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RESONANCE AND STRONG RESONANCE FOR SEMILINEAR
ELLIPTIC EQUATIONS IN RN

GABRIEL LÓPEZ GARZA & ADOLFO J. RUMBOS

Abstract. We prove the existence of weak solutions for the semilinear elliptic

problem
−∆u = λhu + ag(u) + f, u ∈ D1,2(RN ),

where λ ∈ R, f ∈ L2N/(N+2), g : R → R is a continuous bounded function, and
h ∈ LN/2 ∩Lα, α > N/2. We assume that a ∈ L2N/(N+2) ∩L∞ in the case of

resonance and that a ∈ L1∩L∞ and f ≡ 0 for the case of strong resonance. We
prove first that the Palais-Smale condition holds for the functional associated

with the semilinear problem using the concentration-compactness lemma of

Lions. Then we prove the existence of weak solutions by applying the saddle
point theorem of Rabinowitz for the cases of non-resonance and resonance, and

a linking theorem of Silva in the case of strong resonance. The main theorems

in this paper constitute an extension to RN of previous results in bounded
domains by Ahmad, Lazer, and Paul [2], for the case of resonance, and by

Silva [15] in the strong resonance case.

1. Introduction

Let D1,2 be the completion of C∞
c (RN ) with respect to the norm

‖u‖ =
( ∫

|∇u|2
)1/2

.

It is known that D1,2 is a Hilbert space with inner product 〈u, v〉 =
∫
∇u · ∇v. It

is also known that D1,2 is embedded in L2∗(RN ) (cf. [3]). In fact,

|u|2
∗

L2∗ 6 C∗‖u‖2, (1.1)

where 2∗ = 2N/(N − 2) and C∗ is a constant depending on N .
In this paper we study the existence of solutions to the boundary–value problem

−∆u = λh(x)u + a(x)g(u) + f(x), x ∈ RN ,

u ∈ D1,2,
(1.2)

where λ ∈ R, f ∈ L2N/(N+2), g : R → R is a continuous, bounded function,
h ∈ LN/2 ∩ Lα, for α > N/2, and a ∈ L∞.
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Definition. For a bounded nonlinearity g, problem (1.2) is said to be at resonance
if λ is an eigenvalue of the boundary-value problem

−∆u = λh(x)u, x ∈ RN ,

u ∈ D1,2.
(1.3)

If, in addition, g(s) → 0 as |s| → ∞, problem (1.2) is said to be strongly resonant.
If λ is not an eigenvalue of (1.3), then (1.2) is said to be a non-resonance problem.

It is well known that, for h ∈ LN/2(RN ) ∩ Lα(RN ), α > N/2, and h > 0 a.e.,
problem (1.3) possesses a sequence {λj} of eigenvalues satisfying 0 < λ1 < λ2 6
λ3 . . . , with λj → ∞ as j → ∞, and the corresponding family of eigenfunctions,
{ϕn}, forms a complete orthonormal system for D1,2. Furthermore, ϕ1 can be
chosen to be positive a.e. in RN .

The goal of this paper is to extend the solvability of a family of elliptic problems
on bounded domains to the whole space RN , N > 3. In particular, we study the
existence of weak solutions for problem (1.2) with a ∈ L2N/(N+2)∩L∞, for the case
of resonance, and with a ∈ L1 ∩ L∞ and f = 0, for the case of strong resonance.

We prove the existence of weak solutions of (1.2) using variational methods; i.e.,
solutions of (1.2) are realized as critical points of the functional

Jλ(u) =
1
2

∫
|∇u|2 − λ

2

∫
hu2 −

∫
aG(u)−

∫
fu,

where G(s) =
∫ s

0
g(t)dt, s ∈ R.

Our results are obtained using the saddle point theorem by Rabinowitz [14] and a
linking theorem in [15], in conjunction with the concentration-compactness lemma
of Lions [11]. The solvability of (1.2) in the resonance case can be obtained by
imposing conditions on either g or G(s). We prove the following existence results:

Theorem 1.1. Let g ∈ C(R, R) be bounded and a be an element of L2N/(N+2)∩L∞.
If λ ∈ (λ1, λ2), where λ1 and λ2 are the first two eigenvalues of (1.3), then problem
(1.2) has at least one solution for any f ∈ L2N/(N+2).

Theorem 1.2. Let g ∈ C(R, R) be bounded and a ∈ L2N/(N+2) ∩ L∞. If

lim
|t|→∞

{∫
a(x)G(tϕ1) + t

∫
f(x)ϕ1

}
= +∞, (1.4)

then Problem (1.2) with λ = λ1 has a weak solution.

Theorem 1.3. Suppose that g : R → R is continuous and satisfies lim|s|→∞ g(s) =
0, and that a ∈ L1 ∩ L∞. Let

Λ := lim inf
‖u‖→∞, u∈Ln

∫
a(x)G(u)dx, (1.5)

where Ln := span{ϕi : λi = λn}. Then, if Λ ∈ R and

a(x)G(s) 6 a(x)|a|−1
L1 Λ for every s ∈ R and a.e. x ∈ RN , (1.6)

problem (1.2) with λ = λn possesses at least one solution.

The non-resonance result of Theorem 1.1 can be proved in the more general case
in which λ lies between two consecutive eigenvalues λk < λk+1 of problem (1.3).
Similarly, the resonance result of Theorem 1.2 also holds for higher eigenvalues
λk < λk+1, k > 1. In this case the solvability condition (1.4) has to be modified
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appropriately. Problems at resonance have been of interest to researchers ever
since the pioneering work of Landesman and Lazer [12] in 1970 for second order
elliptic operators in bounded domains. The literature on resonance problems in
bounded domains is quite vast; of particular interest to this paper are the works
of Ahmad, Lazer and Paul [2] in 1976 and of Rabinowitz in 1978, in which critical
point methods are applied. Theorem 1.2 is an extension to RN of the Ahmad, Lazer
and Paul result. There is also an extensive literature on strongly resonant problems
in bounded domains. Theorem 1.3 is an extension to RN of a result of Silva in [15].

Resonance problems on unbounded domains, and in particular in RN , have been
studied recently by Costa and Tehrani [7] and by Jeanjean [10] for the operator
−∆ + K for K positive, and by Stuart and Zhou [16] for radially symmetric solu-
tions for asymptotically linear problems in RN . In all these references variational
methods were used. Previously, Metzen [13] had used the method of approximated
domains to obtain existence for non-resonant problems in unbounded domains, and
Hetzer and Landesman [9] for resonant problems for a class of operators which
includes the Schrödinger operator.

The main difficulty in proving Theorems 1.1, 1.2 and 1.3 arises in showing that
some kind of compactness occurs, the so called Palais-Smale condition (PS)c, when
using the variational approach. Even in bounded domains, to prove that the (PS)c

condition holds is a very delicate issue. As an example, in bounded domains Ω ⊂
RN , it has been proved [17] that for certain functionals the (PS)c condition does
not hold at the constant c = (1/N)SN/2, where

S = inf
φ∈H1

0 (Ω), |φ|
L2∗=1

∫
|∇φ|2.

The lack of compactness for problems in unbounded domains has been over-
come by different approaches; for instance, approximation by bounded domains
mentioned above, the use of Sobolev spaces of symmetric functions which possess
compact embedding properties, or the use of weighted Sobolev spaces (see [6] and
references therein).

