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ON THE BEHAVIOR OF THE INTERFACE SEPARATING
FRESH AND SALT GROUNDWATER IN A HETEROGENEOUS
COASTAL AQUIFER

SAMIA CHALLAL & ABDESLEM LYAGHFOURI

ABSTRACT. We consider a flow of fresh and salt groundwater in a two-dimensional
heterogeneous horizontal aquifer. Assuming the flow governed by a nonlinear
Darcy law and the permeability depending only on the vertical coordinate,
we show the existence of a unique monotone solution that increases (resp. de-
creases) with respect to the salt (resp. fresh) water discharge. For this solution
we prove that the free boundary is represented by the graph x = g(2) of a con-
tinuous function. Finally we prove a limit behavior at the end points of the
interval of definition of g.

INTRODUCTION

Fresh water and sea water are actually miscible fluids and therefore the zone of
contact between them takes the form of a transition zone caused by hydrodynamics
dispersion. Across this zone the density of the mixed water varies from that of fresh
water to that of sea water.

Under certain conditions the width of this zone is relatively small (when com-
pared with the thickness of the aquifer) so that we assume that each liquid is
confined to a well defined portion of the flow domain with an abrupt interface
separating the two domains.

We consider here a two-dimensional model for fresh-salt water in a horizontally
heterogeneous extended aquifer in the zz-plane. We suppose that the scale of the
problem is sufficiently large so that the abrupt interface approximation is applicable.
Moreover we consider the model of a flow obeying to a nonlinear Darcy law.

In section 1, we indicate briefly how to obtain the weak formulation and the
existence and some properties of the solutions, the definition of the free boundary
I' = [v = g(#)] and the continuity of g on its interval of definition (—h*,0), h* > 0.
All these results generalize previous works in [5] and [4] (resp. [6]) where the
aquifer was supposed homogeneous (resp. heterogeneous) and the flow governed by
a nonlinear (resp. linear) Darcy law.
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The aim of this paper is to study the behavior of the free boundary when z — —h*
and z — 0 under the assumption that the permeability of the porous medium de-
pends only on z including the case of horizontal layers. Actually we establish in
section 3 that lim,_, 5+ g(z) = 400 by generalizing the proof given in [6]. We also
give a second simple proof which works only for a constant permeability. Then we
prove that lim,_,o g(z) = g(0—) exists. We recall that in [1] the authors first proved
(in the linear and homogeneous case) that liminf, .o g(z) > —oo by using blow up
arguments. They also proved that limsup,_,, g(z) < 0 and used this result to prove
the existence of the limit g(0—). Our proof does not assume limsup,_,,g(z) < 0
and is valid in the general case. Moreover we prove that g(0—) is finite in more
general cases. Our proofs are systematically based on comparing the solution lo-
cally or globally with explicit functions satisfying similar equations. This method
of comparison is developed in section 2 to show that the solution increases with
respect to the salt water discharge @) and decreases with respect to the fresh wa-
ter discharge ;. The uniqueness of the solution is obtained as a corollary of this
monotonicity result. We also deduce a limit behavior of the solution when Q¢ or Q4
goes to zero. Also by a comparison argument, when the permeability is constant,
we give a simple proof of the fact that the set filled by fresh water is star shaped
with the origin and the free boundary is non increasing in the region [z > 0]. These
two last results were proved in the linear case in [1] by using blow up arguments.
Our proofs based on monotonicity arguments are much simpler.

1. DESCRIPTION OF THE MODEL

In this paper we are interested with the study of a stationary flow of fresh and salt
water in a heterogeneous coastal aquifer Q = R x (—h,0), h > 0, with permeability
A(X), X = (z,2) € R%. The velocity and the pressure of the fluid are related by
the following nonlinear Darcy law

v =—({A(Vp+re.), Vp+7e.)) 2 A(Vp+7es) (1.1)
with r > 1, e, = (0,1) and ~ is given by
v =px(2f) +7sx () with 0 <y < (1.2)

where v (resp. <s) represents the specific weight of the fresh (resp. salt) water
occupying the region Qf (resp. ;) of Q, x(E) denotes the characteristic function
of the set F.

Fresh water is injected over the segment [OA] (A = (0,a) with @ > 0) uniformly
(see Figure 1) with a total amount of Q. From infinity at the left of the aquifer,
salt water arrives with a total discharge of Q5. We assume that the two fluids are
unmixed and separated by an interface I'. The part of the boundary 9§\ [OA4] is
assumed to be impervious and the flow incompressible. So the velocity satisfies

divv=0 1in , v:f@ez on [OA4],
a
v.r=0 ondN\[OA], vi-v=0 onl (i=s,f),

where vj is the restriction of v to €; and v is the outward unit normal to 092 or I'.
We deduce from (1.3) that there exists a stream function v satisfying
oY 0
V:Rot¢=<——¢,—w) inQ, ¥=0 on T,
0z’ Ox
W(a,~h)=Q, and o(x,0)=go(x) forzeR

(1.3)

(1.4)
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with
T
¢o(z) = —Qf min (7,1). (1.5)
We suppose the permeability matrix A(X) such that
. 4
A(X) e [L>=(D)],
TIme > 0: (A(X)E,€) > mgléf?, VEER?, ae. X €Q, (1.6)

A=A

Then there exists a unique symmetric and strictly elliptic matrix A satisfying
A(X) = A'A = A? (see [7]). Then (1.1) becomes

v = —(AX)(Vp+ ve:), A(X)(Vp +7e.)) "2 2A(X) A(X) (Vp + 7ez)
= —|A(X)(Vp + ve.)|" 2 AX)A(X)(Vp + ve.).
This leads to
AN (X)v| = [A(X)(Vp +ve.)|" !
and
Up+ e = —|A7 (X[ T ATHX) (AT (X)) (1.7)
Now for ¢ € D(2) we get by (1.4) and (1.7)

/(Vp+vez)RotC: —/ | A=Y (X) Rot )| =1 A1 (X)(A"1(X) Rot ) - Rot (.
Q Q

If we set A(X) = ﬁA, then there exists a unique symmetric and strictly elliptic
matrix B(X) such that A(X) = B2 = B - B and for which we have
FATH(X)(AH(X) Rot ) - Rot ¢ = (A(X) Ve, V() = B(X)Vy - B(X)V(.
Therefore
/ IB(X)VE| 5BV - B(X)VE 416, V¢ =0 YCeDQ).  (18)
Q

Setting ¢ = r/(r — 1), we deduce from (1.8) by taking ¢ € D(;) (i = f, s)
div (B(X,¢)) =0 inD'() i=f,s (1.9)
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with B .
B(X,€) = (A(X)E, &) 7 A(X)E.
Moreover if we assume that
lirf P(z,z) <0 for (z,2) € Qy and ligl Y(x,2) >0 for (x,z2) € Qs
(1.10)
and since
P <0 ondfly and ¢ >0 on €, (1.11)

we deduce by (1.9)-(1.11) and the maximum principle for B-harmonic functions in
unbounded domains (see [9], [10]) that

P <0 inQy and >0 in ;. (1.12)

It follows from (1.2) and (1.12) that v € H(¢), where H is the maximal monotone
graph defined by

H(t) = vpx([t <01) + [vg, ysIx([t = 01) +vsx([t > 0]),

[vf,7Vs) being the closed interval of R with endpoints v; and ~,.
Then we are led to the following question:
problem (P) Find (,7) € W,29(Q) x L>(Q) such that

loc
(i) [o |B(X)V|92B(X)Vy- B(X)V(+7e,- V¢ =0 for all ¢ € W, 9(Q) with
compact support in Q
(ii) v € H(®) a.e. in
(i) —Qf <9 < Qs a.e. in Q
(iv) ¥(z,—h) = Qs, ¥(2,0) = ¢o(x) for all x € R.

