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GLOBAL ATTRACTOR FOR AN EQUATION MODELLING A
THERMOSTAT

RITA DE CASSIA D. S. BROCHE, L. AUGUSTO F. DE OLIVEIRA,
& ANTONIO L. PEREIRA

ABSTRACT. In this work we show that the system considered by Guidotti and
Merino in [2] as a model for a thermostat has a global attractor and, assuming
that the parameter is small enough, the origin is globally asymptotically stable.

1. INTRODUCTION

The purpose of this note is to answer a question proposed by Guidotti and
Merino [2], concerning the global stability for the trivial solution of the nonlinear
and nonlocal boundary-value problem

Ut = Ugz, € (0,m)t>0
uz(0,t) = tanh(Bu(mr,t)), ¢>05>0
ugy(m,t) =0, t>0
u(z,0) = up(x), =z € (0,m).

(1.1)

This problem was proposed in [2] as a rudimentary model for a thermostat. To
achieve this goal, we first show the existence of a global compact attractor Ag for
(1.1), for any positive value of the parameter 5. We then prove that Ag = {0}
if 0 < 8 < 1/, thus showing that the trivial solution is globally asymptotically
stable in the phase space, for these values of f3.

2. GLOBAL SEMI-FLUX IN A FRACTIONAL POWER SPACE X¢

As in [2] we adopt here the following weak formulation for (1.1): u is a solution
of (1.1) if

/ uppdx —I—/ Uz dr = —tanh(Bu(r))p(0), t > 0,
0 0

u(0) = up,

(2.1)

for all p € H'(0,7) = H*.
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Consider the linear operator A € L(H?!, (H')") induced by the continuous bilin-
ear form a(-,-) : H' x H' — R given by a(u,v) = ((u,v)) g1, that is,

(Au, )y = alu,v) = ((4,0) g1, Vu,0 € H.

We may interpret A as the unbounded closed nonnegative self-adjoint operator
A:D(A) C L*(0,7) — L?(0,7) = L? defined by

Au(z) = —u" (x) + u(z),z € (0,7),

for any u € D(A) = {u € H?(0,7) : v'(0) = v/(7) = 0}. Let {\,} and {e,} denote
the eigenvalues and eigenfuctions of A, respectively. As it is easy to see, A is a
sectorial operator in L2(0,7) and, therefore, its fractional powers are well defined
(cf. Henry [4]). Let X* = D(A%), o > 0, be the domain of A%. It is well known
that X“ endowed with the inner product

(u,v)o = (A%, A%) Z [An | (u,en)r2(v,en) 2

is a Hilbert space. In particular, we have X0 = L?, X' = D(A) and X'/2 = H'
Following Amann [1] or Teman [5] we have, for any 6 € [0, 1]

X'z = [H', L7y,

where [, -]y denotes the complex interpolation functor. On the other hand, for any

s €10,1],
HS(O77T) = [H17L2]1—
Letting 6 = 1 — s, we obtain X = H?*, for any a € [0,1/2].

Denoting X /2 = (Xl/z)/ = (H') and considering the linear operator A €
L(H',(H")') as a unbounded operator in (H')' = X /2 given by D(A) = X!/?
and

(Au, </9>—1/2,1/2 = (u, 90)1/2 = ((u, ) m

for any u,p € H' = X'/2 we rewrite equation (2.1) as an evolution equation

up = —Au+ F(u) in X~ Y2¢>0,

w(0) = g (2.2)

where F : X — X~1/2 is defined by
(P0),)-1/21/2 = — tanh(Bu(m))p(0) + | wpd.
0

for u € X and ¢ € X'/2 | that is, F(u) = —§ tanh(B7vx(u)) +u in X /2 where
Ve € L(X* R) is given by v.(u) = u(r) and 7§ € L(R,X~'/2) is the adjomt
operator of vy € L(X'/2 R) given by yo(u) = u(0).

To have a well-posed problem in X, we make some restrictions on «. We
impose first that X < C([0, 7]), which is accomplished by requiring that o > 1/4.
Now, according to [1, 4], —A is the infinitesimal generator of an analytic semigroup
{e=Att > 0} in £L(X/?); since F maps X® into X ~'/2, we impose also that

1 1 1

0 < a—(-3) <1 It turns out that the condition § < o < ;5 implies that

(2.2) has an unique global solution u : [0,00) — X, for any ug € X*. This follows
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immediately from Theorem 3.3.3 in [4] and from the fact that F is globally Lipschitz
continuous:

[(F(u) = F(v),0)-1/2,1/2]

< [tanh(Byx(u)) — tanh(Byx(v)[lp(0)] + (v — v, ) 2]

< Bllvellccxemlolleerzrmllu = vllallelyz + llu = vz @]l

< (Blvellecxa wllvollexiz gy + k) llu = vllallellyz,
for all ¢ in X'/2 and any w, v in X, which implies

1F(u) = F(v)ll-1/2 < Kllu = vlla,

for all u,v € X“, where K = (/BHP)/WH,C(XQ,R)HPYOH;C(XI/?’R) + k) and k is the em-
bedding constant of X< in L2.