From an heuristic point of view it seems that for each problem the (PS)c con-
dition requires a specific and particular approach. In this paper we apply the
concentration-compactness method of Lions [11], which basically consists of prov-
ing the existence of a set where compactness is available by using the restrictions
imposed on the (PS)c sequences by the energy functional associated with the prob-
lem (1.2).

2. Variational Setting for Non-Resonance Problems

We study the existence of solutions for semilinear elliptic equations in RN (N >
3) of the form

−∆u = λh(x)u + a(x)g(u) + f(x),

where λ ∈ R, f ∈ L2N/(N+2), g : R → R is a continuous function, |g(s)| 6 M for
all s ∈ R, h ∈ LN/2 ∩ Lα, α > N/2 and a ∈ L2N/(N+2) ∩ L∞. In particular, we
consider the boundary-value problem (1.2) which is is a non-linear perturbation of
the linear eigenvalue problem (1.3).

It can be shown that if h ∈ LN/2(RN ) ∩ Lα(RN ), for α > N
2 , and h > 0 a.e.,

then Problem (1.3) has an increasing sequence of eigenvalues 0 < λ1 6 λ2, . . .
with λj → ∞ as j → ∞ and a corresponding sequence of eigenfunctions, {ϕj},
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which forms a complete orthonormal system for D1,2. This is a consequence of the
following result which is easily derived from [5, Lemma 2.1].

Lemma 2.1. If h ∈ LN/2(RN ) ∩ Lα(RN ) for α > N
2 , then

−∆w = hu in D1,2(RN )

has a weak solution in D1,2 for every u ∈ D1,2(RN ). Moreover the operator Th :
D1,2(RN ) → D1,2(RN ), defined by Th(u) = T (u) = w, is compact.

Corollary 2.2. Let h ∈ LN/2 ∩ Lα for α > N/2 and define F : D1,2 → R by
F (u) :=

∫
hu2, then F is weakly continuous; that is, if un → u weakly in D1,2, then

F (un) → F (u).

Moreover, the condition h ∈ Lα for α > N/2 can also be used to show, as a
consequence of the weak Harnack inequality [8, Theorem 8.20] that ϕ1 > 0 a.e. in
RN , λ1 is simple, and the zero-set of the eigenfunctions ϕj , j > 1, has Lebesgue
measure zero. This last property is known as unique continuation [1].

Solutions of (1.2) happen to be critical points of the functional

Jλ(u) =
1
2

∫
|∇u|2 − λ

2

∫
h(x)u2 −

∫
a(x)G(u)−

∫
f(x)u (2.1)

for u ∈ D1,2, where Jλ ∈ C1(D1,2, RN ) has Fréchet derivative

J ′λ(u)v =
∫
∇u∇v − λ

∫
h(x)uv −

∫
a(x)g(u)v −

∫
f(x)v

for all u, v ∈ D1,2. This is a straightforward consequence of the definition of Fréchet
derivative and the conditions on a, f , g, and h.

We will use the following version of the concentration-compactness lemma of
Lions [11].

Lemma 2.3 (Lions Concentration-Compactness Lemma). Let (ρn)n>1 be a se-
quence in L1(RN ) satisfying: ρn > 0 in RN and

∫
ρndx = σ, where σ > 0 is fixed.

Then there exists a subsequence (ρnk
)k>1 satisfying one of the three possibilities:

(i) (Compactness) There exists yk ∈ RN such that ρnk
(·+ yk) is tight; that is,

for all ε > 0 there exists R < ∞ such that
∫

yk+BR
ρnk

(x) > σ− ε for all k.
(ii) (Vanishing) limk→∞ supy∈RN

∫
y+BR

ρnk
(x)dx = 0 for all R < ∞.

(iii) (Dichotomy) There exists α ∈ (0, σ) such that, for all ε > 0, there exist ko >
1, a sequence {yn} ⊂ RN , a number R > 0 and a sequence {Rn} ⊂ R+,
with R < R1, Rn < Rn+1 → +∞, such that, if we set ρ1

n = ρnχ{|x−yn|6R}
and ρ2

n = ρnχ{|x−yn|>Rn}, then

‖ρnk
− (ρ1

k + ρ2
k)‖L1 6 ε,

∣∣ ∫
RN

ρ1
kdx− α

∣∣ 6 ε,∣∣ ∫
RN

ρ2
kdx− (σ − α)

∣∣ 6 ε, for all k > ko,

dist(supp ρ1
k, supp ρ2

k) k→ +∞.

(2.2)

Next, we establish a compactness statement that will be used throughout this
paper. First, we recall the Palais-Smale condition.
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Palais-Smale condition. Suppose that E is a real Banach space, and let C1(E, R)
denote the set of functionals whose Fréchet derivative is continuous on E. A func-
tional I ∈ C1(E, R) satisfies the Palais-Smale condition at the level c ∈ R, denoted
(PS)c, if any sequence (un) ⊂ E for which

(i) I(un) → c as n →∞, and
(ii) ‖I ′(un)‖ → 0 as n →∞,

possesses a convergent subsequence. If I ∈ C1(E, R) satisfies (PS)c for every c ∈ R,
we say that I satisfies the (PS) condition. Any sequence (un) for which (i) and (ii)
hold is called a (PS)c sequence for I.

Proposition 2.4. Let Jλ : D1,2 → R be as defined by (2.1), where λ ∈ R, g is a
continuous function with |g(s)| 6 M for all s ∈ R, f ∈ L2N/(N+2), h ∈ LN/2 ∩ Lα

for α > N/2, and a ∈ L2N/(N+2) ∩ L∞. Then, if every (PS)c sequence for Jλ is
bounded, Jλ satisfies the (PS)c condition.

Proof. Let (un) be a (PS)c sequence for Jλ. Thus, by assumption, (un) is bounded.
Without loss of generality, we may assume that ‖un‖2 =

∫
|∇un|2 > 0 for all n.

Define
ρn := |∇un|2 for all n.

Thus (ρn) is a sequence in L1(RN ) satisfying (passing to a subsequence if necessary)∫
ρn → τ > 0 as n →∞. Defining

ρ′n =
ρn∫
ρn

for all n,

we have
∫

ρ′n = 1 > 0 for all n. Hence, using (ρ′n) for (ρn), we may assume that
(ρn) satisfies the hypotheses of the Lions Concentration-Compactness Lemma 2.3
with σ = 1.
(A) Claim: Vanishing does not hold. Let BR(y) = {x ∈ RN : |x−y| < R}. Assume
by contradiction that vanishing in Lemma 2.3 does hold. Then there exists {nk}k>1

such that (unk
) converges weakly to 0 in D1,2. To see why this is the case, let φ be

any function in D1,2. Then, given ε > 0, there exists R′ > 0 such that( ∫
[BR′ (0)]

c

|∇φ|2
)1/2

<
ε

2 supk ‖unk
‖
.

On the other hand, by the Cauchy-Schwartz inequality,∣∣∣ ∫
∇unk

· ∇φ
∣∣∣ 6 ‖unk

‖
( ∫

[BR′ (0)]
c

|∇φ|2
)1/2

+ ‖φ‖
( ∫

BR′ (0)

|∇unk
|2

)1/2

.