Adapting technics in [4], [5] and [6] we prove the following theorems.

Theorem 1.1. (i) There exists a solution (¢,7) of (P) that satisfies i €
CY(Q) for some a € (0,1). Moreover if A(X) € CL2(Q), then ¢ €

Cioe @\ [ = 0)), 0,3 € (0,1).
(ii) If B(X) = B(z), then there exists a monotone solution (1,~) of (P) in the
following sense:

0,0 <0 and 9,y <0 inD'(Q). (1.13)
For the rest of this article, we assume that
B(X)=B(z2) = (Bij(z))1gi,j§2 a.e. in (1.14)

and will consider only monotone solutions. Moreover we need to introduce the
following two functions defined for z € [—h, 0].

Vioo(2) = =Qf +(Qs + Qf)P1(2),  v-0o(2) = Qs (2) (1.15)

where

fo ds
2 (B%,+B2,)772(s)
61(5) = T
—h (B3, +B3,)7"/2(s)
Then we have the following theorem.
Theorem 1.2. Let (v,7) be a solution of (P) and let Qy, », = (m,n) x (—h,0) for
m,n € R.
(i) For r = max(q,2), we have limp_ 1o fQR,R+1 V(1) — v4o0|” = 0.



EJDE-2001/44 INTERFACE SEPARATING FRESH AND SALT GROUNDWATER 5

(ii) For all z € [—h,0], ¥(x,z) — V+e0(2) as x — Fo0.

(iil) V4o <Y <v_oo in Q.

(iv) Y(z 4 R, 2) = Yaoo(2) in LT (Q,1) as R — +00, where yioo € H(vioo).
Remark 1. From (iii), one can see that the strip R x (—h, —h*) is contained in

[¢p > 0], where h* € (0,h) is defined by ¢1(—h*) = Qﬁfo' Therefore, the free
boundary I' = [¢) = 0] is contained in R x [—h*,0).

Arguing as in [4] and [6] we can prove the continuity of the free boundary. The
proof needs Lemma 15 (see Appendix) which requires the following regularity of B:
If ¢ # 2, then

B(z) € CPl(=h,0). (1.16)

loc

Remark 2. Under assumption (1.16), the critical points of any B—harmonic func-
tion in 2 are isolated (see [2]). For the rest of this article, we assume that (1.16) is
satisfied.

Theorem 1.3. There exists a continuous function g : (—h*,0) — R such that
[z =g(2)] CT Clz=g(2)]U[z = —h7].
Corollary 1. (i) v =vsx([ > 0]) +v¢x([v <0]) a.e. in Q.
(ii) The sets [1p > 0] and [¢p < 0] are connected by arcs.

2. COMPARISON AND UNIQUENESS

In this section we prove that solutions of (P) increase with respect to Qs and
decrease with respect to QQ¢. As a consequence we obtain the uniqueness of the
solution of (P). Let us denote by (P(Qs,Qy)) the problem (P) corresponding to
Qs and Q5. Then we have the following comparison result

Theorem 2.1. Let (¢1,71) and (2,72) be solutions of Problems (P(Qs,,Qy,)) and

(P(Qsy,Qy,)) respectively. If Qs, < Qs, and Qp, < Qy,, then we have 1 < )9
and 1 < v2 a.e. in €.

The proof of this theorem follows an idea in [4] and uses a recent result due to
Alessandrini and Sigalotti [2] regarding isolation of critical points of B-harmonic
functions in planar domains. First we prove the following lemma

Lemma 1. Under the assumptions of Theorem 2.1,
7(0) = [ (B(= 1) = B=, Vo) + (1 = r0)es)- V¢ =0 ¢ € DR?)
Q

where 1o = min(y1,¥2) and vo = min(y1,72)-

Proof. Let ¢ € D(R?) and let K = supp(, M = supy |¢|. Then there exists Ry > a
such that: VR > Ry, K C (—R, R) xR. Consider (g = M. min (1, (—|z|+ R+ 1))
and set ¢ = ¢ + (g, (2 = (g — ¢. Then for € > 0 and i = 1,2, min(§;, %) is a
test function and one has by the monotonicity of B(z,.)

/[ e (B(Zvvwl) - B(Z’V%)) VG + /Q(’h — %) Gix
=< /Q(’Yl - 70)(@ - M)Jr.

€ T

(2.1)
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Since Qs, < @5, and Qy, < Qy, one has

gk g1 Qfl -1 sz _px
h1_¢1 (Q51+Qf1)§¢1 (QS2 +Qf2)_ h2

and then if we denote by I = {z € (—h3,0) : g2(2) < 91(2)}
/9(71 —70) (G — u);

€
= / (vs —v7) (G — u):
[0 <0<t1] €

_ wE =ty
o [ ] e

= (vs — ’Yf)/j (Cz + %)+(91(z),z) — (CZ - 7)+(92(Z),Z)d2

which goes to zero when € — 0. So from (2.1) we get T(¢;) < 0 for ¢ = 1,2. This
leads to

T(Cr) < T(C) < ~T(Cr) (22)
Moreover we have
T(Cr) =M | (B(z V1) — B(z, Vo)) ez + M | (71 — 70)
- M . (B(z, V1) — B(z, Vb)) .ex + M i (71 —70)-

Using Theorem 1.2 and the fact that we have either v}, = vZ _ or v} < 02

in (—h,0), we deduce (see [6, 4]) that limg_, o T({g) = 0 which leads by (2.2) to
T(C) = 0. 0

Proof of Theorem 2.1. Let us denote by D the domain [¢); < 0] (see Corollary 1).
First we remark from Lemma 1 that (1o, 70) is also a solution of (P(Qs,, @f,)),
that ¢y and 1; are B-Harmonic in D and that B(z, Viy).v = B(z,Vi1).rv on
(a,+00) x {0}.

Since we have 1y < 11 in D, 1y = 91 on (a,+00) x {0} and vy, 1 € CY(D U
(a,+00) x {0}), it is enough according to Lemma 14, to prove that Vi); does not
vanish on some part I'g of (a,+00) x {0}. Assume that for some z; > a and
0 <r < #5372 we have Vi1 (2,0) =0 Vo € (x1 —r,21 +7). Let B,(x1,0) be the
ball of center (x1,0) and radius r. If we extend ¢; by —Qy, and B(z,§) by B(0,€) to
B, (21,0)\ D, it is clear that 1y € W4(B,(z1,0)) and is B-Harmonic in B, (z1,0).
Since the zeros of the gradient of a nonconstant B-Harmonic function are isolated
(see [2]) and V1 = 0 in B, (z1,0)N[z > 0], we deduce that 1 = —Q, in B, (x1,0).
By the monotonicity of ¢; this leads to ¢¥1 = —Qy, in the strip [z1,4+00) % (—7,0)
which contradicts the asymptotic behavior of 1) at +o0o. So there exists x} €
(1 — 7,1 + 1) such that Vi (2, 0) # 0. Since 11 € C*(D U (a,+00) x {0}) there
exists 7/ > 0 such that Vi (z,0) # 0 Vo € (2} — 1/,2] + r’). Therefore we get
o = 1 in D. In particular g = 11 in [t)o < 0]. Similarly one can prove that
Yo = 11 in [pg > 0] and then by continuity g = 1 in Q. Using Corollary 1 we
deduce that vg = 71 in Q. O

As a direct consequence of Theorem 2.1, we have
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Corollary 2. The solution of problem (P) is unique.

