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Generalized solutions to parabolic-hyperbolic

equations ∗

Lazhar Bougoffa & Mohamed Said Moulay

Abstract

We study boundary-value problems for composite type equations: pa-
rabolic-hyperbolic equations. We prove the existence and uniqueness of
generalized solutions, using energy inequality and the density of the range
of the operator generated by the problem.

1 Introduction

The equations of compsite type, as independent mathematical objects, arose first
in the works of Hadamard [10]. Then they were continued by Sjostrand [11],
and other [4, 7, 8]. In all these works the equations in question are investigated
mainly in the plane and with the model operators in the principal part.

In recent years, special equations of composite type have received attention in
several papers. Most of the papers were directed to parabolic-elliptic equations,
and to hyperbolic-elliptic equations, see for instance [3, 5, 6]. Motivated by
this, we study a boundary-value problem for a class of composite equations of
parabolic-hyperbolic type.

Let Ω be a bounded domain in Rn with sufficiently smooth boundary ∂Ω.
Points in this space are denoted by x = (x1, x2, . . . , xn). In the cylinder Q =
Ω× (0, T ), we consider the boundary-value problem

lu := (
∂

∂t
−∆)(

∂2u

∂t2
−∆u) = f(x, t), on Q,

u(x, 0) =
∂u

∂t
(x, 0) =

∂2u

∂t2
(x, 0) = 0, on Ω,

∂u

∂υ
=

∂3u

∂υ3
= 0, on S

(1.1)

where S = ∂Ω× (0, T ), υ is the unit exterior vector, and ∆ =
∑n

i=1
∂2

∂x2
i
.
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The aim is to prove existence and uniqueness of a generalized solution to the
above equation. The proof is based on an energy inequality and the density of
the range of the operator generated by this problem.

Analogous to problem (1.1), we consider its dual problem. We denote by
l∗ the formal dual of the operator l, which is defined with respect to the inner
product in the space L2(Q) using

(lu, v) = (u, lv) for all u, v ∈ C3,4
0 (Q), (1.2)

where (, ) is the inner product in L2(Q). We consider the dual problem (1.3):

l∗v := (− ∂

∂t
−∆)(

∂2v

∂t2
−∆v) = g(x, t), on Q,

v(x, T ) =
∂v

∂t
(x, T ) =

∂2v

∂t2
(x, T ) = 0, on Ω,

∂v

∂υ
=

∂3v

∂υ3
= 0, on S

(1.3)

2 Functional Spaces

The domain D(l) of the operator l is D(l) = H3,4
+ (Q), the subspace of the

Sobolev space H3,4(Q), which consists of all the functions u ∈ H3,4(Q) satisfying
the conditions of (1.1).

The domain of l∗ is D(l∗) = H3,4
− (Q), which consists of functions v ∈

H3,4(Q) satisfying the conditions of (1.3).
Let H2,3

σ (Q) be the Sobolev space

H2,3
σ (Q) =

{
u ∈ H1

0 (Q) : σ(t)1/2utt ∈ L2(Q), σ(t)1/2∇ut ∈ L2(Q),

∇ut ∈ L2(Q), σ(t)∇utt ∈ L2(Q), σ(t)∆ut ∈ L2(Q),

∆u ∈ L2(Q), σ(t)1/2∆ut ∈ L2(Q), σ(t)1/2∇∆u ∈ L2(Q)
}

,

where σ(t) = (T − t). We introduce the function space H2,3
0,σ(Q) =

{
u ∈

H2,3
σ (Q) satisfying the conditions of (1.1)

}
.

Note that H2,3
0,σ(Q) is Hilbert space with the inner product:

(u, v)σ =(u, v)1 + (utt, vtt)0,σ + (∇ut,∇vt)0,σ + (∇ut,∇vt)0
+ (∆u, ∆v)0 + (∆ut,∆vt)0,σ + (∇∆u,∇∆v)0,σ

where the symbols (, )0, (, )1, and (, )0,σ denote the inner product in L2(Q),
H1(Q), and L2,σ(Q) respectively. This space is equipped with the norm

‖u‖2
2,3,σ =

∫
Q

[u2 + u2
t + |∇u|2]dx dt +

∫
Q

[|∇ut|2 + (∆u)2]dx dt

+
∫

Q

(T − t)[u2
tt + |∇ut|2 + (∆ut)2 + (∇∆u)2]dx dt.
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The dual of this space is denoted by H−2,−3
σ (Q) with respect to the canonical

bilinear form 〈u, v〉 for u ∈ H2,3
0,σ(Q) and v ∈ H−2,−3

σ (Q), which is the extension
by continuity of the bilinear form (u, v), where u ∈ L2(Q) and v ∈ H2,3

0,σ(Q).

Definition The solution of (1.1) will be seen as a solution of the operational
equation

lu = f, u ∈ D(l). (2.1)

The solution of (1.3) will be seen as a solution of the operational equation

l∗v = g, v ∈ D(l). (2.2)

To solve the equation (2.1) for every f ∈ H−2,−3
σ (Q), we construct, through

the bilinear form v → au(v) = 〈l∗v, u〉 for all v ∈ D(l), the extension L of
the operator l, whose range R(L) coincides with H−2,−3

σ (Q), meaning that L is
invertible.