Moreover, since vanishing in Lemma 2.3 implies the existence of a subsequence
(unk

) and k0 such that∫
BR′ (0)

|∇unk
|2 <

( ε

2‖φ‖
)2 if k > k0,

it follows that
∫
∇unk

·∇φ < ε for all k > ko. Since ϕ ∈ D1,2 was arbitrary, unk
→ 0

weakly in D1,2.
Now, using the assumption that ‖J ′λ(unk

)‖ → 0 as k →∞, we have∫
|∇unk

|2 −
∫

ag(unk
)unk

= o(1) as k →∞, (2.3)



6 GABRIEL LÓPEZ G. & ADOLFO J. RUMBOS EJDE-2003/124

since the map u 7→
∫

hu2 is weakly continuous by Corollary 2.2, and u 7→
∫

fu is
in (D1,2)∗. On the other hand, since a ∈ L2N/(N+2), given ε > 0, there exists R∗
such that ( ∫

[BR∗ (0)]c
|a|2N/(N+2)

)N+2
2N

<
ε

2M supk ‖unk
‖
. (2.4)

Moreover, vanishing implies that there exists k1 such that for k > k1,∫
BR∗ (0)

|∇unk
|2 <

( ε

2M |a|
L

2N
N+2

)2·2∗

. (2.5)

Thus, applying Hölder’s inequality and the estimates in (2.4) and (2.5), we conclude∣∣∣ ∫
a(x)g(unk

)unk

∣∣∣ < ε for all k > k1.

Hence, since ε was arbitrary, it follows from (2.3) that limk→∞
∫
|∇unk

|2 = 0, which
contradicts

∫
|∇unk

|2 = σ > 0 for all k.

(B) Claim: Dichotomy does not hold. If dichotomy occurs, then there exists α ∈
(0, σ) such that, given ε > 0, we can chose R > 0 with

lim
k→∞

sup
y∈RN

∫
B R

2
(y)

|∇unk
|2 > α− ε.

Moreover, there exists ko > 1 such that, for k > ko,

α− ε < sup
y∈RN

∫
B R

2
(y)

|∇unk
|2 < α + ε;

thus, for each k > ko, there exists yk ∈ RN such that

α− ε <

∫
B R

2
(yk)

|∇unk
|2 < α + ε. (2.6)

Furthermore, from Property (2.2) in Lemma 2.3, there exists an increasing sequence
(Rk), with R1 > R and Rk →∞ as k →∞, such that

σ − α− ε 6
∫
{B3Rk

(yk)}c

|∇unk
|2 6 σ − α + ε for all k > ko. (2.7)

Consequently, ∫
R
2 <|x−yk|<3Rk

|∇unk
|2 < 2ε for all k > ko. (2.8)

Note that (2.8) implies∫
R<|x−yk|62Rk

|unk
|2
∗

6 θ(ε) for all k > ko, (2.9)

where θ → 0 as ε → 0. To see why (2.9) holds, take ηk ∈ C∞
0 (RN ) such that

ηk(x) = 0 if |x| 6 R/2 or |x| > 3Rk, and ηk(x) = 1 if R 6 |x| 6 2Rk. By Sobolev’s



EJDE-2003/124 RESONANCE AND STRONG RESONANCE 7

inequality (1.1) we have that( ∫
|ηkuk|2

∗
)1/2∗

6 C
( ∫

|∇(ηkuk)|2
)1/2

6 C
( ∫

|∇ηk|2u2
k + 2

∫
ukηk∇ηk · ∇uk +

∫
η2

k|∇uk|2
)1/2

6 C
(
C1

∫
Ω

|uk|2 + C2

∫
Ω

|uk|+ C3

∫
R
2 6|x−yk|63Rk

|∇uk|2
)1/2

.

Where we have written uk for unk
, and Ω = {x : ∇ηk 6= 0} = {R/2 6 |x − yk| 6

R} ∪ {2Rk 6 |x − yk| 6 3Rk}. Clearly, Ω ⊂ {R/2 6 |x − yk| 6 3Rk}. By (2.8)
in conjunction with Sobolev’s inequality, we also obtain that

∫
Ω
|uk|2 < Cε and∫

Ω
|uk| < Cε. Consequently, it follows from (2.9) and the previous estimate that∫

R6|x−yk|62Rk
|uk|2

∗
6

∫
|ηkuk|2

∗
6 θ(ε) as required.

Now take ζ ∈ C∞
0 (RN ) such that 0 6 ζ 6 1 and

ζ(x) =

{
1 for |x| 6 1,

0 for |x| > 2,

and let φ(x) = 1−ζ(x). Put ζk(x) = ζ
(

x−yk

R

)
and φk(x) = φ

(
x−yk

Rk

)
for all x ∈ RN ,

and define u†k(x) := (ζk · unk
)(x) and u‡k(x) := (φk · unk

)(x). Then for each k,

u†k(x) =

{
unk

if |x− yk| 6 R,

0 if |x− yk| > 2R,
(2.10)

and

u‡k(x) =

{
0 if |x− yk| 6 Rk,

unk
if |x− yk| > 2Rk.

(2.11)

We have two cases: (yk) is bounded and (yk) is unbounded.
(i) Assume (yk) is bounded. Note that∣∣∣ ∫

hu‡k(u‡k − uk)
∣∣∣ 6

∫
|h||u‡k||u

‡
k − uk|

6
∫

Rk6|x−yk|62Rk

|h||φk||φk − 1||uk|2

6
∫

Rk6|x−yk|62Rk

|h||uk|2.

Thus, by Hölder’s inequality,∣∣∣ ∫
hu‡k(u‡k − uk)

∣∣∣ 6 C|h|N
2

( ∫
Rk6|x−yk|62Rk

|uk|2
∗
)2/2∗

6 C1θ(ε)2/2∗ := θ1(ε)
ε→ 0 for k > ko,

where the last inequality follows from (2.9). Thus
∫

hu‡kuk =
∫

h|u‡k|2 + θ1(ε) for
k > ko. We claim that u‡k → 0 weakly in D1,2. It will then follow, using Corollary
(2.2), that ∫

hu‡kuk → 0 as k →∞. (2.12)
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Take any φ ∈ D1,2. For each ε > 0, there exists R′ > 0 such that( ∫
[BR′ (0)]

c

|∇φ|2
)1/2

<
ε

supk ‖uk‖
. (2.13)

Since {yk} is bounded in RN , there exists y∗ such that yk → y∗ (taking a subse-
quence if necessary). Choose n0 > ko such that BR′(0) ⊂ BRn0

(y∗); this is possible
since Rk →∞. Then, for k > n0, by (2.11),∫

∇u‡k · ∇φ =
∫

[BRn0
(y∗)]c

∇u‡k · ∇φ

6 ‖u‡k‖
( ∫

[BRn0
(y∗)]c

|∇φ|2
)1/2

6 ‖u‡k‖
( ∫

[BR′ (0)]
c

|∇φ|2
)1/2

< ε,

by the Cauchy-Schwarz inequality, the fact that [BRn0
(y∗)]c ⊂ [BR′(0)]c and (2.13).

Therefore, since φ ∈ D1,2 and ε > 0 were arbitrary, it follows that u‡k → 0 weakly
in D1,2. Thus,

∫
hu‡kuk → 0 as k →∞ as stated in (2.12).

On the other hand, since a ∈ L2N/(N+2), given ε > 0, there exists R′′ such that( ∫
[BR′′ (0)]

c

|a|2N/(N+2)
)N+2

2N

<
ε

M supk ‖uk‖
.