According to Theorem 2.1 the solution of (P) decreases with respect to @y and
increases with respect to Q). Intuitively one would expect that as Q¢ — 0 (resp.
Qs — 0) the aquifer would be saturated by salt (resp. fresh) water only. More
precisely we have

Theorem 2.2. Let (vq,,7q,) be the solution of (P(Qs,Qy)). We have

(V@ 1Qs) = (V-c0s7s) i VVlig(Q) x Lii,.(Q) as Qf — 0,
where v_q, is given by (1.15).
Proof. Using the monotonicity of ¢g, and vq, with respect to @ and the fact

that the two functions are uniformly bounded, we deduce by Beppo-Levi’s theorem
that there exists two functions v, v such that

Yo, =¥ in L, (Q) ae. in Q
Y, — v in Lipe(92) Vr=1.
Now let m > a and n € W1*°(R) such that 0 <n <1, n=11in (—m,m), n =0

for |z] > m+ 1 and || < 1. Let ®(z,2) = ¢o(x) + ¢1(2)(Qs — ¢o(x)). Then
N4 (g, — @) is a test function for (P(Qs, Qr)) and we have

/ 791B(2)Vibo, |7
Qerl
- /Q 11| B(2)Vibo, [ 2B(2) Vi, - B(z)V®
- /Q a1 (b, — B)|B(2) Vi, |1 B(2)Vig, - B(2)V1

—/ QM 021, +/ 7@,«77‘131@—/ vQ, (g, — ®)gn* 1.
Q1 Qg1 Qg1

Since 9¥q,,®,V®,n,7',7q¢, are uniformly bounded, we deduce by using Holder’s
inequality

|wa ‘1,q,Qm <cm
where ¢, is a constant depending on m. Then by using a diagonal process we get,
up to a subsequence

v, ~ ¢ i Wl(Q).
Let us show that this convergence holds strongly. Let m > a and let p € D(Q,),
p > 01in Q. Then p?(ihq, — ) is a test function for (P(Qs,Qy)) and we have

/Q o B(2) Vg, |7
- / P1|B(2)Vibo, [ 2B(2) Vb, - B(x)Vi

- /Q a0 (Wa, — )| B(2)Vibe, " B(2)Vibg, - B(2)Vp

7/ qunyam(wa - w) 7/ YQy (wa - 1/’)(1Pq715xp-

m m
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Applying Holder’s inequality and letting @y — 0, we get

limsup ( /Qm p1B() Vi, ) < (/Qm BT

Hence p?B(z)Vipq, — p?B(2)Vy in LI(£,,) and in particular

Vg, — Vi in wl 1(Q).

loc

Now using the monotonicity with respect to @y and the continuity of ¢, it follows
by Dini’s theorem

lim ( lim Yg,(x+R,z)) = lim (Qligoi/JQf(m+R,z))

Qs—0 " R—*too R—+o0
and
Rhm Y@+ R, z) = hm va 1(2) =v_s(2) for (x,2) € Qo1,
where ngo and v £l were defined by (1.15). Since 9,0 < 0, we deduce that

W(x,2) = V_oo(2) = Qsp1(2). Moreover v € H()) and ¢ > 0 in Q, so v = 7, a.e.
in €. We conclude that when @y — 0, the aquifer is completely saturated by salt
water only. O

Theorem 2.3. Let (¥g,,7q,) be the solution of (P(Qs,Qf)). We have

Q.. 7q.) — (0, 7) in WiEH(Q) x LE () as Qs — 0,

where 1 is the solution of the following problem:

Problem(P(Qy)):
(i) div( (z,V¢)) =0in D'(Q)
(i) —Qr <y <0in N
(iii) ¥(x,—h) =0, ¥(z,0) = ¢o(x) for all z € R
(iv) limy— oo ¥(x,2) = 0, limy oo Y(2,2) = Qf(P1(2) — 1).

Proof of Theorem 2.3. Taking into account the monotonicity of ¥, and g, with
respect to Qs and arguing as in the proof of Theorem 2.2, we deduce the existence
of two functions ¢ and 4 such that

dg, — @ I Wl(@) and 5, —7 in Li,(9).

It follows that (¢, %) satisfies:
(i) dlv( (2, V¢)) = —9,7 in D'(Q)
(

S|

(2,0) = ¢o(x) for all z € R
My, oo (7, 2) = 0, limy— 400 Y(7,2) = Qp(P1(2) — 1)
(vi) 0,9 <0 and 0,7 <0 in D'(Q).

By the weak maximum principle, we can compare 1) with the solution 1 of P(Q}).
This gives ¢ < v in Q. Since 1) satisfies by the strong maximum principle —Q <
¥ < 0, we deduce that ¢ < 0 in Q and then ¥ = v a.e in Q. Consequently ¢ = )
in . We conclude that when Qs — 0, the aquifer is completely saturated by fresh
water only. [

—
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The end of this section is devoted to study the set Q; = [¢p < 0]. We would like
to point out that it was proved in [1] in the linear case that this set is star shaped
with the origin. The proof was based on blow-up arguments. Here we propose a
different proof based on a comparison argument that works for the linear case as
well as for the nonlinear one with constant permeability. So we assume that B does
not depend on z. For any r > 0, we consider

Yol 2) = p(ra,rz) and y(e,2) = To(r, )

defined on Q, = R x (=2,0). It is easy to check that (1, 7,) is the solution of the
following problem:
Problem (P,) Find (¢,,7,) € Wh4(€,) x L>(%Q,.) such that:

loc
(i) fQT|BV1/)T|q72BV1/JT - BV 4 4r€,.V¢ = 0 for all ¢ € Wy 9(Q,) with com-
pact support in Q,

(ii) v, € H(¥,) a.e. in Q,

(ili) ¢ (2, =) = Cis, (2,0) = Lgg(ra) for all z € R

(iv) Ox¢ <0 and 9,7, <0 in D'(Q,).
(From the study of problem (P), we know that problem (P,) has a unique solu-
tion with a continuous free boundary g, and that lim,_,_ ¥, (z,2) = %v_oo(rz),

limg— 4 o0 ¥ (%, 2) = 20400 (rz). Moreover since we assume that B does not depend

Qs _Qr QrtQs 2
h T h .

on z, we have v_y(2) = ===z and vy (2) =

Theorem 2.4. For 0 < ry < rg, we have p, <y, in Qp, C Q.

Proof. We remark that (¢,,,vr, ) and (¢, Vr,) satisfy the same equation on Q,,.
Moreover one can check that
Yry <tpy, on 0., and  lim ., (z,2) < lirjr:l Uy (T, 2).
T— OO

z—+o0

Then we can derive a similar result as in Lemma 1. Since ., (z,0) = to(z,0) =
—Qy/r1 where ¢¢ = min(t,,,1,,), one can argue as in the proof of Theorem 2.1
to prove that ¥,, = 1o in [ty < 0].

To prove that ., = 1 in [tbg > 0] it is enough to verify that Vi, does not
vanish on some part of the left hand side of the line [z = f%] So assume that for
some g, we have Vb, (z, —h/ra) = 0 for all < zg. Then ¢, (xg, —h/re) = C € R
for all x < zy. By the asymptotic behavior C' = Q;/r2 > 0 and by continuity
and monotonicity, v, is positive in a strip D, = (—o0, zg) X (—% — €, —% +€) for
some small € > 0. Therefore v, is B-Harmonic in D, and its gradient has non-
isolated zeros. This means that ¢,, = C in D, which contradicts the asymptotic
behavior. (]

Corollary 3. € is star shaped with the origin.

Proof. Let Xy € Qf and t € (0,1]. We have by Theorem 2.4, ¥ (Xo) < ¥1(Xo) =
(Xo) < 0. So ¢(tXp) < 0, which means that tX, € Q. O

Corollary 4. (i) There exists zo € (—h*,0) such that g(z) > 0 for all z € (—h*, zp).
(ii) g is non-increasing where it is nonnegative.

