
Electronic Journal of Differential Equations, Vol. 2003(2003), No. 50, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu

ftp ejde.math.swt.edu (login: ftp)

EXISTENCE AND UNIQUENESS OF THE SOLUTION TO A 3D
THERMOVISCOELASTIC SYSTEM

ELENA BONETTI & GIOVANNA BONFANTI

Abstract. This paper presents results on existence and uniqueness of so-
lutions to a three-dimensional thermoviscoelastic system. The constitutive

relations of the model are recovered by a free energy functional and a pseudo-
potential of dissipation. Using a fixed point argument, combined with an a

priori estimates-passage to the limit technique, we prove a local existence re-
sult for a related initial and boundary values problem. Hence, uniqueness of
the solution is proved on the whole time interval, as well as positivity of the
absolute temperature.

1. Introduction to the model

In this paper we deal with a three-dimensional model for thermoviscoelastic sys-
tems, which is derived by two energy functionals: the free energy and the pseudo-
potential of dissipation. In particular, we refer to a modelling approach by Frémond
which is fully detailed and justified in [8], where it is applied to different thermo-
mechanics phenomena. Thus, we first introduce the state variables of the model,
which are the absolute temperature θ and the linearized symmetric strain tensor
ε(u) (u is the vector of small displacements), specified by

εij(u) =
1
2
(∂xi

uj + ∂xj
ui), i, j = 1, 2, 3, u = (u1, u2, u3). (1.1)

Hence, the thermomechanical equilibrium of the system is described by a free energy
functional Ψ, which depends on the non-dissipative variables. We make precise this
functional as follows

Ψ(θ, ε(u)) = −csθ log θ +
1
2
ε(u)Kε(u) + α(θ) tr ε(u), (1.2)

where K denotes the elastic tensor, cs > 0 the heat capacity of the system, and
α(θ) a thermal expansion coefficient acting only on the trace of the strain tensor.
More precisely, we let

α(θ) = αθ, α ∈ R. (1.3)
Note that here and in the sequel, in regard of simplicity, we do not use a specific
notation for the tensorial product, while in general by · we denote the scalar product
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in Rn. As usual in elasticity theory, we assume the material to be homogeneous
and isotropic and we let

Kε(u) = λ tr ε(u)1 + 2µε(u), (1.4)

where λ and µ stand for the Lamé constants and 1 for the identity matrix. Hence,
we include dissipation in the model by following the approach proposed by Moreau
(cf. [8] and references therein) and introduce a pseudo-potential of dissipation Φ
depending on the dissipative variables ∇θ and ε(ut), related to the heat flux and
the evolution of deformations, respectively. In particular, we set

Φ(∇θ, ε(ut)) =
k0

2θ
|∇θ|2 +

1
2
ε(ut)Bε(ut), (1.5)

where k0 > 0 and B is a positive definite (symmetric) matrix. Now, letting the
system be located in a smooth bounded domain Ω ⊂ R3, during a finite time
interval [0, T ], T > 0, we introduce the universal balance laws of thermomechanics,
that are the energy balance

et + div q = r + σε(ut) in Ω× (0, T ), (1.6)

and the momentum balance (in which we account for macroscopic accelerations)

utt − div σ = G in Ω× (0, T ), (1.7)

whose ingredients will be specified in a moment. In advance, let us point out that
by the subscript t we denote the partial derivative operator ∂

∂t . In (1.6) e is the
internal energy of the system, q the heat flux, r stands for an external heat source,
and the term σε(ut), σ being the stress tensor, accounts for mechanically induced
heat sources; G in (1.7) denotes a volume force applied to the structure from the
exterior. Next, (1.6) and (1.7) are complemented by suitable boundary conditions.
Denoting by n the outward unit normal vector to the boundary Γ := ∂Ω, we let

−q · n = h on Γ× (0, T ), (1.8)

namely we assume that the heat flux through the boundary is known. Then, we
prescribe homogeneous Dirichlet boundary conditions on the displacement u and
the velocity ut.

u = ut = 0 on Γ× (0, T ). (1.9)

Now, we make precise the constitutive relations for dissipative and non dissipa-
tive quantities in the model, in terms of the functionals Ψ and Φ (cf. (1.2) and
(1.5)). We have, as usual, the internal energy e related to the entropy

s = −∂Ψ
∂θ

, (1.10)

by the Helmholtz relation e = Ψ + sθ. Hence, concerning the stress tensor σ, we
distinguish a non-dissipative contribution σnd,