Thus, by (2.11) and similar arguments to those used above, there exist n0 > ko

such that BR′′(0) ⊂ BRn0
(y∗) and∣∣ ∫

a(x)g(uk)u‡k
∣∣ 6 M

∫
a(x)|u‡k|

6 M

∫
[BRn0

(y∗)]c
a|u‡k|

6 M‖u‡k‖
( ∫

[BRn0
(y∗)]c

|a|2N/(N+2)
)(N+2)/(2N)

6 ε, if k > n0.

Consequently, ∫
ag(uk)u‡k = o(1) as k →∞. (2.14)

Now, ∣∣∣ ∫
∇uk · ∇u‡k −

∫
|∇u‡k|

2
∣∣∣

=
∣∣∣ ∫

Rk6|x−yk|62Rk

∇(φkuk) · ∇uk

∣∣∣
6

∫
Rk6|x−yk|62Rk

|uk||∇uk · ∇φk|+
∫

Rk6|x−yk|62Rk

|φk||∇uk|2

6 C1

∫
Rk6|x−yk|62Rk

|uk|+ C2

∫
Rk6|x−yk|62Rk

|∇uk|2.
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Hence, by (2.9) and a similar argument used to obtain (2.9) applied to the first
integral, as well as the Sobolev embedding Theorem,∫

∇uk · ∇u‡k =
∫
|∇u‡k|

2 + θ2(ε) for k > ko, (2.15)

where θ2 → 0 as ε → 0. Since (uk) is a (PS)c sequence, as k →∞,

〈J ′λ(uk), u‡k〉 =
∫
∇uk · ∇u‡k − λ

∫
huku‡k −

∫
ag(uk)u‡k −

∫
fu‡k = o(1) .

It then follows from (2.12), (2.14) and (2.15) together with the fact that
∫

fu‡k → 0
as k →∞, that ∫

|∇u‡k|
2 = o(1) as k →∞.

Therefore, from (2.7),

σ − α− ε 6
∫
|x−yk|>3Rk

|∇u‡k|
2 6

∫
|∇u‡k|

2 = o(1) as k →∞,

with σ−α− ε > 0 for ε small, which is a contradiction. Consequently, (yk) cannot
be bounded and dichotomy does not hold in this case.
(ii) Assume now that (yk) is unbounded. For this case we use u†k to get a contra-

diction. First, we show that u†k
k→ 0 weakly in D1,2. Let φ be any function in D1,2.

Given ε > 0, there exists R′ > 0 such that
∫
[BR′ (0)]

c ∇φ < ε/ supk ‖uk‖. Since {yk}
is not bounded, there exists n0 such that |yn0 | > R′ + 2R, where R is as in (2.10).
We then have that B2R(yn0) ⊂ [BR′(0)]c, so in view of (2.10),∫

∇u†k · ∇φ =
∫

[B2R(yn0 )]

∇u†k · ∇φ

6 ‖u†k‖
∫

[B2R(yn0 )]

∇φ

6 ‖u†k‖
∫

[BR′ (0)]
c

∇φ

6 ε, if k > n0.

Since φ ∈ D1,2 and ε > 0 are arbitrary, we conclude that u†k
k→ 0 weakly in D1,2.

From the assumption that (um) is a bounded (PS)c sequence, we have∫
∇uk · ∇u†k − λ

∫
huku†k −

∫
ag(uk)u†k −

∫
fu†k = o(1) as k →∞. (2.16)

Observe that ∣∣∣ ∫
hu†k(u†k − uk)

∣∣∣ 6
∫
|h||u†k||u

†
k − uk|

6
∫

R6|x−yk|62R

|h||ζk||ζk − 1||uk|2

6 C|h|N
2

( ∫
R6|x−yk|62R

|uk|2
∗
)2/2∗

,

by Hölder’s inequality. So, by (2.9), since R < Rk for all k,∣∣∣∣∫ hu†k(u†k − uk)
∣∣∣∣ 6 C1θ(ε)2/2∗ := θ3(ε)

ε→ 0 for k > ko.



10 GABRIEL LÓPEZ G. & ADOLFO J. RUMBOS EJDE-2003/124

Observe that
∫

h|u†|2 → 0 by Corollary 2.2, since u†k
k→ 0 weakly in D1,2. This, in

conjunction with the above estimate, implies∫
hu†kuk

k→ 0. (2.17)

Furthermore, ∣∣∣ ∫
a(x)g(uk)u†k

∣∣∣ k→ 0. (2.18)

Effectively, given ε > 0, since a ∈ L2N/(N+2), there exists R′′′ > 0 such that( ∫
[BR′′′ (0)]

c

|a|2N/(N+2)
)N+2

2N

<
ε

M supk ‖uk‖
. (2.19)

Since {yk} is unbounded, we take n0 such that |yn0 | > R′′′+2R. Then B2R(yn0) ⊂
[BR′′′(0)]c; thus, by (2.10) and (2.19),∣∣∣ ∫

ag(uk)u†k
∣∣∣ 6 M

∫
B2R(yn0 )

|a||g(uk)u†k|

6 M‖uk‖
( ∫

[BR′′′ (0)]
c

|a|2N/(N+2)
)(N+2)/(2N)

< ε for all k,

from which (2.18) follows. Finally,∫
∇uk · ∇u†k =

∫
|∇u†k|

2 + θ4(ε), (2.20)

where θ4 → 0 as ε → 0. This follows from (2.9), the estimate∣∣∣ ∫
∇uk · ∇u†k −

∫
|∇u†k|

2
∣∣∣ 6 C1

∫
R6|x−yk|62R

|uk|+ C2

∫
R6|x−yk|62R

|∇uk|2,

and an argument similar to that used to obtain (2.9), by observing that {R 6
|x − yk| 6 2R} ⊂ {R 6 |x − yk| 6 2Rk} and applying the Sobolev’s embedding
Theorem. Thus, using (2.17), (2.18) and (2.20) in (2.16), and recalling (2.6), we
obtain

0 < α− ε 6
∫

B R
2

(yk)

|∇u†k|
2 6

∫
|∇u†k|

2 = o(1) as k →∞,

which is a contradiction.
Since vanishing and dichotomy in Lemma 2.3 do not hold, necessarily compact-

ness holds; i.e., there exists {yn} ⊂ RN such that for all ε there exists R > 0 such
that ∫

BR(yn)

|∇un|2 > σ − ε for all n. (2.21)

Now, it follows from (2.21) and the fact that
∫
|∇un|2 = σ for all n that∫

[BR(yn)]c
|∇un|2 < ε for all n. (2.22)
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Claim: {yn} is bounded. If {yn} is not bounded, then un → 0 weakly in D1,2 as
n → ∞. To see why this is the case, take φ ∈ D1,2 and let ε > 0. There exists
R′ > 0 such that ( ∫

[BR′ (0)]
c

|∇φ|2
)1/2

< ε/(2 sup
n
‖un‖). (2.23)

Since {yn} is not bounded, we may assume that |yn| → ∞ as n →∞, and so there
exists n0 such that |yn0 | > R′ + R0, where we choose Ro > 0, whose existence is
guaranteed by part (i) of Lemma 2.3 (see also (2.22)), such that( ∫

[BR0 (yn0 )]c
|∇un|2

)1/2

< ε/(2‖φ‖). (2.24)

Also, BR0(yn0) ⊂ [BR′(0)]c. Thus,∣∣∣ ∫
∇un · ∇φ

∣∣∣ 6 ‖un‖
( ∫

BR0 (yn0 )

|∇φ|2
)1/2

+ ‖φ‖
( ∫

[BR0 (yn0 )]c
|∇un|2

)1/2

6 ‖un‖
( ∫

[BR′ (0)]
c

|∇φ|2
)1/2

+ ‖φ‖
( ∫

[BR0 (yn0 )]c
|∇un|2

)1/2

,

so that, by (2.23) and (2.24),∣∣ ∫
∇un · ∇φ

∣∣ < ε for all n > n0.