Proof. (i) First note that the set [¢g > 0] is nonempty. Indeed if g(z) < 0 Vz €

(—h*,0), then for all (z,z) € (0,400) x (—h*,0) we have 1(x, z) < 0. Since we also
have ¢(x,z) > 0 in (0,400) x (—h,—h*), we get a contradiction with Lemma 15.
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Let 2o = inf{ z € (=h*,0) / g(2) > 0} and take z € (=h*, 29). Since r = 2 < 1, we

have
o=t~ (e (2] ) =, (22,

,
9(20) 9(20)
< (T22) = 0(£22,2) < g(0). 2)
since g(zp) > 0 and } > 1. Thus t(g(20), z) > 0 and then g(z) > g(z) > 0.
(73) Let 21,22 € (—h™*, z9) such that z; < z3. If g(22) > 0, we can argue as in ) and
obtain g(z1) > g(z2). O

3. BEHAVIOR OF THE FREE BOUNDARY NEAR z = —h*

In [6] we proved in the linear and heterogenecous case (¢ = 2) that the free
boundary has the line [z = —h*] as an asymptote. Here we generalize the proof to
the nonlinear case. Before this, we give a second proof which is much simpler but
works only when the permeability is constant.

Theorem 3.1. (i) The set S = {x € R: ¢(z,—h*) = 0} is empty and I' = [z =
9(2)]-
(i7) lim, . _p~ g(2) = +00.

Case of a constant permeability: (ii) Since g is non-increasing in (—h*, zo)
(see Corollary 4), there exists a limit L for g as z — —h*. Assume that L is finite.
By the monotonicity of g we get g(z) < L Vz € (—h*, zp) and then

Ve > L, Vze(—h" z2), ¥,z <O0.
Since ¢ > 0 for z < —h* we deduce by continuity that we have necessarily
P(x,—h*) = 0 for all x > L. This leads to a contradiction with Lemma 15. Thus
L = +o0.
(z) Assume that S # (). Then there exists zy € R such that ¢ (zg, —h*) = 0. For
A > xg there exists 6 > 0 by (i7) such that: for all z € (=h*, —h* + ), g(z) > Ao.
So for (x, z) € (—o0, Ag) x(—h*, —h*+40) we have 1 (x, z) > 0. By monotonicity of 1,
we deduce that ¥ (z, —h*) = 0 Vo > x¢ since one has vioo(—h*) = 0 < (x, —h*) <
Y(xg, —h*) = 0. Hence we have ¢ > 0 in (zq, Ag) X ((—h* —0,—h*+ )\ {—h*})
and ¢(xz, —h*) = 0 Va € (xg, Ag) which contradicts Lemma 15.
The general case: Since we follow the proof given in [6] for the linear case, we
will only give an outline of it.
(i) Assume that S # (. Then S = [a, +00) with @ = inf S > —oo. We need some
lemmas.

Lemma 2. There exists uw € L>(—h,0) such that u > 0 for a.e z € (—h,0) and
_ _ _a=2 _
E(u(z)) = (AQQUQ(Z) — 2A12U(Z) + An) 2 (AQQ’LL(Z) — Alg) — CO =0
a2 _
for some constant Cy > —(Alql2 A12)(z) for a.e z € (—h,0). A;; being the entries
of the matriz A introduced in Section 1.

Proof. The function E : R — R is continuous and satisfies lim;_,  », E(t) = 400,

a2
E(0) = —A;7 Aj3 — Cy < 0. So we deduce that for a.e z € (—h,0), there exists
u(z) > 0 such that E(u(z)) = 0. This clearly defines a positive and uniformly
bounded function u on (—h,0). O
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Set o/ = o+ § and define f(z) = [, u(s)ds + o/. For k > 0 define v and 6 by

0z, z) = vsx([w < f( >]) + wx([ > f(2)])
)

for (z,2) € D(z1) = (¢/,+00) X (=h*,z1) with z; € (—h*,0). Then we have the
following lemma.

1/((1 1) ) +

— )

Lemma 3. There exists k > 0 such that
/ (B(z, Vo) + Hem)Vﬁ >0 V¢eD(D(z)).
D(z1)

To prove this lemma, one can adapt the proof of [6, Lemma 6.3].

Lemma 4. Let (v,7) be the solution of (P). Then there exists zo € (—h*,0) such
that

/D( (Bl VU~ Bz V) (7~ 00)ex) VE =0 G € D(R?)

where vg = min(y ™, v) and 0y = min(v, ).

To prove this lemma, one can adapt the proof in [6, Lemma 6.4].
completion of the proof for Theorem 3.1. Let z, € (—h*, z0).
o If T (a/, 2,) = 0, then by monotonicity we have T (x,z,) =0 Vz > o'.
o If ¢y (a/, z,) > 0, then since we can choose k such that ¥ (o, z.) < v(/, 24),
we deduce by continuity that there exists a small ball B,.(¢/, z,) in which one has
T > 0 and T < v. Then ¢t = vy in B.(a’,2). Let us denote by C, the

connected component of D(zo) N [¢p > 0] which contains B,.(¢/, z.) N D(2).
Let D" (z0) = D(20) N[z < f(2)]. By Lemma 4 we have

div (B(z, vt — Bz, wo)) +(7=00) =0 inD'(C.ND*(z)).
But since in C,, N D (zp) we have ¢ > 0, v > 0, it follows that v = 0 = 6y = ~,
and then
div (B(z, Vo)) = div (B(z,Vug)) =0 in D'(C. N D™ (z)).
So we have
div (B(z, Vo)) =0, div (B(z,Vvg) =0 in D'(C. N DT (2))
Yt > in C, N DT (2)
YT =wvg in B.(a,z) N DY ()

which leads by Lemma 13 (see Appendix) to ¥+ = vg in C, N DV (29). We then
conclude as in the end of the proof of Theorem 6.1 in [6].
(#3) See Corollary 6.6 of [6]. O

4. BEHAVIOR OF THE FREE BOUNDARY NEAR z = 0

Now we study the free boundary near z = 0. We first prove the existence of a
limit g(0—) < 0 as z approaches zero. Then we prove that this limit is finite in two
cases.
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4.1. Existence of the limit of g at z = 0.
Theorem 4.1. The function g has a limit when z approaches zero.

Proof. It suffices to show that liminf, .o g(z) = limsup,_,, g(2).

First, if limsup,_,, g(z) = —o0, then
limi(r)lfg(z) = limsupg(z) = 1i1%g(z) = —00.
zZ— z—0 zZ—

Now assume that limsup,_,,g(z) = at > —oo. Note that a™ < 0. Indeed if
a™ > 0, then ¢ (a™,0) < 0 and by continuity of v there exists ¢ > 0 such that
¥ < 0in (at —€at +€) x (—¢,0). So g(z) < at —€ Vz € (—¢,0) and then
at < a™ — e which is impossible.

Set a= = liminf, ¢ g(z) and assume that a= < a™. Let 21 € (a7, a™), 22 €
(x1,a™) and let (z,), be a sequence that satisfies

nEIJIrlOO zn =0 and nklfoog(zn) =a".

