
Electronic Journal of Differential Equations, Vol. 2003(2003), No. 100, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

GLOBAL ATTRACTOR FOR AN EQUATION MODELLING A
THERMOSTAT

RITA DE CÁSSIA D. S. BROCHE, L. AUGUSTO F. DE OLIVEIRA,

& ANTÔNIO L. PEREIRA

Abstract. In this work we show that the system considered by Guidotti and

Merino in [2] as a model for a thermostat has a global attractor and, assuming
that the parameter is small enough, the origin is globally asymptotically stable.

1. Introduction

The purpose of this note is to answer a question proposed by Guidotti and
Merino [2], concerning the global stability for the trivial solution of the nonlinear
and nonlocal boundary-value problem

ut = uxx, x ∈ (0, π) t > 0

ux(0, t) = tanh(βu(π, t)), t > 0 β > 0

ux(π, t) = 0, t > 0

u(x, 0) = u0(x), x ∈ (0, π).

(1.1)

This problem was proposed in [2] as a rudimentary model for a thermostat. To
achieve this goal, we first show the existence of a global compact attractor Aβ for
(1.1), for any positive value of the parameter β. We then prove that Aβ = {0}
if 0 < β < 1/π, thus showing that the trivial solution is globally asymptotically
stable in the phase space, for these values of β.

2. Global semi-flux in a fractional power space Xα

As in [2] we adopt here the following weak formulation for (1.1): u is a solution
of (1.1) if ∫ π

0

utϕdx +
∫ π

0

uxϕxdx = − tanh(βu(π))ϕ(0), t > 0,

u(0) = u0,

(2.1)

for all ϕ ∈ H1(0, π) = H1.
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Consider the linear operator A ∈ L(H1, (H1)′) induced by the continuous bilin-
ear form a(·, ·) : H1 ×H1 → R given by a(u, v) = ((u, v))H1 , that is,

〈Au, v〉(H1)′×H1 = a(u, v) = ((u, v))H1 ,∀u, v ∈ H1.

We may interpret A as the unbounded closed nonnegative self-adjoint operator
A : D(A) ⊂ L2(0, π) → L2(0, π) = L2 defined by

Au(x) = −u′′(x) + u(x), x ∈ (0, π),

for any u ∈ D(A) = {u ∈ H2(0, π) : u′(0) = u′(π) = 0}. Let {λn} and {en} denote
the eigenvalues and eigenfuctions of A, respectively. As it is easy to see, A is a
sectorial operator in L2(0, π) and, therefore, its fractional powers are well defined
(cf. Henry [4]). Let Xα = D(Aα), α ≥ 0, be the domain of Aα. It is well known
that Xα endowed with the inner product

(u, v)α = (Aαu, Aαv)L2 =
∞∑

n=0

|λn|2α(u, en)L2(v, en)L2

is a Hilbert space. In particular, we have X0 = L2, X1 = D(A) and X1/2 = H1.
Following Amann [1] or Teman [5] we have, for any θ ∈ [0, 1]

X
1−θ
2 = [H1, L2]θ,

where [·, ·]θ denotes the complex interpolation functor. On the other hand, for any
s ∈ [0, 1],

Hs(0, π) = [H1, L2]1−s.

Letting θ = 1− s, we obtain Xα = H2α, for any α ∈ [0, 1/2].
Denoting X−1/2 =

(
X1/2

)′
= (H1)′ and considering the linear operator A ∈

L(H1, (H1)′) as a unbounded operator in (H1)′ = X−1/2 given by D(A) = X1/2

and
〈Au, ϕ〉−1/2,1/2 = (u, ϕ)1/2 = ((u, ϕ))H1 ,

for any u, ϕ ∈ H1 = X1/2, we rewrite equation (2.1) as an evolution equation

ut = −Au + F (u) in X−1/2 t > 0,

u(0) = u0

(2.2)

where F : Xα → X−1/2 is defined by

〈F (u), ϕ〉−1/2,1/2 = − tanh(βu(π))ϕ(0) +
∫ π

0

uϕdx,

for u ∈ Xα and ϕ ∈ X1/2 , that is, F (u) = −γ∗0 tanh(βγπ(u)) + u in X−1/2, where
γπ ∈ L(Xα, R) is given by γπ(u) = u(π) and γ∗0 ∈ L(R, X−1/2) is the adjoint
operator of γ0 ∈ L(X1/2, R) given by γ0(u) = u(0).