Since φ ∈ D1,2 was arbitrary, we conclude that un → 0 weakly in D1,2 as stated.
Consequently, using the assumption that (un) is a bounded (PS)c sequence, we
obtain ∫

|∇un|2 −
∫

ag(un)un = o(1) as n →∞, (2.25)

since u →
∫

hu2 is weakly continuous by Corollary 2.2, and u 7→
∫

fu is also weakly
continuous. Moreover,∫

ag(un)un =
∫

BR(yn)

ag(un)un +
∫

[BR(yn)]c
ag(un)un. (2.26)

Since {yn} is not bounded, it follows that( ∫
BR(yn)

|a|2N/(N+2)
)N+2

2N → 0 as n →∞.

Therefore,∣∣∣ ∫
BR(yn)

ag(un)un

∣∣∣ 6 C
( ∫

BR(yn)

|a|2N/(N+2)
)
→ 0 as n →∞. (2.27)

In addition, by (1.1) and (2.22),∫
[BR(yn)]c

|un|2N/(N−2) < C∗ε

So, by Hölder’s inequality,∣∣ ∫
[BR(yn)]c

ag(un)un

∣∣ 6 Cε1/2∗ .

Thus, in view of (2.26) and (2.27), we obtain from (2.25) and (2.21) that

σ − ε 6
∫

BR(yn)

|∇un|2 6
∫
|∇un|2 = Cε1/2∗ + o(1) as n →∞,
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which clearly leads to a contradiction as ε → 0. Therefore, {yn} cannot be un-
bounded. Thus, {yn} is bounded in the compactness case of the concentration-
compactness Lemma 2.3.

Since {yn} ⊂ RN is bounded, there exists R∗ > 0 such that BR(yn) ⊂ BR∗(0)
for all n = 1, 2, 3, . . .. We may also choose R∗ large enough so that∫

BR∗ (0)c

|a|
2N

N+2 < ε
2N

N+2 . (2.28)

Put Ω = BR∗(0) and note that Ω satisfies the hypotheses of the Rellich-Kondrachov
Theorem [8, Theorem 7.26, p. 171].

Given that (un) is a bounded sequence, there exists a subsequence, (unk
), such

that unk
→ u weakly in D1,2 as k → ∞. Moreover, given 1 6 t < 2∗, we may

assume that unk
→ u strongly in Lt(Ω) as k →∞, since Ω is bounded, passing to

a subsequence if necessary, by the Rellich-Kondrachov Theorem.
Observe that, since BR(yn) ⊂ Ω for all n = 1, 2, 3, . . ., then Ωc ⊂ BR(yn)c for all

n. It then follows from (2.22) that∫
Ωc

|∇un|2 < ε for all n. (2.29)

We want to show that ∫
|∇(unk

− u)|2 → 0 as k →∞. (2.30)

We have ∫
|∇(unk

− u)|2 =
∫
∇(unk

− u) · ∇(unk
− u)

=
∫
∇unk

· ∇(unk
− u)−

∫
∇u · ∇(unk

− u),

where
∫
∇u · ∇(unk

− u) → 0 as k → ∞, by the definition of weak convergence in
D1,2. Consequently, (2.30) will follow if we can prove that

lim
k→∞

∫
∇unk

· ∇(unk
− u) = 0. (2.31)

Now from the fact that (un) is a bounded (PS)c sequence it follows that∣∣∣ ∫
∇unk

· ∇(u− unk
)− λ

∫
hunk

(u− unk
)−

∫
ag(unk

)(u− unk
)
∣∣∣ = o(1) (2.32)

as k →∞, since
∫

f(u− un) → 0 as n →∞.
We estimate the second integral on the left–hand side of (2.32) as follows:∣∣∣ ∫

hunk
(u− unk

)
∣∣∣ 6

∣∣∣ ∫
Ω

hunk
(u− unk

)
∣∣∣ +

∣∣∣ ∫
Ωc

hunk
(u− unk

)
∣∣∣,

where, by Hölder’s inequality,∣∣∣ ∫
Ω

hunk
(u− unk

)
∣∣∣ 6 |h|

Lα

( ∫
Ω

|unk
|2N/(N−2)

)(N−2)/(2N)( ∫
Ω

|u− unk
|s

)1/s

,

where 1
s = 1

2 + 2
N − 1

α , so that s < 2∗. Hence, by the Rellich-Kondrachov Theorem,
we may assume that unk

→ u strongly in Ls(Ω). Consequently,∫
Ω

hunk
(u− unk

) = o(1) as k →∞. (2.33)
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On the other hand, by Hölder’s inequality and the assumption that (un) is bounded,∣∣∣ ∫
Ωc

hunk
(u− unk

)
∣∣∣ 6 C|h|

L
N
2

( ∫
Ωc

|unk
|2N/(N−2)

)(N−2)/(2N)

.

Thus, by (1.1) and (2.29),∣∣∣ ∫
Ωc

hunk
(u− unk

)
∣∣∣ 6 Cε for all k.

Therefore, it follows from (2.33) that

lim sup
k→∞

∣∣∣∣∫ hunk
(u− unk

)
∣∣∣∣ 6 Cε. (2.34)

Similarly, for the third integral on the left-hand side of (2.32),∣∣∣ ∫
Ω

ag(unk
)(u− unk

)
∣∣∣ 6 C

∫
Ω

|u− unk
| → 0 as k →∞, (2.35)

since a ∈ L∞ and unk
→ u strongly in L1(Ω). To estimate the integral over Ωc use

Hölder’s inequality together with the assumptions that (un) and g are bounded to
obtain ∣∣∣ ∫

Ωc

ag(unk
)(u− unk

)
∣∣∣ 6 C

( ∫
Ωc

|a|
2N

N+2

)(N+2)/(2N)

.

It then follows from (2.28) that∣∣∣ ∫
Ωc

ag(unk
)(u− unk

)
∣∣∣ 6 Cε.

Consequently, by (2.35),

lim sup
k→∞

∣∣∣ ∫
ag(unk

)(u− unk
)
∣∣∣ 6 Cε. (2.36)

Hence, since ε is arbitrary, (2.31) follows from (2.32), (2.34) and (2.36), and (2.31)
in turn implies (2.30); that is,

‖unk
− u‖2 =

∫
|∇(unk

− u)|2 = o(1) as k →∞.

i.e. unk
→ u strongly in D1,2. �

Now, with Jλ satisfying the (PS)c condition, once we can show that every (PS)c

sequence is bounded, we are able to prove some existence results for problem (1.2).
Existence will be obtained as a consequence of the following saddle point theorem
of Rabinowitz.

