
Dynamics of rough surfaces with an arbitrary topology, Physical Review E,
49 (1994).

[10] P. Keblinski, A. Maritan, F. Toigo, R. Messier, and J. R. Ba-

navar, Continuum model for the growth of interfaces, Physical Review E,
53 (1996), pp. 759–777.

[11] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two
nonlinear operators, SIAM, J. Numer. Anal., 16 (1979), pp. 964–979.

[12] L. Sander, Continuum DLA: random fractal growth generated by a deter-
ministic model, in Fractals in physics, L. Pietronero and E. Tosatti, eds.,
North-Holland, 1986, pp. 241–246.



EJDE–2002/73 Tony Shardlow 21

[13] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and
Physics, vol. 68 of Applied Mathematical Sciences, Springer-Verlag, 1988.

Tony Shardlow

Department of Mathematical Sciences,
Science Laboratories, South Road,
Durham University, Durham DH1 3LE, UK
e-mail: Tony.Shardlow@durham.ac.uk