Since F' maps bounded sets of X into bounded sets of X ~1/2 it follows by [4,
Theorem 3.3.4] that the flow defined by (2.2) is global.

3. MAIN RESULTS

We denote by {T(t); t > 0} C L£(X~!/2) the semigroup generated by (2.2).
Since the spectrum of A : X'/2 ¢ X~1/2 — X~1/2 is given by 0(A) = {n>+1;n =
0,1,...}, for any 0 < § < 1, we have, by [4, Theorem 1.4.3],

le™ | gx-1/2) < Ce™, A% M| gx-1/2) < Cat ™™™, (3.1)
for ¢ > 0. Since
[(F(u), #)-1/2,1/2| < |tanh(Bu(m))[[0(0)] + |(u, @)L
< (O)] + llullz2 @]l 22
< V2rlelliye + lull ezl 2.
for all ¢ € X'/2, we have that for all u € X,
IF(u)l|—1/2 < V2m + [|ull 2 - (3.2)

Lemma 3.1. Let 8 € (0,00), o € (1/4,1/2). Denote by B, the ball with center 0
and radius 7(\/7 + €) in L?. Then we have

(1) For any up € X there exists t* = t*(ug), depending only on the L*-norm
of ug, such that the positive semiorbit T'(t)ug is in Be for t > t*(ug);
(2) While T(t)uq is outside B. its L?>-norm is decreasing.

Proof. Let ug € X, ¢ > 0 and, for simplicity, denote by u(-,t) = T(t)up the

solution of (1.1) through uy. Then, we have
o [ utwras = [ e ugea

dt20uz, xfouas, ug(z, t)dx

. (33)
— _ tanh(Bu(r, £))u(0, 1) — /O e (2, )2d, £ > 0,

To obtain estimates for this derivative we consider the subsets
Sl(uo) = {t € (Oa OO) : U(O,t)u(ﬂ',t) > 0}7
Sa(ug) = {t € (0,00) : u(0,¢)u(m,t) < 0} = (0,00) \ Sy (uo).
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If t € Sa(ug), there exists y(t) € (0, ) such that u(y(t),t) = 0 and then

lu(z, )] < |U(y(t),t)|+/ uz (2, t)|dr < V/rlus(, 1) L2,
0
for all z € [0, 7]. Therefore,
lu( )72 < 7 us( 72,

for any ¢t € Sa(up). Hence, for all ¢ € Sa(ug),

()32 = | tanh(Bu(r, )] (0, ) — e (- 1) 32 -
< Vs Ollze — s DI
If ||u(-, t)|| 2 > w(y/7 + €), then
Bl < (v + ). (35)

To compute the derivative when ¢ € Sq(ug), we need to estimate ||ug (-, ¢)||z2. Let
m : (0,00) — RT be the continuous function m(t) = min {|u(0,t)], |u(m,t)|} and

Tuo) = {t € $1(u0), m(t) < 5=l 1)l 22}
From
|u(z, )] < min{[u(0, )], [u(m, )]} + /07r |ug (2, t)|dx
for x € [0, 7] and t > 0, we have
a2 < 7 (m(t) + Valua - 8)llz2)* < 202 (m(t)? + (- )]32) -
Therefore,
e (- )72 > #Hu(wt)HQp —m(t)*.

Thus, if ¢ € J(ug), then

1 1 1
2 2 2 _ 2
a3 > gl )13 — gl 32 = prglhut )1
Therefore, for all t € J(ug),
d1 9 9
S 1uC Ollze = —tanh(Bu(m, ))u(0, 1) — flua (-, )|z
< —Jlua ()17 (3.6)
1
< —QHU('J)HZL%
If |lu(-,t)|| 2 > m(\/7 + €), we obtain
d1 1
3Dl < ~ (V7 +)? (3.7
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On the other hand, if ¢t € Sy (ug) \ J(up), then

& Bl12 = — tanh(Bu(r, )u0,£) — flus ()32
< —tanh(Bu(m, t))u(0,t)
— — tanh(Blu(r, ) )|ul0, 1) (38)
<t (B P D
If ||u(-, t)|| 2 > 7(y/7 + €), we obtain
& )1 < —taan (PVTHI) WVTE (3.9)

Letting €1 = min {e(\/7T+¢), ;(v/7T+¢)?, tanh (W) L;LE)}, we conclude using
(3.5), (3.7) and (3.9), that

(03 < —221 (3.10)

This proves our second assertion.