Theorem 2.5 (Saddle Point Theorem [14]). Let E = V ⊕ X, where E is a real
Banach space and V 6= {0} and is finite dimensional. Suppose I ∈ C1(E, R) satisfies
the (PS) condition,

(I1) there is a constant α and a bounded neighborhood D of 0 in V such that
I
∣∣
∂D

6 α, and
(I2) there is a constant β > α such that I|X > β.

Then, I possesses a critical value c > β. Moreover c can be characterized as

c = inf
h∈Γ

max
u∈D

I(h(u)),

where Γ = {h ∈ C(D,E) : h = id on ∂D}.
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First, we consider the case when λ in the problem (1.2) is not an eigenvalue of
the eigenvalue problem (1.3):

−∆u = λh(x)u in RN , h > 0 a.e.,

u ∈ D1,2.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose (un) is a (PS)c sequence. First, we show that (un)
is bounded in D1,2. We argue by contradiction. Assume (

∫
|∇un|2)1/2 = tn → ∞

and define vn = un/tn; then, (
∫
|∇vn|2)1/2 = 1 for all n. So we have, passing to a

subsequence if necessary, that vn ⇀ v weakly in D1,2(RN ), since (vn) is bounded.
Now we claim that v(x) ≡ 0. As a consequence of the assumption ‖J ′λ(un)‖ → 0

as n →∞, we have

〈J ′λ(un), φ〉 =
∫
∇un · ∇φdx− λ

∫
h(x)unφdx

−
∫

a(x)g(un)φdx−
∫

f(x)φ = o(1)‖φ‖

as n → ∞, for all φ ∈ D1,2. Dividing the previous equation by tn = |∇un|2 we
obtain∫

∇vn · ∇φ− λ

∫
h(x)vnφ−

∫
a(x)

g(un)
tn

φ−
∫

f(x)φ
tn

= o(1) (2.37)

as n →∞. Given that g is bounded and that φ ∈ D1,2 implies φ ∈ L2N/(N−2), we
obtain from (2.37)∫

∇vn · ∇φ− λ

∫
hvnφ− C

tn
= o(1) as n →∞, (2.38)

by Hölder’s inequality. Thus, letting n →∞ in (2.38),∫
∇v · ∇φ− λ

∫
hvφ = 0.

Since λ is not an eigenvalue of problem (1.3), we conclude that v = 0 a.e. in RN .
Substituting φ = vn in (2.38) we obtain∫

|∇vn|2 − λ

∫
hv2

n −
C

tn
= o(1) as n →∞, (2.39)

where we have used the fact that
∫

hv2
n → 0 and

∫
fvn → 0 as n → ∞ since

vn → v = 0 weakly in D1,2 (see Corollary 2.2). Moreover, given that
∫
|∇vn|2 =

‖vn‖2 = 1 we obtain from (2.39) that

1− C

tn
= o(1) as n →∞,

which leads clearly to a contradiction as tn →∞. Therefore, un is bounded in D1,2.
Thus, every (PS)c sequence is bounded. Hence, by Proposition 2.4, Jλ satisfies the
(PS)c condition.
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Next we prove that Jλ satisfies the hypotheses of the Saddle Point Theorem 2.5.
Let ϕ1 be an eigenfunction corresponding to λ1. Recall that ‖ϕ1‖ = 1. Consider

Jλ(tϕ1) =
1
2
t2

∫
|∇ϕ1|2 −

λ

2
t2

∫
h(x)ϕ2

1 −
∫

a(x)G(tϕ1)− t

∫
f(x)ϕ1

=
1
2
t2

(
1− λ

λ1

)
−

∫
a(x)G(tϕ1)− t

∫
f(x)ϕ1.

Recall that |G(s)| 6 C|s| for all s ∈ R. Therefore,

Jλ(tϕ1) 6 −1
2
( λ

λ1
− 1

)
t2 + C|t|

∫
a(x)|ϕ1|

6 −1
2
( λ

λ1
− 1

)
t2 + C1|t|

(
|a|L2N/(N+2) + |f |L2N/(N+2)

)
|ϕ1|L2N/(N−2) .

Let V = span{ϕ1}; it then follows from the last inequality that

lim
‖v‖→∞, v∈V

Jλ(v) = −∞.

Finally, let X = V ⊥ = {w ∈ D1,2 : 〈w,ϕ1〉 = 0}. Then λ2

∫
hw2 6

∫
|∇w|2 for all

w ∈ X and

Jλ(w) >
1
2
(
1− λ

λ2

)
‖w‖2 − C1

(
|a|L2N/(N+2) + |f |L2N/(N+2)

)
‖w‖

for any w ∈ X. Therefore, Jλ(w) → +∞ as ‖w‖ → ∞ in X. Consequently, (I1)
and (I2) in the Saddle Point Theorem 2.5 hold, and so Jλ has a critical point, which
establishes Theorem 1.1. �

Remark. This argument can be extended to the case λk < λ < λk+1 where λk

and λk+1 are consecutive eigenvalues of problem (1.3).

3. A Resonance Problem

In this section we consider the problem

−∆u = λ1h(x)u + a(x)g(u) + f(x),

u ∈ D1,2,
(3.1)

where λ1 is the first eigenvalue of (1.3) over RN . We can solve problem (3.1) if we
impose a condition similar to one used by Ahmad, Lazer and Paul in [2] on G(u)
and f ; that is condition (1.4) in the statement of Theorem 1.2.

Proof of Theorem 1.2. We first show that Jλ1 satisfies the (PS)c condition for any
c ∈ R, and then we verify that Jλ1 satisfies the conditions of the saddle point
theorem of Rabinowitz (cf. Theorem 2.5).

Let (um) be a (PS)c sequence for the functional Jλ1 defined in (2.1) for λ = λ1.
We claim that (um) is bounded.

Write um = vm + wm, where vn ∈ span{ϕ1} = V and wm ∈ V ⊥ = X for each
m ∈ N. First we show that (wm) is bounded in D1,2. Since ‖J ′λ1

(um)‖ m→ 0, there
exists m0 ∈ N such that if m > m0, then∣∣∣ ∫

∇um · ∇v − λ1

∫
humv −

∫
ag(um)v −

∫
fv

∣∣∣ 6 ‖v‖ for all v ∈ D1,2.
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In particular, if v = wm, we have∣∣∣ ∫
|∇wm|2 − λ1

∫
hw2

m

∣∣∣ 6 ‖wm‖+
∣∣∣ ∫

ag(um)wm

∣∣∣ +
∣∣∣ ∫

fwm

∣∣∣ for m > mo.

Given that λ2

∫
hv2 6 ‖v‖2 for all v ∈ X, we obtain(

1− λ1

λ2

)
‖wm‖2 6 ‖wm‖+ C

(
|a|L2N/(N+2) + |f |L2N/(N+2)

)
‖wm‖ for m > mo,

from which it follows that (wm) is bounded in D1,2.
Next we show that (vm) is bounded. Observe that Jλ1(um) m→ c implies that

Jλ1(um) is bounded; say |Jλ1(um)| 6 C1 for all m, where

Jλ1(um) =
1
2

∫
|∇um|2 −

λ1

2

∫
hu2

m −
∫

aG(um)

=
1
2

∫
|∇wm|2 −

λ1

2

∫
hw2

m

−
∫

a [G(vm + wm)−G(vm)]−
∫

aG(vm)−
∫

fvm.

