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EXPONENTIAL STABILITY OF LINEAR AND ALMOST
PERIODIC SYSTEMS ON BANACH SPACES

CONSTANTIN BUSE & VASILE LUPULESCU

ABSTRACT. Let vy (+,0) the mild solution of the well-posed inhomogeneous
Cauchy problem

8(t) = A®)o(t) + f(1), v(0)=0 t>0
on a complex Banach space X, where A(-) is an almost periodic (possible
unbounded) operator-valued function. We prove that v(-,0) belongs to a
suitable subspace of bounded and uniformly continuous functions if and only
if for each € X the solution of the homogeneous Cauchy problem

a(t) = Au(t), uw(0)=z t>0

is uniformly exponentially stable. Our approach is based on the spectral theory
of evolution semigroups.

1. INTRODUCTION

Let X be a complex Banach space and £(X) the Banach algebra of all bounded
linear operators on X. The norms on X and £(X) will be denoted by || -|. We
recall that a family U = {U(t,s)}+>s of bounded linear operators acting on X, is
a strongly continuous and exponentially bounded evolution family (which we will
call simply an evolution family), if U(t,¢) = Id (Id is the identity operator on X),
U(t,s)U(s,r) =U(t,r) for all t > s > r, for each € X the map (¢,s) — U(t, s)z
is continuous and there exist w € R and M, > 1 such that

|U(t,s)|| < Mye**™)  for all t > s. (1.1)

If 7(R, X) is a suitable Banach function space, then for each ¢ > 0 the operator

7T (t) defined by
(T H)s)=U(s,s—1t)f(s—1t), s€R (1.2)
acts on F(R, X) and the family {7 (¢)};>¢ is a strongly continuous semigroup which
is called the evolution semigroup associated with the family &/ on the space F(R, X).
For example, F(R, X) = Cyo(R, X) the Banach space of all continuous functions
that vanish at infinities and F(R,X) = LP(R,X) with 1 < p < oo, the usual
Lebesgue-Bochner space, are suitable. Similar results were obtained when F(R, X)
are certain subspaces of BUC(R, X) the Banach space of all X-valued, bounded
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and uniformly continuous functions on R, endowed with the sup-norm. Let R :=
[0,00). The space BUC(R,, X) can be defined in a similar way.
We will use the following closed subspaces of BUC (R, X), see [9, 14, 18]:
AP(R, X) is the smallest closed subspace of BUC(R, X) which contains all func-
tions of the form:
t—etz:R—-X, peR, zeX;

Ci (R, X) is the subspace of BUC(R, X) consisting by all functions vanishing at
00;

AAPF(R, X) is the space consisting by all functions f with relatively compact
range for which there exist g € AP(R, X) and h € Cf (R, X) such that f = g+ h.
P,(R, X), with strictly positive fixed g, is the space consisting by all continuous
and ¢-periodic functions.

The evolution family U is called g-periodic if the function U(t + -,s + -) is
g-periodic for every pair (¢,s) with ¢ > s. Also we say that the family U is
asymptotically almost periodic with relatively compact range (a.a.p.r.) if for each
x € X and each pair (¢,s) with ¢ > s, the map U(t + -, s + -)x lies in the space
AAPH(R, X). If the evolution family U is ¢g-periodic and F(R, X) = P,(R, X) or
F(R,X) = AP(R, X) then the semigroup 7 = {7 (t)}+>0 defined in (1.2) acts on
P,(R,X) or AP(R, X) and it is strongly continuous. Moreover, if i is a.a.p.r. and
for each x € X, lim; 04 U(s, s — t)x = z, uniformly for s € R, then the evolution
semigroup 7 is defined on AAPF (R, X) and is strongly continuous. More details
related to these results can be found in [1, 2, 10, 11, 12, 13, 15, 16]. Interesting
results on this subject in the general framework of dynamical systems have been
obtained by D. N. Cheban [6, 7].

2. ALMOST PERIODIC EVOLUTION FAMILIES AND EVOLUTION SEMIGROUPS

An X-valued function f defined on R is called almost periodic (a.p.) if it belongs
to the space AP(R, X). Let U be a strongly continuous and exponentially bounded
evolution family on the Banach space X and let f be a X-valued function on R.
We will consider the following hypotheses about ¢ and f.