σnd =
∂Ψ

∂ε(u)
, (1.11)

and a dissipative one

σd =
∂Φ

∂ε(ut)
, (1.12)
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and let σ = σnd + σd. Finally, by following the approach by Frémond, we derive
the usual Fourier heat flux law by the pseudo-potential of dissipation. To this aim,
let us introduce the dissipative vector

Qd = − ∂Φ
∂∇θ

, (1.13)

related to q by
q = θQd. (1.14)

Note that, due to (1.5), from (1.13) and (1.14) it follows the Fourier law governing
the heat flux

q = −k0∇θ. (1.15)
Henceforth, if we substitute (1.10)–(1.14) in (1.6), applying the chain rule and after
cancelling some terms, we can equivalently write the balance of the energy as follows

θ(st + div Qd −R) = σdε(ut)−Qd · ∇θ = ∂Φ(ε(ut),∇θ) · (ε(ut),∇θ), (1.16)

where R = r/θ and ∂Φ denotes the subdifferential of Φ w.r.t. (with respect to) the
dissipative variables (ε(ut),∇θ). Note that, since Φ in (1.5) is such that

Φ(0) = 0, Φ ≥ 0,Φ is convex w.r.t. the dissipative variables,

the right-hand side of (1.16) turns out to be non-negative. This fact as well as the
positivity of the absolute temperature θ are sufficient to guarantee the thermody-
namical consistence of the model. Now, we are in the position of recovering the
PDE’s system describing the model we have introduced above, written in terms of
the unknowns θ and u. After specifying (1.10)–(1.14) by (1.2) and (1.5) (cf. also
(1.3)), we substitute in (1.6) and (1.7) the constitutive relations. We obtain in
Ω× (0, T )

csθt − k0∆θ − αθ div ut = Bε(ut)ε(ut) + r, (1.17)

utt − div(Bε(ut) + Kε(u) + αθ1) = G, (1.18)

and fix the Cauchy conditions in Ω

θ(0) = θ0, (1.19)

u(0) = u0, ut(0) = u1. (1.20)

Finally, due to (1.8) and (1.9), we complete the above system by the following
boundary conditions

k0∂nθ = h on Γ× (0, T ), (1.21)

u = ut = 0 on Γ× (0, T ). (1.22)

Before stating and proving our main existence and uniqueness theorems, let
us recall some related results in the literature. In the one-dimensional setting, we
recall the papers [4, 5] where the authors prove a global existence result for classical
solutions to a thermoviscoelastic system for solidlike materials, in the case when
one of the endpoints is stress-free. In [3], an existence result is given for pinned and
thermally insulated endpoints in the special case of a one-dimensional model for
shape-memory alloys. Other related existence and uniqueness results for this kind
of models, and assuming a Landau-Devonshire or Landau-Ginzburg free-energy,
can be found, e.g., in [10, 14, 11, 18]. Hence, in [15] the solid-solid phase transition
problem in nonlinear thermoviscoelasticity is investigated in terms of the asymptotic
behaviour of the solutions. Finally, in a recent contribution [19] the theory for
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solidlike and gaseous materials is treated in an unified manner. In particular, the
main result of that paper is the global existence and uniqueness of the solution
to an initial and boundary value problem corresponding to pinned endpoints held
at a constant temperature. Notice that all the above results are given in the one-
dimensional setting. Concerning the derivation of the thermoviscoelastic model, one
can refer, e.g., to [9]. In the three-dimensional case, we recall the homogenization
approach by [7] for a fairly simplified quasi-static model, but retaining the nonlinear
dissipative contributions, and a related global existence result given in [2]. More
precisely, exploiting the techniques of renormalized solutions for parabolic equations
with L1 data, and under suitable assumptions on the thermal stress with respect to
the temperature, in [2] existence of small solutions is established. Then, this result
is extended for arbitrary data under stronger assumptions on the thermal stress.
Nonetheless, we point out that our setting is different not only for the techniques
we use (mainly exploiting L2 arguments). Indeed, in [7, 2] the state quantities
are derived by a free energy functional obtained approximating the thermal energy
contribution −θ log θ in (1.2) by a first order approximation of log θ. In particular,
the energy equation (1.17) we deal with is not included in the framework of [2].
Other results concerning a thermoviscoelastic system in the multi-dimensional case
(with the same approximation of the free energy), can be found in [16] where the
author proves a global existence and uniqueness result of small solutions, assuming
smooth and sufficiently small data.