To have a well-posed problem in Xα, we make some restrictions on α. We
impose first that Xα ↪→ C([0, π]), which is accomplished by requiring that α > 1/4.
Now, according to [1, 4], −A is the infinitesimal generator of an analytic semigroup
{e−At; t ≥ 0} in L(X−1/2); since F maps Xα into X−1/2, we impose also that
0 ≤ α − (− 1

2 ) < 1. It turns out that the condition 1
4 < α < 1

2 implies that
(2.2) has an unique global solution u : [0,∞) → Xα, for any u0 ∈ Xα. This follows
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immediately from Theorem 3.3.3 in [4] and from the fact that F is globally Lipschitz
continuous:

|〈F (u)− F (v), ϕ〉−1/2,1/2|
≤ | tanh(βγπ(u))− tanh(βγπ(v))||ϕ(0)|+ |(u− v, ϕ)L2 |
≤ β‖γπ‖L(Xα,R)‖γ0‖L(X1/2,R)‖u− v‖α‖ϕ‖1/2 + ‖u− v‖L2‖ϕ‖L2

≤
(
β‖γπ‖L(Xα,R)‖γ0‖L(X1/2,R) + k

)
‖u− v‖α‖ϕ‖1/2,

for all ϕ in X1/2 and any u, v in Xα, which implies

‖F (u)− F (v)‖−1/2 ≤ K‖u− v‖α,

for all u, v ∈ Xα, where K =
(
β‖γπ‖L(Xα,R)‖γ0‖L(X1/2,R) + k

)
and k is the em-

bedding constant of Xα in L2.
Since F maps bounded sets of Xα into bounded sets of X−1/2, it follows by [4,

Theorem 3.3.4] that the flow defined by (2.2) is global.

3. Main Results

We denote by {T (t); t ≥ 0} ⊂ L(X−1/2) the semigroup generated by (2.2).
Since the spectrum of A : X1/2 ⊂ X−1/2 → X−1/2 is given by σ(A) = {n2 + 1;n =
0, 1, ...}, for any 0 < δ < 1, we have, by [4, Theorem 1.4.3],

‖e−At‖L(X−1/2) ≤ Ce−δt, ‖Aαe−At‖L(X−1/2) ≤ Cαt−αe−δt, (3.1)

for t > 0. Since

|〈F (u), ϕ〉−1/2,1/2| ≤ | tanh(βu(π))||ϕ(0)| + |(u, ϕ)L2 |
≤ |ϕ(0)|+ ‖u‖L2‖ϕ‖L2

≤
√

2π‖ϕ‖1/2 + ‖u‖L2‖ϕ‖1/2,

for all ϕ ∈ X1/2, we have that for all u ∈ Xα,

‖F (u)‖−1/2 ≤
√

2π + ‖u‖L2 . (3.2)

Lemma 3.1. Let β ∈ (0,∞), α ∈ (1/4, 1/2). Denote by Bε the ball with center 0
and radius π(

√
π + ε) in L2. Then we have

(1) For any u0 ∈ Xα there exists t∗ = t∗(u0), depending only on the L2-norm
of u0, such that the positive semiorbit T (t)u0 is in Bε for t ≥ t∗(u0);

(2) While T (t)u0 is outside Bε its L2-norm is decreasing.

Proof. Let u0 ∈ Xα, ε > 0 and, for simplicity, denote by u(·, t) = T (t)u0 the
solution of (1.1) through u0. Then, we have

d

dt

1
2

∫ π

0

u(x, t)2dx =
∫ π

0

u(x, t)ut(x, t)dx

= − tanh(βu(π, t))u(0, t)−
∫ π

0

ux(x, t)2dx, t > 0.

(3.3)

To obtain estimates for this derivative we consider the subsets

S1(u0) = {t ∈ (0,∞) : u(0, t)u(π, t) ≥ 0},
S2(u0) = {t ∈ (0,∞) : u(0, t)u(π, t) < 0} = (0,∞) \ S1(u0).
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If t ∈ S2(u0), there exists y(t) ∈ (0, π) such that u(y(t), t) = 0 and then

|u(x, t)| ≤ |u(y(t), t)|+
∫ π

0

|ux(x, t)|dx ≤
√

π‖ux(·, t)‖L2 ,

for all x ∈ [0, π]. Therefore,

‖u(·, t)‖2
L2 ≤ π2‖ux(·, t)‖2

L2 ,

for any t ∈ S2(u0). Hence, for all t ∈ S2(u0),

d

dt

1
2
‖u(·, t)‖2

L2 = | tanh(βu(π, t))||u(0, t)| − ‖ux(·, t)‖2
L2

≤
√

π‖ux(·, t)‖L2 − ‖ux(·, t)‖2
L2 .