(H1) The function U(:,- — t)z is a.p. for every ¢ > 0 and any x € X.

(H2) The function U(-,- — ¢)x has relatively compact range for every ¢t > 0 and
any ¢ € X.

(H3) For each z € X limy_,o U(s, s — t)x = z uniformly for s € R.

(H4) The function f is a.p.

It is well-known that (H1) implies (H2).

Theorem 2.1. (i) If the evolution family U satisfies (H1) and [ satisfies (H4)

then for each t > 0, the function T (t)f is a.p.

(ii) IfU satisfies (H2) and f satisfies (H4) then for each t > 0, the map T (t) f
has relatively compact range.

(i) If U satisfies (H1) and (H3) then the semigroup T acts on AP(R,X) and
is strongly continuous.

(iv) If U satisfies (H1) and (H3) then the evolution semigroup T is defined on
AAPT (R, X) and is strongly continuous.

Proof. (i) Let p,(t) := > p_ycke 'z with ¢ € C, py € R, t € R and zp, € X
such that p,(s) converges uniformly at f(s) for s € R. Then U(s,s — t)pn(s — t)
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converges uniformly at U(s,s —t)f(s —t) for s € R. Since the map:
n
s—=U(s,s —t)pp(s—t) = Z e DU (5,5 — t)ay,
k=0

is a. p. its limit U(-,- — ) f(- — ¢) is a.p. as well.
(ii) Let t > 0 be fixed. First we prove that for each € X and each pu € R the func-
tion s +— U(s, s — t)e**(>~Yx has relatively compact range. Let (s,,) be a sequence
of real numbers such that (U(sy,s, — t)z) converges in X. Since the sequence
(e?(5n=1)) 'is bounded in C, we can suppose that the sequence (e~ (s,,, s, —
t)x)) converges in X. Let py(s —t) = Zszo cpe (5=, as above, be such that
pn(s —t) — f(s —t) uniformly for s € R. Let € > 0 and Ny € N be such that the
inequality

9
Me"|[f(sn = 1) = pro(sn = D)l < 5

holds for n sufficiently large. We denote by y; the limit in X of the sequence
(U(Sn, Sn — t)pngy (8n, — t)). Then, for n sufficiently large, we have
U (80,80 — ) f(sn — 1) =yl
<|U(sn, 80 — ) f(sn — 1) = U(Sn, 80 — 1)pN, (80 — 1)
+ U (s, 80 — t)pNg (50 — 1)
< Me' || f(sn = 1) = png (0 = O + 1T (s, 80 — Do (80— 8) — el <e.
Hence the map U(-,- —t)f(- — t) has relatively compact range.

(iii) Let f € AP(R, X) and € > 0. We can choose Ny € N and § > 0 such that the
following three inequalities

No
e
sup [|U (s, 5 — )pwy (s = 1) = pvg (s = O] < D [erll|U(s, 5 — ) — ]| < =,
seR k=0 3
e
sup [|pxv, (s — 1) — f(s = 1)l < 3,
seR
€
sup | f(s —¢) = f(s)ll < 5
seR

hold for all 0 < ¢ < §. Now it is clear that lim;—o |7 (¢)f — f|lcoc = 0, hence the
semigroup 7 is strongly continuous.

(iv) Finally we show that the semigroup 7 given in (1.2) on AAPT (R, X) is strongly
continuous. Let € > 0 be fixed. We can choose §; > 0 such that the inequality

sup || f(s — 1) — f(s)] < =

seR 2

holds for 0 < t < §;. Since f has relatively compact range there exist sq, s2,...,5,
in R such that:
range(f) C Uy, B(f(sk), W), w>0,¢t>0.