The outline of the present work is as follows. In Section 2 we introduce a varia-
tional formulation of the problem and we state the main results (Theorems 2.1 and
2.2). Section 3 is devoted to the proof of the local existence result (Theorem 2.1)
performed by a fixed point procedure. Section 4 is concerned with the proof of the
uniqueness result (Theorem 2.2) established by some (global) contracting estimates.
Finally, in Section 5 we derive some global estimates on the solution (Proposition
5.3) exploiting the positivity of the temperature (Theorem 5.1), which is proved
by a maximum principle argument. Throughout the paper some comments and
remarks are given.

2. Variational formulation and main results

The aim of this section is to introduce an abstract formulation of the initial and
boundary values problem (1.17)–(1.22) and state related existence and uniqueness
results. We set the problem in the domain Ω, which is a bounded smooth domain
in R3, and investigate its evolution during a finite time interval [0, T ]. We first
introduce the Hilbert triplet (V,H, V ′), where

H := L2(Ω), V := H1(Ω),

and identify, as usual, H with its dual space H ′, so that V ↪→ H ↪→ V ′, with dense
and continuous embeddings. Besides, let the symbol ‖ · ‖X denote the norm either
of some space X or X3 and denote by 〈·, ·〉 the duality pairing between V ′ and V .
Then, the associated Riesz isomorphism J : V → V ′ and the scalar product in V
and in V ′ can be specified by

〈Jv1, v2〉 := ((v1, v2)), ((u1, u2))∗ := 〈u1, J
−1u2〉, (2.1)

for vi ∈ V , ui ∈ V ′, i = 1, 2. Hence, we set the further Hilbert space

W := H1
0 (Ω)3,
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endowed with the usual norm. In addition, let introduce on W ×W two bilinear
continuous symmetric forms: a(·, ·) defined by

a(u,v) = λ

∫
Ω

div udiv v + 2µ
3∑

i,j=1

∫
Ω

εij(u)εij(v),

and b(·, ·) defined by

b(u,v) =
3∑

i,j=1

∫
Ω

bijεij(u)εij(v), B = (bij).

In the sequel, just for the sake of simplicity but without loss of generality, we let
bij = 1, i, j = 1, 2, 3, so that

b(u,u) = ‖ε(u)‖2
H , (2.2)

and fix cs = α = k0 = 1. Hence, recalling Korn’s inequality, we are allowed to infer
that there exists a positive constant c̃, depending only on λ, µ, and Ω, such that

a(v,v) ≥ c̃ ‖v‖2
W, (2.3)

for any v in W. Note also that

b(v,v) ≥ ĉ ‖v‖2
W, ĉ > 0. (2.4)

Next, to set our problem in the abstract framework of the dual spaces V ′ and W′,
we introduce the operators

A : V → V ′, 〈Au, v〉 =
∫

Ω

∇u · ∇v, u, v ∈ V, (2.5)

A : W → W′, W′〈Au,v〉W = a(u,v), u,v ∈ W, (2.6)

B : W → W′, W′〈Bu,v〉W = b(u,v), u,v ∈ W, (2.7)

H : H → W′, W′〈Hu,v〉W =
∫

Ω

u div v, u ∈ H,v ∈ W. (2.8)

In particular, let us point out that H turns out to be a continuous and linear
operator V ⊂ H → H3 ⊂ W′, i.e. there exists a positive constant c such that

‖Hv‖H ≤ c‖v‖V , ∀v ∈ V. (2.9)

Now we set hypotheses on the data. Concerning the Cauchy conditions (1.19)–
(1.20), we assume

θ0 ∈ H, u0 ∈ W ∩H2(Ω)3, u1 ∈ W. (2.10)

Then, dealing with the other functions, we prescribe that

r ∈ L2(0, T ;H), h ∈ L2(0, T ;L2(Γ)), G ∈ L2(0, T ;H3) (2.11)

and introduce the functions R and G specified by

〈R(t), v〉 =
∫

Ω

r(t)v +
∫

Γ

h(t)v|Γ , v ∈ V, for a.a. t ∈ (0, T ) (2.12)

W′〈G(t),v〉W =
∫

Ω

G(t) · v, v ∈ W, for a.a. t ∈ (0, T ) (2.13)

so that, by (2.11), it is natural to postulate

R ∈ L2(0, T ;V ′), G ∈ L2(0, T ;H3). (2.14)
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Here is a precise formulation of the abstract problem.
Problem Pa. Find (θ,u) satisfying (1.19)–(1.20) and such that, a.e. in (0, T ),
(cf. also (2.2))

θt + Aθ = θ div ut +R+ |ε(ut)|2 in V ′, (2.15)

utt + But +Au +Hθ = G in W′. (2.16)

Using a fixed point theorem, combined with contracting estimates, we prove the
following local in time existence result.