(3.4)

If ‖u(·, t)‖L2 > π(
√

π + ε), then

d

dt

1
2
‖u(·, t)‖2

L2 ≤ −ε(
√

π + ε). (3.5)

To compute the derivative when t ∈ S1(u0), we need to estimate ‖ux(·, t)‖L2 . Let
m : (0,∞) → R+ be the continuous function m(t) = min {|u(0, t)|, |u(π, t)|} and

J(u0) =
{
t ∈ S1(u0), m(t) ≤ 1

2π
‖u(·, t)‖L2

}
.

From

|u(x, t)| ≤ min {|u(0, t)|, |u(π, t)|}+
∫ π

0

|ux(x, t)|dx

for x ∈ [0, π] and t > 0, we have

‖u(·, t)‖2
L2 ≤ π

(
m(t) +

√
π‖ux(·, t)‖L2

)2 ≤ 2π2
(
m(t)2 + ‖ux(·, t)‖2

L2

)
.

Therefore,

‖ux(·, t)‖2
L2 ≥

1
2π2

‖u(·, t)‖2
L2 −m(t)2.

Thus, if t ∈ J(u0), then

‖ux(·, t)‖2
L2 ≥

1
2π2

‖u(·, t)‖2
L2 −

1
4π2

‖u(·, t)‖2
L2 =

1
4π2

‖u(·, t)‖2
L2 .

Therefore, for all t ∈ J(u0),

d

dt

1
2
‖u(·, t)‖2

L2 = − tanh(βu(π, t))u(0, t)− ‖ux(·, t)‖2
L2

≤ −‖ux(·, t)‖2
L2

≤ − 1
4π2

‖u(·, t)‖2
L2 .

(3.6)

If ‖u(·, t)‖L2 > π(
√

π + ε), we obtain

d

dt

1
2
‖u(·, t)‖2

L2 ≤ −1
4
(
√

π + ε)2 (3.7)
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On the other hand, if t ∈ S1(u0) \ J(u0), then

d

dt

1
2
‖u(·, t)‖2

L2 = − tanh(βu(π, t))u(0, t)− ‖ux(·, t)‖2
L2

≤ − tanh(βu(π, t))u(0, t)

= − tanh(β|u(π, t)|)|u(0, t)|

≤ − tanh
(β‖u(·, t)‖L2

2π

)‖u(·, t)‖L2

2π

(3.8)

If ‖u(·, t)‖L2 > π(
√

π + ε), we obtain

d

dt

1
2
‖u(·, t)‖2

L2 ≤ − tanh
(β(

√
π + ε)
2

) (
√

π + ε)
2

(3.9)

Letting ε1 = min
{
ε(
√

π+ε), 1
4 (
√

π+ε)2, tanh
(β(

√
π+ε)
2

) (
√

π+ε)
2

}
, we conclude using

(3.5), (3.7) and (3.9), that

d

dt
‖u(·, t)‖2

L2 ≤ −2ε1 (3.10)

This proves our second assertion.
Suppose u(t, u0) is outside Bε for 0 ≤ t ≤ t̄. Then ‖u(·, t̄)‖2

L2 ≤ ‖u0‖2
L2 − 2ε1t̄.

Therefore, there must exist a t∗ = t∗(u0) ≤ 1
2ε1

(
‖u0‖2

L2 − π2(
√

π + ε)2
)

such that
u(·, t∗) belongs to Bε. We claim that ‖u(·, t)‖L2 ≤ π(

√
π + ε) for all t ≥ t∗.

Otherwise, there would exist t1 ≥ t∗ and δ > 0 such that ‖u(·, t1)‖L2 = π(
√

π + ε)
and ‖u(·, t)‖L2 > π(

√
π + ε) for t ∈ (t1, t1 + δ), which is a contradiction with the

fact that t 7→ ‖u(·, t)‖L2 is non increasing. This proves our first assertion. �

Theorem 3.2. If β ∈ (0,∞) and α ∈ (1/4, 1/2), then {T (t); t ≥ 0} has a global
attractor Aβ.