So there exists ny € N such that g(z,) < x; for all n > ny and then
VT (21,2,) =0 Vn >ny. (4.1)

Arguing as in the proof of Lemma 2, we prove the existence of a negative function
u € L*(—h,0) such that for a.e z € (—h,0)

=2 __

E(U(Z)) = (ZQQ'U?(Z) — 221211(2) —|—le) 2 (A22U(Z) — 212) — 01 =0 (42)

_a=2_
for some constant C; < —(A;7 Ai2)(z) for a.e z € (—h,0). We then set

f(2) :/ u(s)ds + 'y  for 2] € (w1, 2).
0
Since f is continuous and non-increasing there exists ne € N such that
F0) =21 < f(2) <x2 Vz € (24,0) Vn > nas. (4.3)
Now for £ > 0 we define v and 6 by

o(w,2) = (ks — 7)) T (f(2) — 2)*

(4.4)
0(x,z) = vsx([z < f(2)]) +vpx([z > f(2)])
(z

for (z,2) € D(z,) = (x1,+0) X (2,0) with n > nys. Then as in Lemma 3, one can
deduce from (4.2) and(4.4) the existence of k£ > 0 such that

/ (B(z, Vo) + Hex)V§ >0 VEeD(D(z)).
D(zn)

Using the fact that 1" (z1,0) = 0, the continuity of 1, the monotonicity of f, (4.1)
and (4.3), there exists n > sup(ny, na) such that ¥ (21, 2) < wv(x1,2) Vz € (2,,0).
Moreover one can check that
YT <v ondD(z,) and hrf Vv (z,2) = lirf v(z,z) =0.

Arguing as in the proof of Theorem 3.1, we obtain ¢ < v in D(2,) from which we
deduce that ¢ (z,2) =0 V(z,2) € (z2,a") X (2,,,0) and then g(z) < zo Vz €
(2n,0). So at =limsup,_,g(z) < 22 < a™ and we get a contradiction. Thus we
have a™ = @~ and lim,_.q g(z) exists. O
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The remainder of this section is devoted to show that g(0—) is finite in two

general cases.

4.2. The Linear Nonhomogeneous Case. We assume that ¢ = 2 and B}, (z) <
0 in D’(—h,0), then we have the following theorem.

Theorem 4.2.

1ir%g(z) > —00.

The idea of the proof is to compare ¢ with a suitable function. First let R,b > 0

and consider

_ 2 _ 2 ifr < pp = Bt
o) = R+ /R?— (z+0b) ifx<zp e b,
zR—“Tﬂ’(x—xR) ifx>ap
. o R(a+b) o .
with zp = Ty R (see Figure 2). Set
Z _ds 2 d
w(z) = g2l = n/ o forz € (=h,0).
—h B2 () 0 Baa(s)
For ¢t > 0, consider
: Qs
Gt)=A(t+1)>—1] with =
(= A+ 1?1 with A= P

and define v; by

vi(z, 2) = G(f(2)
For d > 0, set fq(x)

K(t) = plog(1+1t) with p=

—w(z)) for (x,2) € Dy ={(2,2) €Q/ —h<z<w 'z)}

= f(x) +d and for ¢ > 0 consider

Qs
log(1+d)

Then we define vy by
va(z,2) = —K(w(2) — f(z)) for (z,2) € Dy



14 S. CHALLAL & A. LYAGHFOURI EJDE-2001/44

with Dy = {(z,2) € Q: w™l(z) < 2 <w lofs(z)}. Now set
=X(D1)v1 + x(D2)v2 and 0 = x(D1)ys + x(D1)y

Remark that v € HL (D) since vi(z,w ™ (z)) = G(0) = 0 and va(z,w *(z)) =
—K(0) = 0. We will compare (¢, ) with (v, 6) on the domain D = (D; U D2) N Q2.
The proof needs some preliminary Lemmas.

Lemma 5. There exists aqy > 0 such that

22
Va € (0,a1), VR > max( > %) div (B(z)Vuvy) >0  inD'(Dy).  (4.5)

Proof. Indeed let Cy be a constant such that Bai(z) + Cy > 0 for a.e z € (—h,0).
Then we have
div (B(z)Vvy)
0 Ovy 0 0 Ovy 0 0
=5 (Bii—— o + B2 ;1) + 87( Cr—— o + Bas ;1) t35; ((Ba21+ C1)
= Bu (G"(f(z) —w(=)(f)? + G (f(z )—w(Z))f")

+(Byy — cn(‘—“f’G”(f(x) w(2))) + BTZG”(f( z) —w(2))

- E(le +C1)G" (f(z) —w(2)f' + By G'(f(z) — w(2))f'

on
896)

IQQ

> 2B ((f))? + -
- n () By B11 B22By

=2A\B11;

(Biz = C1) f' + (f(z) —w(z) + 1) ")

(4.6)
since Bay + C1 > 0, G” =2\, f'(z) <0, B, <0in D'(—h,0) and G'(t) = 2\(t +
1) > 0 for t > 0.
We shall distinguish three cases:
e For x < —b, we have f(z) =0 and then I} = 22311 > 0.
e For « € (zg, f~'(=h)), we have f’(z) = 0, f'(z) = - = —a, m <
Bi1,Bss < M, |Bya| < M, where m and M are two positive constants such

that
m|¢)? < (B(2)€,€) < MIE]* VEER?, ae. z € (—h,0). (4.7)
So
K2 ak
=+ Box B * Box B (Biz =€)
> a? +%fm—Z(M+Cl)HAZ—22>O as a — 0.

Therefore, there exists ag > 0 such that Va € (0,a9) I > 0.
e For z € (—b,zR), we have

/ o _(x"‘b) M) = — R?
f(-r)_ R27(1’+b)2’ f ( )_ (RQ—($+b)2)3/27
2 R?

L+ () =

R~ (z+0)?
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Then
R2
I, = R2 — b)2
! (R2 — (z +b)2)3/2 ( (z+9)
(R2 _ (.%‘ + b)2)3/2 K2
- -1
f = BBy,
K(Bi2 — C1) (R? — (z + b)?)
b —1).
- Bas By R? (@ +) +w(z) )
Note that
e \/R2—(z+b)?— f(x)=R.
° (RQ—($+b)2)3/2 (BZ,:zBll — 1) > R (— — 1) prOVided that M > k.
° N(ggl;BSl) L _($+b) Uz +b) > —Cy > —Cs(zgr +b) since
%Bfl) > —Cg for some positive constant Cs.
w(z) > —h.
Therefore
R? K2 Cha
I > R——-——R-h-1
o T e )
R K2 K2 h+1
2 - - >
= (R? - (x+b)2)3/2 ((2M2 G0)+(m ~ 5 )) =0

provided that o < 55— 2M (h+1).

Finally for a € (07(11 = min (ao, QMQCQ)) 2%2 (h+1), one has I; > 0
and then by (4.6) we obtain (4.5). O

Lemma 6. There exists ag > 0 such that

2M?
Va € (0,a2), VR > max ( e ,g), div(B(z)Vuva) >0 in D'(Dy).  (4.8)

Proof. Indeed we have

div (B(z)Vvg)
0 Ovsy Ova 81}2 Ovsy 0 Ovy
=% (Bi1—=— p + Bia—— 5 ) 1y + Boa—— 5 )+ a((Bm + Cl)%)

0
+37<
= Bu( - K"(w(z) = f(@))(f")* + K'(w ()—f(x))fu)

(312—01)3722f K'(w(z) = f(x)) - 322K"( w(z) = f(z))

+ Bi(le + C)E"(w(z) = f(2)f" + By K'(w(z) = f(x)) f'
22

B K2 k(B1a — C
uB11 2((f’2 (B2 — Cy)

= Ttw(s - @) " BB BaBu

I+ (1t w(z) - f@)f”)

_ uB11 I
(I4+w(z) = f(@)? 7
(4.9)
since Byt + C1 > 0, K"(t) = —pl <0, K'(t) = 1% > 0, f/(2) <0, By, < 0'in

D'(—h,0).
We distinguish two cases:
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e For = € (zg, f; '(—h)), we have f"(z) =0, f'(z) = — okl — —q and then
2

K ak
I, =a? B —C
2= +Bz2311+322311( 2 v
K2 ak K2
+W*W(M+01)HW>O aSOéHO.