Theorem 2.1. Let (2.10)–(2.11) and (2.14) hold. Then, there exist T0 ∈ (0, T ]
and a pair of functions (θ,u) solving Problem Pa in (0, T0) and fulfilling

θ ∈ H1(0, T0;V ′) ∩ C0([0, T0];H) ∩ L2(0, T0;V ), (2.17)

u ∈ H2(0, T0;H3) ∩W 1,∞(0, T0;W) ∩H1(0, T0;H2(Ω)3). (2.18)

The proof of this theorem is given in the following section, using the Schauder
theorem. Next, in Section 4, performing local in time contracting estimates, which
can be iterated on the whole time interval [0, T ], we show that this solution is
unique. Indeed, the following theorem holds.

Theorem 2.2. Let (θ,u) fulfilling (2.17)–(2.18) be a solution to Problem Pa during
a time interval [0, T0]. Then, this solution is unique on the whole time interval
[0, T0].

Remark 2.3. Note that, in spite of the fact that we are able to prove only a local
in time existence result, uniqueness of a solution to Problem Pa with regularity
(2.17)–(2.18) can be stated on the whole interval [0, T ]. In particular, if we were
able to extend Theorem 2.1 to a global existence result, Theorem 2.2 guarantees
the (global) uniqueness of this solution.

3. Proof of the existence result

In this section, we detail the proof of the local existence result stated in The-
orem 2.1. To this aim, we apply the Schauder theorem to a suitable operator T
constructed as it will be specified in a moment. Now, for D > 0, consider the set

X :=
{
v ∈ H1(0, T0; (W

1,4
0 (Ω))3) : ‖v‖H1(0,T0;(W

1,4
0 (Ω))3) ≤ D},

where T0 ∈ (0, T ] will be fixed later, in such a way that
• T maps X into itself;
• T is compact;
• T is continuous.

First step. Take an arbitrary ũ ∈ X and substitute u in (2.15). In particular,
notice that the right hand side of (2.15) turns out to be in L1(0, T ;H)+L2(0, T ;V ′),
as by construction of X |ε(ũt)|2 ∈ L1(0, T ;H) via the Hölder inequality (cf. also
(2.14)). Thus, we can apply the result of [1, Theorem 3.2, p. 256] to infer that
there exists a unique

θ := T1(ũ) ∈ [W 1,1(0, T ;H) + H1(0, T ;V ′)] ∩ C0([0, T ];H) ∩ L2(0, T ;V ), (3.1)

solving the corresponding equation with associated Cauchy condition (1.19). More-
over, if we test the equation by θ and integrate over (0, t), with t arbitrary in (0, T ),
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after some integrations by parts, applying the Hölder inequality, owing to the con-
tinuous embedding H1(Ω) ↪→ L4(Ω) and trace theorems, we have (cf. (1.19) and
(2.10))

1
2
‖θ(t)‖2

H − 1
2
‖θ0‖2

H + ‖∇θ‖2
L2(0,t;H)

≤ c
( ∫ t

0

‖θ‖V ‖div ũt‖L4(Ω)‖θ‖H +
∫ t

0

(
‖ũt‖2

W 1,4
0 (Ω)

+ ‖r‖H

)
‖θ‖H

+
∫ t

0

‖h‖L2(Γ)‖θ‖V

)
.

(3.2)

For the rest of this article, we will denote by c possibly different positive constants
depending only on the data of the problem. The Young inequality

pq ≤ 1
2δ

p2 +
δ

2
q2, δ > 0, p, q ∈ R, (3.3)

leads to
1
2
‖θ(t)‖2

H +
1
2
‖θ‖2

L2(0,t;V )

≤ 1
2
‖θ0‖2

H + c
(
‖θ‖2

L2(0,t;H) + ‖h‖2
L2(0,t;L2(Γ))

+
∫ t

0

(‖ũt‖2
W 1,4

0 (Ω)
+ ‖r‖H)‖θ‖H +

∫ t

0

‖div ũt‖2
L4(Ω)‖θ‖

2
H

)
.