Proof. . Let u0 ∈ Xα and u(·, t) = T (t)u0. By the variation of constant formula
and estimates (3.1), (3.2), we have

‖u(·, t)‖α ≤ Ce−δt‖u0‖α + Cα

∫ t

0

e−δ(t−s)(t− s)−α‖F (u(·, s))‖−1/2ds,

≤ Ce−δt‖u0‖α + Cα

∫ t

0

e−δ(t−s)(t− s)−α(
√

2π + ‖u(·, s)‖L2)ds.

(3.11)
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If t∗(u0) is as given by Lemma 3.1, for t > t∗ we have

‖u(·, t)‖α ≤ Ce−δt‖u0‖α + Cα

∫ t∗

0

e−δ(t−s)(t− s)−α(
√

2π + ‖u(·, s)‖L2)ds

+ Cα

∫ t

t∗
e−δ(t−s)(t− s)−α(

√
2π + ‖u(·, s)‖L2)ds

≤ Ce−δt‖u0‖α + Cα

∫ t∗

0

e−δ(t−s)(t− s)−α(
√

2π + ‖u(·, s)‖L2)ds

+ Cα(
√

2π + π(
√

π + ε))
∫ ∞

0

e−δ(t−s)(t− s)−αds

≤ Ce−δt‖u0‖α + Cαe−δt(
√

2π + ‖u0‖L2)
∫ t∗

0

eδs(t− s)−αds + M1

≤ e−δt
(
C‖u0‖α + Cα(

√
2π + ‖u0‖L2)eδt∗(t∗)1−α(1− α)−1

)
+ M1,

(3.12)
where M1 = Cα(

√
2π +π(

√
π + ε))

∫∞
0

e−δ(t−s)(t− s)−αds. From this formula, and
the continuous inclusion of Xα in L2, it is easy to see that one can choose t1 > 0,
depending only on the norm of u0 in Xα, so that

‖u(·, t)‖α ≤ 2M1,

for all t ≥ t1 and, therefore, the semigroup {T (t); t ≥ 0} is bounded dissipative.
If t < t∗ the same estimate (without the last term and with t in the place of t∗)

shows that

‖u(·, t)‖α ≤ e−δtC‖u0‖α + Cα(
√

2π + ‖u0‖L2)t1−α(1− α)−1 (3.13)

From 3.12 and 3.13 it follows that orbits of bounded sets are bounded. Since A has
compact resolvent and F maps bounded sets in Xα into bounded sets in X−1/2,
it follows from [3, Theorem 4.2.2] that T (t) is compact for all t > 0. The result
follows then from [3, Theorem 3.4.6]. �

Remark 3.3. We observe that 3.12 above also gives an estimate for the size of the
attractor.

Theorem 3.4. If β ∈ (0, 1/π) and α ∈ (1/4, 1/2), then Aβ = {0}.
Proof. Let ε > 0 be given. We will use the estimates obtained in Lemma 3.2 for
the decay of the L2-norm of a solution u(·, t) when t ∈ S1(u0). If t ∈ S2(u0), we
have

d

dt

1
2
‖u(·, t)‖2

L2 = | tanh(βu(π, t))||u(0, t)| − ‖ux(·, t)‖2
L2

≤ β|u(π, t))||u(0, t)| − ‖ux(·, t)‖2
L2

≤ β
(√

π‖ux(·, t)‖L2

)2 − ‖ux(·, t)‖2
L2

≤ (βπ − 1)‖ux(·, t)‖2
L2

≤ −1− βπ

π2
‖u(t)‖2

L2

(3.14)

If ‖u(·, t)‖L2 ≥ ε and ε2 = min
{

1−βπ
π2 ε2, ε2

4π2 , tanh
(

βε
2π

) (
ε
2π

) }
, we obtain using

(3.14), (3.6) and (3.8), that
d

dt
‖u(·, t)‖2

L2 ≤ −2ε2. (3.15)
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Suppose ‖u(·, t)‖L2 ≥ ε for 0 ≤ t ≤ t̄. Then ‖u(·, t̄)‖2
L2 ≤ ‖u0‖2

L2 − 2ε2t̄. Therefore,
there must exist a t∗ = t∗(u0) ≤ 1

2ε2

(
‖u0‖2

L2 − ε2
)

such that ‖u(·, t)‖L2 ≤ ε for
t ≥ t∗.

Since the attractor Aβ is a bounded subset of L2, there exists t∗(ε) such that
Aβ = T (t∗)Aβ ⊂ Vε, where Vε is the ball of radius ε in L2. Since ε is arbitrary, we
conclude that Aβ = {0} as claimed. �
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