Suppose u(t,ug) is outside B, for 0 < t < f Then ||u(-, f)||2L2 < uoll2s — 2e1t.
Therefore, there must exist a t* = t*(ug) < 251 (Jluol|3 . — 72(v/7 + €)?) such that
u(-,t*) belongs to B.. We claim that |u(-,t)||z < w(y/7m + ¢) for all ¢ > t*.
Otherwise, there would exist t; > ¢* and 6 > 0 such that |Ju(-,¢1)|/z2 = 7(v/7 + €)
and ||u(-,t)||p2 > w(y/7 +¢) for t € (t1,t1 + ), which is a contradiction with the
fact that t — |ju(-,t)|| L2 is non increasing. This proves our first assertion. O

Theorem 3.2. If § € (0,00) and o € (1/4,1/2), then {T'(t);t > 0} has a global
attractor Ag.

Proof. . Let up € X and u(-,t) = T(t)up. By the variation of constant formula
and estimates (3.1), (3.2), we have

t
[u(,)lla < Ce™uglla + Ca/ et —5) " F(ul-5)) || -1/2ds,
0 (3.11)

t
Ce™®uglla + Ca / e =) (t — 5)7(V2r + |Ju(-, 5)| £2)ds
0
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If t*(ug) is as given by Lemma 3.1, for ¢t > t* we have

-
[u(,t)lla < Ce™ uola + Ca/ eIt — 5) 7 (Vam + [lu(-, 5) | 2)ds
0

t
+ ca/ e 0= (1 — )7 (V2 + ||ul-, 8)|| 2 )ds
t

*

-
< Ce " ugfla + Ca / e It — 5) (V2 + Jul-, 5)|2)ds
0
+ Co (V21 + 7(VT +€)) / e U= (¢t — 5)ds
0

o
< Ce™®|ug|a + Cue 2 (V21 + Hu0||Lz)/ e (t — )" %ds 4+ M,
0

< (Clluolla + CalV3T + Juollz2)e™ ()~ (1 — 0) ™) + My,
(3.12)
where My = Co (V2 +m(y/T+¢€)) [, e °=*)(t — s)~*ds. From this formula, and
the continuous inclusion of X, in L2, it is easy to see that one can choose t; > 0,
depending only on the norm of uy in X, so that
”u("t)lla < 2M;,

for all ¢ > ¢; and, therefore, the semigroup {T'(t);t > 0} is bounded dissipative.
If ¢t < t* the same estimate (without the last term and with ¢ in the place of t*)
shows that

lu(-,t)lla < e Clluolla + Ca(V2r + [|ugl|2)t' (1 — a)~* (3.13)

From 3.12 and 3.13 it follows that orbits of bounded sets are bounded. Since A has
compact resolvent and F maps bounded sets in X® into bounded sets in X ~1/2,
it follows from [3, Theorem 4.2.2] that T'(¢) is compact for all ¢ > 0. The result
follows then from [3, Theorem 3.4.6]. O

Remark 3.3. We observe that 3.12 above also gives an estimate for the size of the
attractor.

Theorem 3.4. If 3 € (0,1/7) and o € (1/4,1/2), then Az = {0}.

Proof. Let € > 0 be given. We will use the estimates obtained in Lemma 3.2 for

the decay of the L?-norm of a solution u(-,t) when t € Sy(ug). If t € Sa(ug), we
have

%%Ilu(-,ﬂlliz — [tanh(Bu(, 6))][u(0, )] — [|ug (-, )]2
< Blu(m, ))][u(0, 6)] — [[ua (- )32
< B (Ve 0)122)? = (- 6)]|22 (3.14)
< (Br — Dua(, 0)]2
1 — B

IA

T 3
If Ju(-,t)||2 > € and g5 = min{l;g@”sQ,%,tanh (%) ()}, we obtain using

(3.14), (3.6)2and (3.8), that

d
ol )13 < —222 (3.15)



EJDE-2003/100 GLOBAL ATTRACTOR FOR AN EQUATION 7

Suppose [|u(-,t)||z2 > e for 0 <t < ¢ Then |u(-,€)||2, < |luo||32 — 2e2t. Therefore,
there must exist a t* = t*(ug) < % (Jluoll3 . — €?) such that [lu(-,t)[ 2 < e for
t>tr.

Since the attractor Ag is a bounded subset of L?, there exists t*(¢) such that
Ag =T(t*)Ag C Vz, where V. is the ball of radius ¢ in L?. Since ¢ is arbitrary, we
conclude that Ag = {0} as claimed. O
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