So there exists ag > 0 such that Io >0 Va € (0, ap).
e For x € (—b,xzR), we have
2 2 B b
Iy = —3 i n T . —1+K( 12— C1) (= +b)
(R - (37 + b) ) BssBi1 BosB11 R2 — (l‘ 4 b)2
R2
T E @ T = I

R R2 — (1 + 1)2)3/2 ;2
T (R = (z+ )22 ( B = (w4 b+ : (R_; = BBy )
B(Bra—C), (R =(@+bh)?)
+ B @+ - (14 w(:) - f@).

Taking into account the fact that © € (—b,zg] and (4.7), it follows that
I

> R+ 2+/R? — b2+ R —-1)-C b)—1
2 e :Hb ( +2y/RZ = (zp + )2 + (M2 ) = Calwr +b) 1)
K> !

= R(Z. 1) -2 R-1

(R? — m—i—b ( + (M2 ) 2T+ a2 )

2 C 2 1

_ ( ( K P1e! )+ K 7) >0

(R2 - x—i—b ¥32\\VT+az 2M?2 1+ a2’ 2M? R
provided that R 2> (0, o)) for a small of, > 0. Finally for o € (0, =
min(ag, ag’)), we have Iy > 0 and from (4.9) we obtain (4.8). O

Lemma 7. There exists oy, > 0 and R, > 0 such that
Va € (0,as), VR > R, div(B(2)Vv+0e,;) >0 inD'(D). (4.10)
Proof. Let £ € D(D), £ > 0. Then by (4.5) and (4.8),

I(g):/D(Bz
:/Dl
(—d

Vv + Gem)Vf

(2)
(B(2)Vv1 + yses) VE +/ (B(2)Vvs + vres) VE

Do

—div (B(2)Vv1),€) + (—div (B(2) V), £)

n / (B(2)(Vvr — Vo) + (4 — v5)va)€
== (@)]N0

[
< / (B(2)(Vv1 — Vog).v + (75 — vy )va)€
[z=w—1(z)]NQ2
provided that « € (0, min(ay, o)) and R > %(h + 1). Moreover one has
K

Vo (z, 0™ (2) = G'(0)'(f(2), _m)
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C2Qs K
=g L) BQQ(W—l(x)))

K

va(x,afl(x)) = K’(O)t(f’(x), _m)

Q@ ey B
~ log(1+d) ('), 322(01_1(1‘)))
v(z,w (z) = L - (= (@ tof)(2),1)
\/1+ (w™tof)"(x)

1 ¢ K

—f/(m)»i_l .
»/('*)2+fﬂ<z>( ZERE

Baa(w=tof(x))

Then

J1 = B(2)(Vui — Vo) .v + (7s — ¥f)Va
_ —1 ( QQS . Qf )
\/(43 oray) + @) h?+ 20 log(l+d)

—K —K

X B(z)t(f’(:zc)7 m)t(f/($)7 m)
. (@)

V ) + 7@
_ -1 ( Qs  Qy )

2 2 o

Vo) + #2010
X B(z)%f’(mLWE(I))) (f/($)7ﬁi(x)))
1 Qs t / R
(h2+2hB(z) (7'@): B tor@)

(Vs =)

_ : —
V Emtarmy) + 2@

(@) Grtorayy) T 00 @)
Using (4.7), we obtain
Jo
1 Qs —K

= ) 2 B(Z)t(f/($)7 -1 )

\/(m) —|—f’2(x)<h +2h Bos(wlof(x))
(@) Grrery) 0 0 @)
<Gy 0 (g 00— )

() + (W)
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Note that
—f'(x)

F(z) =
12) + (mreren)

M2
< —?f’(x)

and then
o If z € (g, f;1(—h)) we have f'(z) = —a and F(z) < 2M=.
[ ] Iffl; S (_bva)

M? M? r+b
F(l‘)g— Qf/(‘r): 2 3 3
: W =@+ 0P
<M2$R+b_M2 « M?

= < a—-.
-~ k2 R K2 \/1+a2_aﬁ2

2
So if o < hTf;hﬁ% = ag, we get Jo <0 and then

! Qs Q
J1 < B
V mermy) + @) (IOg(l +d)  h2+ 2h>
t / —K t , Lk
Note that
Qs Qs el (hi+2m) _ +an

< < R> .
log(1+d) ~ h%2+2h Vi+ta?2(Vi+a2-1)

Thus if @ € (0, a = min(ay, g, 3)) and

Qs 12
a 2M? e@s W2 1 4 o
R> R,(« :max<—,—h—|—17 ),
() o wE ¢ ) VI+a2(V1i+a2-1)

we get I(§) <0 for all £ € D(D), £ > 0. Therefore (4.10) holds.

([l
Lemma 8. For R > max (%7 W),
v<t® ondD and lim v(zr,z) < lim ¢(z,z2). (4.11)

Proof. Indeed we have
o v(z,—h) = G(f(2) - w(~h)) = G(f(z) + h) < G(h) = Q, = ¥z, —h) for
z < f7H(=h).
e v(x,—h) = —K(wl(—h) —f@)==-K(-h—f(z)) <0< Qs =¢(x,—h) for

o v(z,0) =G(f(z) —w(0)) = G(0) =0 =1(z,0) for x < —b.

e v(z,0) = —K(w(0) — f(z)) = —K(—f(x)) <0 =1(x,0) for z € (=b, zq),
where x4 is defined by f4(z4) = 0 and is to be chosen such that 4 = 0. In
fact fy(xq) = 0 is equivalent to

R
Tqg = (ZR—Fd)m—FZ‘R

R R R
:a+b<a+b /1+(%)2

a+b

Vit ()

~R+d+
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2
_ath +a(a+b) é(R\/l—i—a? (14+a®)R+d+ aa).

R R
Then we can choose 4=0 if d = —aa+ RV1 + a?(v/1 + a? — 1) > 0 which
holds if ao
R>

Vitoa?(VItaZ 1)
o v(z,w ! (2) = ~K(falz) — f(2)) = ~K(d) = ~Q; < ¥(z,w ()

o lim, ., v(z,2) =lmy s vi(z,2) =limy,_o G(f(x) —w(z))
= G(-w(2)) < Fw(2) = voo(2) = limy oo (2, 2).
This (4.11) holds. 0

Lemma 9. For all a € (0, ), R > max (R.(a), m), one has

/D (B(2)V(v — ) + (0 — Y0)ez) VC =0 V¢ € D(R?) (4.12)

where 1o = min(¢, v) and vy = min(vy, 0).

Proof. Let ¢ € D(R?) and consider for i = 1,2 the function ¢; defined as in the proof
of Lemma 1. Then for € > 0, min (¢;, ”7;’&0) € H}(D) by (4.11) and is nonnegative
with compact support. By (4 10) and (P)i), we get

/ BV - V6 + [ (0= 0)G
Dnlv—1po>eC;] D
< /D(Q—VO)(Q 1/)O)ac

S(’YS_

where Iy = {z € (=h*,0)/ g(2) < f~low(z)}. Letting € — 0, we get
| BV =60)+ 6~ 20)es) V6 <0
D
To obtain (4.12), we argue as in the proof of Lemma 1. O

Proof of Theorem 4.2. Let u = (v — 1)x(D) and ¢ € D([z > w™(x)] N Q). Note
that 8 = vy = v in Dy. We deduce from (4.12)

/ B(2)Vu.V( = 0.
[z>w=1(z)]ND

Since u vanishes on [z = w™'of4(z)], then u € HL () and

/ B(2)Vu.V¢ = 0.
[z>w=1(z)]NQ

Moreover © > 0 and v = 0 in Q\ D. So by the strong maximum principle we get
u=01in [z > w™!(z)] N Q which leads to v < + in Dy. In particular we obtain
P(flow(z),2) > v(ftow(z),2) = v(z,w (z)) = 0. So g(z) > flow(z) Vz €
(—=h*,0) and then

g(0=) > f~tow(0) = f71(0) = —b > —o0.
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4.3. The Nonlinear Homogeneous Case. Assume that B(z, &) = [£]972¢. Then
we have the following theorem.