Note that |G(vm + wm)−G(vm)| 6 M |wm|. Hence,∣∣∣ ∫
a[G(vm + wm)−G(vm)]

∣∣∣ 6 M

∫
a|wm| 6 C3‖wm‖.

So we obtain ∣∣∣ ∫
aG(vm) +

∫
fvm

∣∣∣ 6 |J(um)|+ C2‖wm‖2 + C3‖wm‖

6 C1 + C2‖wm‖2 + C3‖wm‖.

Given that (wm) is bounded, we have∣∣∣ ∫
a(x)G(vm) +

∫
fvm

∣∣∣ 6 C for all m.

Therefore, if (1.4) holds, then (vm) is bounded in D1,2, otherwise
∫

aG(vm)+
∫

fvm

would approach infinity as m → ∞, by (1.4). We therefore conclude that (um) is
bounded, and so by Theorem 1.1 we have that Jλ1 satisfies the (PS)c condition.

To show that the other hypotheses of the Saddle Point Theorem 2.5 are satisfied,
we proceed as in the proof of Theorem 1.1. If u ∈ X, we have u =

∑∞
j=2 ajϕj ,

hence ∫
|∇u|2 − λ1

∫
hu2 =

2∑
j=2

a2
j

(
1− λ1

λj

)
>

(
1− λ1

λ2

)
‖u‖2.

Moreover, since |g(s)| 6 M for all s ∈ R, we have that, for all u ∈ D1,2,∣∣∣ ∫
aG(u)

∣∣∣ 6 M

∫
|a||u| 6 M |a|L2N/(N+2) |u|L2N/(N−2) 6 C‖u‖.

Therefore Jλ is bounded from below on X; i.e. (I2) in the Saddle Point Theorem
2.5 holds. Finally, if v ∈ V , we have

Jλ1(v) = −
∫

aG(v)−
∫

fv.
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But
∫

aG(v) +
∫

fv → ∞ as ‖v‖ → ∞ by (1.4) and, therefore, (I1) in the Saddle
Point Theorem (2.5) also holds. Hence, Jλ1 has a critical point and the theorem
follows. �

Remark. The existence result in Theorem 1.2 can be extended to the problem
(1.2) with λ = λn for n > 1 by modifying condition (1.4) appropriately. In fact,
suppose the eigenspace corresponding to λn is Eλn

= span{ϕn1 , ϕn2 , . . . , ϕnk
}, then

(1.4) is replaced by

lim
t21+···+t2k→∞

∫
a(x)G(t1ϕn1 + · · ·+ tkϕnk

) +
∫

f(t1ϕn1 + · · ·+ tkϕnk
) = ∞.

Remark. Suppose lims→∞ g(s) = g∞ and lims→−∞ g(s) = g−∞ exist. Then, if
g∞ > 0 and g−∞ < 0, G(s) =

∫ s

0
g(t)dt → ∞ as |s| → ∞. Consequently, by L’

Hôspital’s rule, the Lebesgue dominated convergence theorem and the fact that
ϕ1 > 0 a.e. in RN we have that

lim
|t|→∞

1
t

∫
a(x)G(tϕ1) = lim

|t|→∞

∫
ag(tϕ1)ϕ1 =

{
g∞

∫
aϕ1 as t →∞,

g−∞
∫

aϕ1 as t → −∞.

Thus, the condition (1.4) in the resonance Theorem 1.2 holds if

g∞

∫
aϕ1 +

∫
fϕ1 > 0 and g−∞

∫
aϕ1 +

∫
fϕ1 < 0,

or
g−∞

∫
aϕ1 < −

∫
fϕ1 < g∞

∫
aϕ1. (3.2)

This is the original Landesman-Lazer condition in [12] for the case of resonance
around the first eigenvalue.

It can be shown that if

g−∞ < g(s) < g+∞ for all s ∈ R,

then (3.2) is necessary and sufficient for the solvability of (3.1). If g−∞ = g+∞,
then the Landesman-Lazer condition (3.2) cannot hold, and if g−∞ and g+∞ are
both zero, then condition (1.4) might not hold in general. This corresponds to what
is known as strong resonance, which will be treated in the next section for the case
f ≡ 0.

4. A Strongly Resonant Problem

As an example of a strongly resonant problem (cf. [4]) we have

−∆u = λnh(x)u + a(x)g(u), n > 1,

u ∈ D1,2,
(4.1)

where g(s) → 0 as |s| → ∞ and a ∈ L1 ∩ L∞. In this section we prove Theorem
(1.3) which states that, under conditions (1.5) and (1.6) on G, problem (4.1) has
a weak solution. This will extend to RN the results in [15] for bounded domains.
We use the following extension of the saddle point theorem by Rabinowitz.

Theorem 4.1 (Linking Theorem [15]). Let E = X1 ⊕X2 be a real Banach space
with X1 finite dimensional. Suppose I ∈ C1(E, R) and satisfies:

(I0) There exists β ∈ R such that I(u) 6 β for every u ∈ X1.
(I1) There exists γ ∈ R such that I(u) > γ for every u ∈ X2.
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(I2) There exist r1 > 0 and α > γ such that I(u) > α for every u ∈ X2 with
‖u‖E > r1.

If I satisfies the (PS)c condition for every c > γ and every (PS)c sequence is
bounded, then I possesses a critical value b > γ.

Proof of Theorem 1.3. Observe that since L1∩L∞ ⊂ Lq for any q ∈ (1,∞), Propo-
sition 2.4 applies to the functional Jλn

given in equation (2.1) with f = 0.
Define the subspaces Ek := span{ϕ1, . . . , ϕk} and Lk := span{ϕi : λi = λk} for

every k ∈ N; also, set E0 = {0}. We show first that Jλn
(u) satisfies the (PS)c

condition for every c ∈ (−Λ,∞). By Proposition 2.4 it is enough to show that if
c ∈ (−Λ,∞) and (um) is a (PS)c sequence, then (um) is bounded.

Let (um) be a (PS)c sequence for Jλ. Assume by contradiction that (um) is
not bounded. Write um = u+

m + u0
m + u−m, where u+

m ∈ (En)⊥, u0
m ∈ Ln, and

u−m ∈ En−1. Since ‖J ′λn
(um)‖ → 0 as m → ∞, it follows that there exists mo ∈ N

for which∣∣∣ ∫
∇um∇u+

m − λn

∫
humu+

m −
∫

ag(um)u+
m

∣∣∣ 6 ‖u+
m‖ for m > mo. (4.2)

On the other hand, since g is bounded,∣∣∣ ∫
ag(um)u+

m

∣∣∣ 6 M

∫
|a||u+

m| 6 M |a|L2N/(N+2)

( ∫
|u+

m|
N−2
2N

)2N/(N−2)

6 C‖u+
m‖

for all m. Consequently, it follows from (4.2) that there exists C1 > 0 such that
λn+1 − λn

λn+1
‖u+

m‖2 6 C1‖u+
m‖ for m > mo.

Therefore, (u+
m) is bounded.

For (u−m), since u−m ∈ En−1 implies λn−1 >
∫
|∇u−m|2∫
h(u−m)2

, by similar calculations as

for u+
m, we obtain that there exists C2 > 0 such that∣∣∣λn−1 − λn

λn−1

∣∣∣‖u−m‖2 6 C2‖u−m‖ for m > mo.