(3.4)

By the generalized version of the Gronwall lemma introduced in [1] and recalling the
definition of X, due to (3.4) we deduce that there exists a constant C1 depending
on T , Ω, h, r, θ0, and D, such that

‖θ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C1. (3.5)

Second step. After fixing θ = T1(ũ) in (2.16), standard results on parabolic
equations (see e.g. [6]) ensure that there exists a unique corresponding solution u :=
T2(θ) satisfying (1.20) (cf. (1.22)). Concerning the regularity and the boundedness
of u, let us first test equation (2.16) by ut and integrate over (0, t) (cf. (2.3) and
(2.10))

‖ut(t)‖2
H + ‖ut‖2

L2(0,t;W) + ‖u(t)‖2
W

≤ c
(
‖u1‖2

H + ‖u0‖2
W +

∫ t

0

‖θ‖H‖div ut‖H +
∫ t

0

‖G‖W′‖ut‖W
)

≤ 1
2
‖ut‖2

L2(0,t;W) + c
(
1 + ‖θ‖2

L2(0,t;H) + ‖G‖2
L2(0,T ;W′)

)
.

(3.6)

Then, (3.5) yields
‖u‖W 1,∞(0,T ;H3)∩H1(0,T ;W) ≤ C2, (3.7)

for a suitable constant C2, with the same dependence of C1 and depending in
addition on u0, u1, and G (cf. (3.5)). Next, we can formally test by utt and
integrate over (0, t). We have, after integrating by parts,

‖utt‖2
L2(0,t;H3) +

1
2
‖ε(ut)(t)‖2

H − 1
2
‖ε(ut)(0)‖2

H ≤
3∑

i=1

|Ii(t)|, (3.8)
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where (some notation is only formal)

I1(t) = −a(u(t),ut(t)) + a(u0,u1) +
∫ t

0

a(ut,ut), (3.9)

I2(t) = −
∫ t

0

∫
Ω

Hθutt, (3.10)

I3(t) =
∫ t

0

∫
Ω

G · utt. (3.11)

Now, we can handle the above integrals as follows. First, by the definition of a and
due to (2.10) and (3.7), we can infer

|I1(t)| ≤ c
(
‖u0‖2

W + ‖u1‖2
W

)
+ δ‖ut(t)‖2

W + Cδ‖u‖2
L∞(0,T ;W) + c

∫ t

0

‖ut‖2
W

≤ c + δ‖ut(t)‖2
W,

(3.12)
where δ > 0 will be chosen later. Analogously, by definition of H, (2.9), and (3.3),
we get

|I2(t)| ≤ δ‖utt‖2
L2(0,t;H3) + Cδ‖θ‖2

L2(0,t;V ) ≤ δ‖utt‖2
L2(0,t;H3) + c. (3.13)

Finally, we can infer

|I3(t)| ≤ δ‖utt‖2
L2(0,t;H3) + Cδ‖G‖2

L2(0,T ;H3) ≤ δ‖utt‖2
L2(0,t;H3) + c. (3.14)

Thus, for a suitable choice of δ and combining (3.12)–(3.14) with (3.8) one obtains

‖utt‖2
L2(0,t;H3) + ‖ut(t)‖2

W ≤ c +
1
2
‖ut‖L∞(0,t;W), (3.15)

and consequently
‖u‖H2(0,T ;H3)∩W 1,∞(0,T ;W) ≤ C3, (3.16)

where the dependence of C3 easily follows by the previous estimates. Now, a com-
parison in (2.16) leads to

‖But +Au‖L2(0,T ;H3) ≤ c, (3.17)

so that, recalling (1.22), (2.10), and the definition of the operators B, A, we deduce

‖u‖H1(0,T ;H2(Ω)3) ≤ C4, (3.18)

for a constant C4 with the same dependence of the previous constants.
Third step. Now, our aim is to find T0 such that the operator

T : X → X, T (ũ) := T2(T1(ũ)), (3.19)

turns out to be well-defined. Note that thanks to a Gagliardo-Nirenberg estimate
(cf. [13]), due to (3.16) and (3.18), there exists C5 such that

‖T (ũ)‖W 1,8/3(0,T ;W 1,4
0 (Ω)3) ≤ C5. (3.20)

By the Hölder inequality we have

‖T (ũ)‖H1(0,T ;W 1,4
0 (Ω)3) ≤ cT 1/8‖T (ũ)‖W 1,8/3(0,T ;W 1,4

0 (Ω)3). (3.21)

Thus, to ensure that T (ũ) ∈ X, i.e.