Theorem 4.3. g(0—) =lim,_,_ g(z) > —o0.

We follow the proof of Theorem 4.2 and we use the same notation with w(z) = z.
We will need the following three Lemmas.

Lemma 10. We have
. h+1

Aql)l >0 n Dl, VR>R1 = ﬁ(‘q—2‘+q_1) (413)
Proof. Indeed we have
Ay = div(|Voi |97 2Vy)
61)1 8 q—2
ox ) + 0z (|VU1\
= (G'(f(z) = 2))* (1 + f*(2)) "7

% (0= 1G" () = )1+ 17(@)) + G (&) — )" ()

vy

0
_ 2 q—2
o 8x(|vvl| 8z)

1+ (g — 1)f’2($))
L+ f2 (@) /7

We distinguish two cases:

o If x < —bor x> xp, we have f”(z) = 0 and then Agjv; > 0 in D;.

o If —b <z < xR, we have

2 q=2 2 _ (g 2)3/2
Agvy = A1+ f(z) — 2)T 21+ f (IDT(”\(R (R_; b)?) )
X ((Q— DR+2z-1)4(q—2)(f(z) —z+ 1)w)

> (2M(1 + f(z) — z))q_2 (1 n f'Q(x))%z (2)\ (R? — (3;_21_ b)z)s/z)

% ((a=D(R=h=1)~lg-2/(h+1))

. _ _ (R®—(z4b)%) _
since |(q —2)(f(z) — 2z + 1) | <lg—2[(h+1). So for R > R; we get
Aqvl > 0in D, O

Lemma 11. For all

R > Ry(a) = max (97 (q_1)+|Q—2|(h+1))7

“ ()
we have

Agve >0 in Dy, Yae (0,1). (4.14)
Proof. We have

aq

Agva = (K'(z = f(@)))"2(1+ (@) T ( —(¢—DK"(z = f(2))(1 + f*(x))
! " q—2
HE G @@ -1 )

We distinguish two cases:
e For xp < x < f;'(—h), we have f”(z) = 0 and then Ajvz > 0 in Ds.
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o If —b <z < xR, we have

Aq’l}g
= I e = F@) 20+ @) (e e
1 —R2 (RQ _ (IE + b)2)
" 1+Z—f($)((R27(x+b)2)3/2)((q_1) —(q—Q)T))
q—2 R2 1

o /z_ T q—2 /21' R
= (K (z = f(2) 2 (1 + [ (2)) (32 (z+0)2)3/2 (14 2 — f(x))?

(q—l )(2v/ R? — (z + )2 —(¢g—-1)(1+2)

(R? — (a:+b) ))
R2

> u(K'(z = f(2))172 (1 + f2(2) T

F(a—2)(1+2— f(x))
R? 1

(B = @+ 022 (1 12— J(@))7

< (===~ 1) R~ (= 1)~ la—2( h+1)

since 24/R? — (x+0)2— R > 2\/m <\/12a2 1)
2

If we choose o € (0,1) such that \/7 —1>0and R > max(%, Ry(a)), we get
(4.14). O

Lemma 12. There exists a,. > 0 and R, > 0 such that
Va € (0,a.), VR > R,, one has Aqv+ 6, >0 in D'(D). (4.15)

Proof. Let £ € D(D), £ > 0. For a € (0,1) and R > max (Ry, Ra(a), £), we have
by (4.14)-(4.15)

1) = / (IV0]92V 0 + fe, Ve
D
= / (|Vv1|‘1_2Vv1 + ’Ysem)Vf -‘r/ (|Vv2|‘1_2Vv2 + ’y‘feg;)Vf
Dy D»
= (A1, & >+ < —Ay9,&)

+/ ((IVU1|‘1_2V01 — | Vs |12V ug).v + (7s ’)/f)I/L)g
[z2=f(x)IND

S / ((|Vv1|q_2Vvl - |Vv2|q_2Vv2).u + (’ys — 'Yf)Va:>§
[z=f(x)]ND

:u/ Ji€.
[==f(2)]ND

Recall that

Vo (z, f(z)) = h22—%2h (f'(z),-1)

2N (142 w) T (@

V(e f(0)) = ot (). =)

IV [172V0, = (
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Vo172V, = (bgffgd))“ (1 + f’2<x>)%2 (f' (@), ~1)

1+ f’
Then

Ji=(1+f ())1((log(?id))q_l (hf%%)q_l)

)
= (1+ % ) ((log(? d) q_l_%(h22$séh)q_l)

o g—1
<1+f ( )) ((7 7f)<1+f,2(( )))q/g _%(hgcish) )

Moreover we have

T S @ <a Ve (b h)

and for
Qf(r?+2h)
e 2icio, 1+ aca
R > R3(a) =
3(0) = 7= a2(VIta2—1)
one has
Qy " o1 20 o ( Qs )q—l
log(1 + d) 2 \h? +2h S \oar(h242n))
Thus if
. 1 2Qs q—1
e (0,0 = min (1, 5 o= ) ))
and R > R, = max (Ry, Rz(a), R3(a), £), we get J; < 0 and then I(£) < 0 for all
£ €D(D), £ > 0. Hence (4.15) holds. O

Proof of Theorem 4.3. Clearly for R > max ( Then we have

(see Lemma 8)

TR &)
v<¢ ondD and lim v(z,z) < lim 9(z,2).
Using (4.15) and arguing as in the proof of Lemma 1, we can establish that for all
a € (O,Q*) and R > max (R*, m),
(Agv— Agto) + (Y —0p), =0 in D'(D).

Assume that D; N [¢p < 0] # 0 and note that we have v = vy = 79 and § = 7, in
Dy N[y < 0]. We also have 1) = 1) in D1 N [¢p < 0] since ¢ < 0 < v. So we deduce
that

Agv = Agthg — (v = 00)e = Agth — (74 = ¥5)2 =0 in D'(D1 N[y < 0]).
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This leads to a contradiction since Ajuv = Ajvq > 0 in Dq. Therefore D N [¢ <
0] = @ and ¥ > 0 in D;. In particular we have g(z) > f~1(z) Vz € (=h*,0) and
then g(0—) > f~1(0) = —b > —oo. O

4.4. The Linear Homogeneous Case. Under the assumption B(z,£) = £ we
show that g(0—) < 0. This result was announced in [1] without an explicit proof.
In that paper the authors indicated that this result can be obtained by using hodo-
graph techniques to get a semi-explicit expression for ¢ which is the unique har-
monic function satisfying the same boundary and limit conditions as . However
an explicit proof was not given. That is why we propose here a proof of this result.