Consequently, (u−m) is also bounded. Moreover, we will show shortly that

‖u±m‖ → 0 as m →∞. (4.3)

This will follow from the fact that g(s) → 0 as |s| → ∞. In fact, from∣∣∣λn+1 − λn

λn+1

∣∣∣‖u+
m‖2 −

∣∣∣ ∫
ag(um)u+

m

∣∣∣ 6
∣∣∣〈J ′λn

(um), u+
m〉

∣∣∣
and Hölder’s inequality, we obtain∣∣∣λn+1 − λn

λn+1

∣∣∣‖u+
m‖ 6 ‖J ′λn

(um)‖+ C
( ∫

|a|
2N

N+2 |g(um)|
2N

N+2

)(N+2)/(2N)

. (4.4)

Since ‖J ′λn
(um)‖ → 0 as m → ∞, condition (4.3), for u+

m, follows from (4.4) once
we show that

lim
m→∞

∫
|a|

2N
N+2 |g(um)|

2N
N+2 = 0. (4.5)

Define vm = u0
m/‖u0

m‖ for all m. Then, since Ln is finite dimensional, we may
assume, passing to a subsequence if necessary, that there exists v ∈ Ln such that
‖v‖ = 1 and

vm(x) → v(x) a.e. as m →∞. (4.6)
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For a given ε > 0, find R > 0 such that∫
[BR(0)]c

|a|2N/(N+2) <
ε

M2N/(N+2)
. (4.7)

Since ‖u+
m‖ and ‖u−m‖ are bounded, we may assume, as a consequence of the Rellich-

Kondrachov Theorem [8, Theorem 7.26], passing to subsequences if necessary, that
there exist functions w± ∈ H1(BR(0)) such that u±m(x) → w± a.e. in BR(0) as
m →∞ [3, p. 58]. It then follows from

um(x) = ‖u0
m‖

(u−m(x)
‖u0

m‖
+ vm(x) +

u+
m(x)
‖u0

m‖

)
,

(4.6), and the unique continuation property of the eigenfunctions that

|um(x)| → ∞ a.e. in BR(0) as m →∞,

since ‖u0
m‖ → ∞ as m → ∞. Therefore, by the Lebesgue dominated convergence

theorem and the fact that g(s) → 0 as s →∞,

lim
m→∞

∫
BR(0)

|a|2N/(N+2)|g(um)|2N/(N+2) = 0.

Hence, in view of (4.7),

lim sup
m→∞

∫
|a|2N/(N+2)|g(um)|2N/(N+2) 6 ε,

from which (4.5) follows. Consequently, (4.3) is established for (u+
m). Similar

calculations lead to the analogous result for (u−m).
Now, from

G(um)−G(u0
m) =

∫ 1

0

g(u0
m + t(u+

m + u−m))(u+
m + u−m)dt ,

we obtain∣∣∣ ∫
aG(um)−

∫
aG(u0

m)
∣∣∣ 6

∣∣∣ ∫ ∫ 1

0

ag(u0
m + t(u+

m + u−m))(u+
m + u−m)

∣∣∣
6

∫ 1

0

∫
|a||g(u0

m + t(u+
m + u−m))(u+

m + u−m)|dtdx

6 M |a| 2N
N+2

( ∫
|u+

m + u−m|
N−2
2N dx

)2N/(N−2)

6 C‖u+
m + u−m‖.

It then follows from (4.3) and the above inequality that∫
aG(um) =

∫
aG(u0

m) + o(1) as m →∞.

Thus,

lim inf
m→∞

∫
aG(um) > lim inf

m→∞

∫
aG(u0

m) > lim inf
‖u‖→∞
u∈Ln

∫
aG(u) = Λ.

Hence,

lim inf
m→∞

∫
aG(um) > Λ. (4.8)
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On the other hand, by Jλn
(um) → c and (4.3) we have

c = lim
m→∞

Jλn
(um) = lim

m→∞

{∫
|∇um|2 − λn

∫
hu2

m −
∫

aG(um)
}

= lim
m→∞

{∫
|∇u+

m| − λn

∫
h(u+

m)2 +
∫
|∇u−m|2 − λn

∫
h|u−m|2 −

∫
aG(um)

}
= − lim

m→∞

∫
aG(um).

By hypothesis, c > −Λ, thus limm→∞
∫

aG(um) < Λ, which contradicts (4.8).
Therefore, (um) must be bounded if c ∈ (−Λ,∞).

To show the existence of a weak solution we use the Linking Theorem, Theorem
4.1 (see [15]). Define (En)⊥ := X2, then λn+1 6

∫
|∇u|2∫
hu2 for all u ∈ X2. So, given

any u ∈ X2, it follows from (1.6) that

Jλn(u) =
1
2

∫
|∇u|2 − 1

2
λn

∫
hu2 −

∫
aG(u)

>
1
2
(
1− λn

λn+1

)
‖u‖2 −

∫
a

|a|L1
Λ

> −Λ;

i.e., Jλn(u) > γ ∈ R for all u ∈ X2 with γ := −Λ. So condition (I1) in Theorem
4.1 holds.

On the other hand, from

Jλn
(u) >

1
2
(
1− λn

λn+1

)
‖u‖2 + γ,

it follows that Jλn(u) → ∞ as ‖u‖ → ∞ (since λn+1 > λn), and therefore (I2) in
Theorem 4.1 also holds.

Now, define X1 := En. If n > 1, we may write u = u1 + u0 where u1 ∈ En−1

and u0 ∈ Ln. For u ∈ En−1 we know that λn−1 >
∫
|∇u|2∫
hu2 ; thus, for u ∈ X1,

Jλn
(u) =

1
2

∫
|∇(u0 + u1)|2 −

λn

2

∫
h(u0 + u1)2 −

∫
aG(u)

=
1
2

∫
|∇u1|2 −

λn

2

∫
hu2

1 −
∫

aG(u)

6 −1
2
( λn

λn−1
− 1

)
‖u1‖2 −

∫
(aG(u)− aG(u0))−

∫
aG(u0).

From G(u) − G(u0) =
∫ 1

0
g(u0 + tu1)u1dt we get that |G(u) − G(u0)| 6 M |u1|, so

that the above inequality becomes

Jλn
(u) 6 −1

2
( λn

λn−1
− 1

)
‖u1‖2 + C‖u1‖ −

∫
aG(u0). (4.9)

It then follows from (4.9) and the condition (1.5) that there exists a real constant
β such that Jλn

(u) 6 β for all u ∈ X1 which is condition (I0) in Theorem 4.1.
For n = 1 we have

Jλn
(u) = −

∫
aG(u) for u ∈ X1,
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which, by (1.5), yields β ∈ R such that Jλn
(u) 6 β for all u ∈ X1 i.e., (I0) in

Theorem 4.1 holds. Therefore, Jλn
(u) has a critical value b > γ and the theorem

is established. �

As a consequence of Theorem 1.3, we have the following statement.

Corollary 4.2. Let g : R → R be a continuous function satisfying lim|s|→∞ g(s) =
0. Suppose that a > 0 a.e.,

G(s) → ξ ∈ R as |s| → ∞, and G(s) ≤ ξ for every s ∈ R.

Then problem (4.1) has a weak solution.

This corollary follows from Theorem 1.3, the unique continuation property of
the eigenfunctions, and the Lebesgue dominated convergence theorem.
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