Let s € R,t > 0 and k € {1,...,v} such that f(s —t) € B (f(sk), g5007). From
hypothesis it follows that there exists d5 > 0 such that the inequality

[U(s,5 =) f(s) — f(sr)ll <e/6
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holds for 0 < ¢ < d2. Let § = min{d;,d2}. Then for every ¢ in [0, ), we have
[U(s,5 =) f(s —t) = f(s)l
<|[U(s,s =t)f(s =) =U(s,s =) f(si) || + U (s, s — ) f (s) — f(se)l
(k) = fls =D+ [[f(s = 1) = f(s)]]

e e €
SMe“’tHf(s—t)—f(Sk)H—i—g+6+§ <e;

therefore, lim; .o |7 (t)f — flloc = 0. In the above considerations we supposed that
7T acts on AAPT (R, X). Next, we show that this is true. Let f € AAPH(R, X)
and ¢ > 0 be fixed. From the hypothesis it results that there exist a sequence (sy,)
of real numbers and g, z; in X such that

f(sn—t) —y: and U(sp,sp —t)yr — 2z¢ asn — oo.
Then U(sy, $p —t)f(sn —t) — 2 as n — co. Indeed, we have
U ($ny sn=t) f(sn—=t)=2el| < [|U(8n, 50 =) [f (sn=8) =] [+ U (80, sn—t)ye—2:]| — 0

as n — oo. O

3. EVOLUTION SEMIGROUPS AND EXPONENTIAL STABILITY

Let Fy(R, X) := P,(R, X)® Cy (R, X) and U be a g-periodic evolution family of
bounded linear operators on the Banach space X. It is easy to see that the evolution
semigroup 7 defined in (1.2) acts on F4(R, X) and it is strongly continuous. By
FO(Ry, X) we will denote the subspace of BUC (R, X) consisting of all functions
f on Ry for which f(0) = 0 and there exists Fy in F,(R, X) such that Fy(t) = f(t)
for all ¢ > 0. For such f we consider the map:

(SWF)(s) = {U(s,st)f(st) ifs>t (3.1)

0 ifo<s<t.

Proposition 3.1. With the previous notation we have that S(t) acts on F (R4, X)
for each t > 0 and the evolution semigroup S = {S(t)}1>0 is strongly continuous.
Proof. Let t > 0 be fixed, f € FO(Ry, X) and f := S(t)f. Then Fy = Gy + H;
with Gy € P,(R,X), Hy € C{(R,X) and f = Gy + Hy on R;. Let us consider
the maps Gy € P,(R,X) and Hy € Cff (R, X) defined by

Gp(s) = (T(1)Gy)(s), s€ER,

Ay(s) = {(_T(t)Hf)(s) it s > t
(T(t)Gy)(s) ifs<t.

If t > 0 then G;(0) + H;(0) = 0, and if t = 0 then
G(0) + Hp(0) = (T(0)G5)(0) + (T (0)Hy)(0) = U(0,0)G(0) + U(0,0)Hy(0) = 0.
On the other hand it is clear that f = Gf + fff on R,, hence f belongs to
]—'(?(RJF,X ). Using the strong continuity of 7 and the uniform continuity of f,
it follows that

ISE)f = flloo < sup (T (&) Fy)(s) = Fr(s)ll + sup || f(s)]]

s€0,t]

<T@ Ff = Fyllr,@x) + sup, 1F ()1l
sg|0,
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The last term tends to 0 when ¢ tends to 0. Therefore, the semigroup S is strongly
continuous. d

The following theorem seems to be a new characterization of the exponential
stability for evolution families.

Theorem 3.2. Let U be a g-periodic evolution family of bounded linear operators
on the Banach space X. The following two statements are equivalent.
(1) The family U is exponentially stable, that is, we can choose a negative w
such that (1.1) holds.
(2) For each f in FJ(Ry,X) the map t — fot U, 7)f(r)dr : Ry — X is an
element of F(Ry, X).

Proof. (2) = (1) It is clear that F{ (R4, X) contains Coo(Ry, X). Then we can
apply [3, Theorem 3] which works with Cyo(R, X) instead of Cy(Ry, X). Here
Coo(R4, X)) denotes the subspace of BUC (R, X) consisting by all functions that
vanish at 0 and oo.

(1) = (2) U is exponentially stable so the semigroup S defined in (3.1) is
exponentially stable as well. Then the generator

G:D(G) C F)(Ry, X) — FO(R4, X)

of § is an invertible operator. The proof of Theorem 3.2 will be complete using the
following lemma. O

Lemma 3.3. Let {u, f} belong to F{(Ry, X). The following statements are equiv-
alent.