Then we have the fundamental relation 〈l∗v, u〉 = 〈v, Lu〉 for all u ∈ D(l) and
all ∈ H2,3

0,σ(Q), which is obtained by analytic form of Hann-Banach’s theorem.
In the same manner, we construct, through the bilinear form: u → av(u) =

〈v, lu〉 for all u ∈ D(l), the extension L∗ of the operator l∗. We obtain,

〈v, lu〉 = 〈L∗v, u〉, ∀u ∈ H2,3
0,σ(Q),∀v ∈ D(L∗).

We denote the norm of Lu in H−2,−3
σ (Q) by ‖Lu‖−2,−3,σ.

Definition The solution of the operational equation

Lu = f, u ∈ D(L),

is called generalized solution of (1.1), and the solution of the operational equa-
tion

L∗v = g, v ∈ D(L∗),

is called generalized solution of (1.3).

3 A priori estimates

Theorem 3.1 For Problem (1.1), we have the following a priori estimates:

‖u‖2,3,σ ≤ c‖Lu‖−2,−3,σ, ∀u ∈ D(L), (3.1)

‖v‖2,3,σ ≤ c∗‖L∗v‖−2,−3,σ, ∀v ∈ D(L∗), (3.2)

where the positive constants c and c∗ are independent of u and v.
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Proof. We first prove the inequality (3.1) for the functions u ∈ D(l). For
u ∈ D(l) define the operator

Mu = Φ(t)utt − Φ(t)∆ut,

where Φ(t) = (t − T )2. Consider the scalar product (lu,Mu)0. Employing
integration by parts and taking into account of conditions of (1.1), we see that

(lu, (t− T )2utt)0 =
∫

Q

(T − t)(utt)2dxdt +
∫

Q

(T − t)|∇ut|2dx dt

+
∫

Q

(T − t)2|∇utt|2dx dt +
∫

Q

(∆u)2dx dt

−
∫

Q

(T − t)2(∆ut)2dx dt

(3.3)

and

(lu,−(t− T )2∆ut)0

= −
∫

Q

(T − t)2|∇utt|2dx dt +
∫

Q

|∇ut|2dx dt +
∫

Q

(T − t)2(∆ut)2dx dt

+
∫

Q

(T − t)(∆ut)2dxdt +
∫

Q

(T − t)(∇∆u)2dx dt .

(3.4)

Hence

(lu, (t− T )2utt − (t− T )2∆ut)0

=
∫

Q

(T − t)(utt)2dx dt +
∫

Q

(T − t)|∇ut|2dx dt +
∫

Q

(∆u)2dx dt

+
∫

Q

|∇ut|2dx dt +
∫

Q

(T − t)(∆ut)2dx dt +
∫

Q

(T − t)(∇∆u)2dx dt

(3.5)

For the function u ∈ D(l), we have the following Poincaré estimates∫
Q

u2dx dt ≤ 4T 2

∫
Q

u2
t dx dt, ∀u ∈ D(l),∫

Q

u2
t dx dt ≤ 4T

∫
Q

(T − t)u2
ttdx dt, ∀u ∈ D(l)∫

Q

|∇u|2dx dt ≤ 4T

∫
Q

(T − t)|∇ut|2dx dt, ∀u ∈ D(l).

(3.6)

We now apply the ε-inequality to the left hand side of (3.5). Using inequalities
(3.6), we obtain (3.1).

For u ∈ D(L), we use the regularization operators of Freidrich [2, 9] to
conclude (3.1). This completes the proof. �
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4 Solvability Problem

Theorem 4.1 For each function f ∈ H−2,−3
σ (Q) (resp. g ∈ H−2,−3

σ (Q)) there
exists a unique solution of (1.1) (resp.(1.3) ).

Proof. The uniqueness of the solution follows immediately from inequality
(3.1). This inequality also ensures the closure of the range R(L) of the operator
L. To prove that R(L) equals the space H−2,−3

σ (Q), we obtain the inclusion
R(L) ⊆ R(L), and R(L) = H−2,−3

σ (Q). Indeed, let {fk}k∈N be a Cauchy
sequence in the space H−2,−3

σ (Q) , which consists of elements of setR(L). Then
it corresponds to a sequence {uk}k∈N ⊆ D(L) such that: Luk = fk, k ∈ N.

From the inequality (3.1), we conclude that the sequence {uk} is also a
Cauchy sequence in the space H−2,−3

σ (Q and converges to an element u in
H2,3

0,σ(Q).
It remains to obtain the density of the setR(L) in the space H−2,−3

σ (Q) when
u belongs to D(L). Therefore, we establish an equivalent result which amounts
to proving that R(L)⊥ = {0}.

Indeed, let v ∈ H−2,−3
σ (Q) be such that 〈Lu, v〉 = 0 for all u ∈ D(L), that

is 〈l∗v, u〉 = 0 for all u ∈ D(L). By virtue of the equality 〈l∗v, u〉 = (v, Lu) for
all u ∈ D(L), we have 〈v, Lu〉 = 0 for all u ∈ D(L) and v ∈ H−2,−3

σ (Q). From
the last equality, by virtue of the estimate (3.2), we conclude that v = 0 in the
space H−2,−3

σ (Q) when u belongs to D(L).
The second part of the theorem can be proved in a similar way by using the

operator M∗v = t2vtt − t2∆vt. �
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I. Arkiv Math., Astr. Och Fisik 26A(1)(1937), 1-11.

Lazhar Bougoffa (email: abogafah@kku.edu.sa)
Mohamed Said Moulay (email: msmolai@kku.edu.sa)
King Khalid University
Department of Mathematics
P.O. Box 9004, Abha, Saudi Arabia.