Theorem 4.4.

am(Qs+Qy)
. h e hes -1
lim g(z) = g(0—) < ——log ( T ) <0. (4.16)
z—0 T e an
e f —eh

Proof. Since we have Ay > 0 and At = 0 in ), we get by taking into account the
boundary conditions and the limit behavior at infinity that ¢ < ¢ in Q. Moreover
if we denote by g the function defined by (g(z),2z) = 0 Vz € (—h*,0), we get
g9(z) < g(z) for all z € (—h*,0) which leads to

9(0-) < g(0-). (4.17)
Next, we will prove that
am(Qs+Qy)
_ h e "y -1
9(0-) = ——log | —=@vap <0. (4.18)
e hQ g — e%

For simplicity we introduce the function

Yo(z, z) = Y(ha,h(z — 1)) for (z,z) € R x [0,1]

which is harmonic in R x (0, 1) and satisfies 1o(x,0) = Qs, Yo(z,1) = ¢o(z) and
limg 100 Yo(, 2) = V4oo(h(z — 1)). In [12], one can find that

. +OO t _ _ . t _ B .
Yo(z,2) = Re (; Qs coth m(t—x—iz) + ¢0(ht)ttht>
+oo _
_ Qs chr(t —z) + C?SQT(Z nmadt
2 J_x sh?m(t—x)+sin”mz

1 [t sinmz
+ */ $o(ht)

2 ) & chm(t —x) + cosmz
Qs /+°° chms + cosmz

1
5— sinmzds + ~I(x, 2)

2 J_o sh?ms+sin®mz 2
where
w Qs sin 7z Heo sin 7z
I = ——=~ht dt -
(z,7) 0 a chn(t—x)+cosmz + /;‘i @s chr(t — x) 4 cosmz
th/iwt sinmz dthhz/?Lw sinmz
a _»  chmt+cosmz a _y chmt+cosmz

oo sinmz
—Q )
h

a_, chmt 4 cosmz
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Then we deduce that
oo 101Gy (17

dr 280z  2a chmt + cosmz

= 01 pnctan (SO g (T
am s mwz smmz

x

and for (z,z) € Q

Y(x,2) = V-0 (2)
z —t _ Tz (ﬁ—t)ﬂ _ Tz
— @/} (Arctan <e.cosh> — Arctan (e ’ €05 h ))dt.

4 3 w4
aTm Sin W Sin T

—0o0
Using this formula we give an asymptotic behavior of ¢ near z = 0. Note that for

z<0andt< %, we have e”™ > 1 and e(%ft)’T > 1. Therefore

e —cos BE T m 1 22
retan sin 5= ) 2+h176*“2+2p(z’)
(#-t)7 _ pog 2 1 2
Arctan (e . MCOS h ) S R Z—q(z,t)
sin 22 2 hy_ (3-0)r 2
with p(z,t),q(z,t) ~ e™ as t — —oo. It follows that
_ 9(=) 1 1
O:w(g(z),z):f%zf%z/ ( — — )dt
h a Jooo M—emm o (g-t)n
hQs » /g(z) Qs
a7 ) — q(z,t))dt — =2
ora” | PED—a) N

]

Q; 9(z) 1 1
e G- )"
—oo 1—e\n™97

9(2)
= z/ (p(z,t) — q(z,t))dt.

Letting z — 0, we obtain
Q; g(0) 1 1 Qs
I e iy Par s
—oo 1—e\n™97

and by evaluating the last integral we get (4.17). Taking into account (4.17) and
(4.18), we obtain (4.16). O

Remark 3. As a consequence of the above theorem, we have also g(0—) < 0 when

Bo) = (e B ith 0= "
(Z’E)_<B(z)&’ (Z)§2> wit _f,Oth(Z)'

Let v(z,2) = ¥(z,w(z)) with w(z) = Cfo Bd(ss). We remark that

z

2

B(z)

div(B(z,Vv)) = AY(z,w(z)) = 0.
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Moreover v = 1 on 9 and lim,_ 44, v = limy,_ 4+, %¥. Then we deduce that ¢ < wv
in  which leads to

D(F(w(2)), 2) < v(Hw(2)), 2) = Y(Gw(2)),w(2)) =0 Vz € (=h",0).
Therefore g(z) < g(w(z)) for all z € (—h*,0) and then g(0—) < g(0—) < 0.

APPENDIX
This section is devoted to some technical Lemmas.

Lemma 13 (Strong maximum principle). Let ) be a domain of R? and let B defined
on Q x R? by B(X,€) = |B(X)¢|972B%(X)E, where B(X) is a locally Lipschitz
continuous symmetric and strictly elliptic matriz. Assume that uy, ug € VVﬁ)Cq Q)
are such that

div(B(X,Vup)) = div(B(X,Vug)) =0 in D'(Q), (4.19)
uy <up  in . (4.20)
Then we have either uy = ug in Q or uy < ug in .
For the proof of this lemma see [8].

Lemma 14. Under the same hypothesis of Lemma 13 we assume that there exists
Ty C 0Q of class C** such that

up =ug onlgy, wup,ug € Cl(Q U Fo), (421)
B(X,Vuy).v =B(X,Vus).v on Dy, (4.22)
Vul(X) 7& 0 VX c FO or VUQ(X) 7£ 0 VX S Fo. (423)

Then u; = ug in €.

Proof. We first prove that u; = us in a small open set near I'y. Then we conclude
by Lemma 13. Assume for example that we have Vu; (X) # 0 for all X € T'g. Since
up € CHQUTY), there exists a small ball B(Xj,€y) centered at some point X of
T’y such that

VUl(X) # 0 VX e B(Xo,Go) N (QUF())

and then there exists two positive constants ¢y and ¢; such that

co < |VU1(X)‘ <c¢ VXeK,= B(Xo,eo) N (Q UF()). (424)

Let u = uy — ug and uy = tus + (1 — t)uy for any ¢ € [0,1]. Then we deduce from
(4.19) and (4.22)

/ (B(X, Vuz) — B(X, Viu)).VC = 0 ¥¢ € D(B(Xo,0)).  (4.25)
B(Xo,e0)N2

Remark that
1
d
B(X,Vu2) — B(X,Vuy) = / a(B(Xa Vuy))dt,
0

then (4.25) becomes

/ C(X)Vu.VC =0 Y¢ e D(B(Xo, ) (4.26)
B(Xo,e0)NQ
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where

C(X) = /O (B(X, V), Vug) =

X (B(X, V) + (g 2)B‘(X, V). (B(X, Vut))> »

(B(X, Vuy), Vuy)
from which we deduce
el YPAX) <C(X).YY <Y PAX) V(X,Y) € (B(Xo,60) NQ) x R (4.27)

where ¢y, c3 are two positive constants and A\(X) = fol |Vug|9=2dt. Using (4.24)
and arguing as in [11], we can prove that A(X) is bounded from both sides by two
positive constants Ag, Ay in B(Xp, €() N § for some €, € (0,€p). So C(X) is strictly
elliptic in B(Xo,e5) N Q. By (4.21) we can extend u by 0 to B(Xo, €j) \ © so that
u € WH4(B(Xy,€})). One can also extend C(X) by cadola to B(Xo, €)) \ © so that
it remains strictly elliptic in B(Xo, €j). Then from (4.26),

/ C(X)Vu.VC =0 V¢ e D(B(Xo,eh)). (4.28)
B(X0766)

Now since v > 0 and u = 0 in B(Xy, €) \ 2, we deduce from (4.28) and the strong
maximum principle for linear elliptic equations that u = 0 in B(Xy, €() which means
that u; = ug in B(Xo, ) N Q. O

Lemma 15 (Non-oscillation Lemma). Let zg € (—h*,0), 29 € R, r > 0 and assume
that Seg = {(x,20)/ |x — x| <7} CT, then we cannot have

V(:L’,Z) € B,«(.’ﬂo,Zo) \ Seg T/)(ffaz) 7& 0

where By.(zg, z0) is the open ball of center (xg, z0) and radius r.
The proof follows as in [4, Lemma 5.1] and uses Lemma 13.
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