(1) we D(G) and Gu=—f.
(2) u(t) = [y U(t,s)f(s)ds for allt > 0.

This Lemma is well-known for certain spaces instead of F (R, X).

Let Ap(R4, X) be the set of all X-valued functions f on Ry for which there exist
ty > 0and Fy € AP(R, X) such that F¢(ty) =0 and

o if t €[0,ty]
f(t)_{Ff(t) if t > 5.

The smallest closed subspaces of BUC (R4, X)) which contains Ag(Ry, X) will be
denoted by APo(Ry, X). By AAPK (R, X) we will denote the space consisting by
all functions f for which there exists Fy € AAPS (R, X) such that Fr(0) = 0 and
Fr=fonR,.

Proposition 3.4. (1) If the evolution family U satisfies the hypothesis (H1)
and (H3) then the semigroup S, given in (3.1) acts on APy(R, X). More-
over the semigroup S is strongly continuous.

(2) If the family U satisfies hi,ha and (H3) then the semigroup S acts on
AAPE(R, X) and is strongly continuous.

The proof of (1) can be obtained as in [4, Lemma 2.2}, and the proof on (2) as
in [5, Lemma 2.2]. Thus we omit their proof.

For every real fixed T' we consider the spaces BUC([T, o), X) and AP([T, o), X)
Recall that AP([T,00)) is bounded locally dense in BUC([T, o), X); that is, for
every € > 0, every bounded and closed interval I C [T, 00) and every f € C(I,X)
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there exist a function f. ; € AP([T,00), X) and a positive constant L, independent
of ¢ and I such that

sup [ f(s) = fer(s)ll < e
se
and || f 7l Buc(,00),x) < Ll fllc@,x) (see [17], page 335).
Let BUCH(R4, X) be the space of functions in BUC(Ry, X) for which f(0) =

0. It is clear that Ay(R4,X) is bounded locally dense in BUCy(R,X) hence
APo(R,, X) is bounded locally dense in BUC)(R4, X) as well.

Theorem 3.5. Suppose that U is an evolution family that satisfies hypotheses (H1)
and (H3). The following statements are equivalent.
(1) The family U is exponentially stable.
(2) For each f € APo(R4, X) the map ¢t — fg U(t,s)f(s)ds : Ry — X is in
APo(R4, X).
Proof. The implication (1) = (2) follows as in [4, Theorem 2.3]. Now we shoe that

(2) = (1). By the uniform boundedness theorem there is a constant K > 0 such
that for every g € APo(R4,

X)
sup | [ Ut s1905)05] < Kl

For a given f € Co(Ry,X) and t > 0, let M; = supp<,<.<, ||U(s,7)| and let
fi € APo(R4, X) be a mapping such that

OsSgl;tllf(S) fe(s)]l < tM —— I fllco®s,x)

IfellBuco®, . x) < Ll flley®, ,x)-
It follows that

¢
H/ Ul(t,s)f dsH < H/ (t,s) — fi(s dsH + H/ (t,s)fi(s dsH
0

(1+KL)- ||f||Co(]R+, X) -
Then by [3, Theorem 3], U is exponentially stable. O
Now we can write the spectral mapping theorem for the evolution semigroup S
on APy(R,, X) corresponding to an evolution family /. Of course similar results
hold for the spaces Fy (R, X) and AAPH (R, X). With (G, D(GQ)) we will denote

the generator of S with its maximal domain. By o(G) we denote the spectrum of
G. The spectral bound s(G) is defined by

s(G) = sup{Re(A\) : A € 0(G)},
and the spectral radius of S(t) is defined by
r(S(t)) = sup{|A| : A € o(S(2))}.
Theorem 3.6. If U is an evolution family that satisfies the hypothesis (H1) and
(H3) then the evolution semigroup S associated with U, defined on APo(Ry, X),
satisfies the spectral mapping theorem; that is,
a(S)\ {0} =9, ¢t >0.
Moreover, o(G) = {\ € C: Re(\) < s(G)}, and for every t > 0,
o(St)={reC: A <r(S).
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