‖T (ũ)‖H1(0,T0;W
1,4
0 (Ω)3) ≤ T

1/8
0 C6 ≤ D, (3.22)
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we can find T0 ∈ (0, T ] such that, e.g., T0 ≤ D8/C8
6 . Next, we observe that the

above argument leads to (cf. (3.16)–(3.18))

‖T (ũ)‖H2(0,T0;H3)∩W 1,∞(0,T0;W)∩H1(0,T0;H2(Ω)3) ≤ c, (3.23)

for a constant c independent of the choice of ũ ∈ X, which ensures that T is a
compact operator. From now on, for the sake of simplicity, we directly refer to T
instead of T0. Hence, to achieve the proof of the Schauder theorem, it remains to
show that T is continuous with respect to the natural strong topology induced in
X by H1(0, T ;W 1,4

0 (Ω)3). Towards this goal, we consider a sequence in X such
that

ũn → ũ in H1(0, T ;W 1,4
0 (Ω)3), (3.24)

and let
θn = T1(ũn), un = T2(θn). (3.25)

Proceeding as for the previous estimates, we can find a positive constant c not
depending on n such that

‖θn‖[W 1,1(0,T ;H)+H1(0,T ;V ′)]∩L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (3.26)

‖un‖H2(0,T ;H3)∩W 1,∞(0,T ;W)∩H1(0,T ;H2(Ω)3) ≤ c. (3.27)

By well-known weak and weak star compactness results the following convergences
are satisfied, at least for some suitable subsequences,

θn ⇀∗ θ in L∞(0, T ;H) ∩ L2(0, T ;V ), (3.28)

un ⇀∗ u in H2(0, T ;H3) ∩W 1,∞(0, T ;W) ∩H1(0, T ;H2(Ω)3). (3.29)

In particular, by compactness we have (cf. [12, 17])

un → u in H1(0, T ;W 1,4
0 (Ω)3), (3.30)

so that to conclude the proof it remains to verify that (cf. (3.24))

u = T (ũ). (3.31)

We first show that θ = T1(ũ) in (3.28). To this aim, we write (2.15) for ũn and
ũ, take the difference and test by θn − T1(ũ). After an integration over (0, t) and
performing an analogous estimate as (3.4), we can infer

1
2
‖(θn − T1(ũ))(t)‖2

H + ‖∇(θn − T1(ũ))‖2
L2(0,t;H)

≤ c

∫ t

0

‖θn‖H‖div(ũn − ũ)t‖L4(Ω)‖θn − T1(ũ)‖V

+ c

∫ t

0

‖div ũt‖L4(Ω)‖θn − T1(ũ)‖V ‖θn − T1(ũ)‖H

+
∫ t

0

(
‖ε(ũnt

)‖2
L4(Ω) − ‖ε(ũt)‖2

L4(Ω)

)
‖θn − T1(ũ)‖H ≤ δ‖θn − T1(ũ)‖2

L2(0,t;V )

+ Cδ

( ∫ t

0

‖θn‖2
H‖div(ũn − ũ)t‖2

L4(Ω) +
∫ t

0

‖div ũt‖2
L4(Ω)‖θn − T1(ũ)‖2

H

)
+

∫ t

0

(
‖ε(ũnt

)‖2
L4(Ω) − ‖ε(ũt)‖2

L4(Ω)

)
‖θn − T1(ũ)‖H .

(3.32)
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Thus, for a suitable choice of δ, we can get the following estimate

‖(θn − T1(ũ))(t)‖2
H + ‖θn − T1(ũ)‖2

L2(0,t;V )

≤ c
(
‖θn‖2

L∞(0,t;H)‖div(ũn − ũ)t‖2
L2(0,t;L4(Ω))

+
∫ t

0

(
1 + ‖div ũt‖2

L4(Ω)

)
‖θn − T1(ũ)‖2

H

+
∫ t

0

(
‖ε(ũnt

)‖2
L4(Ω) − ‖ε(ũt)‖2

L4(Ω)

)
‖θn − T1(ũ)‖H

)
.

(3.33)

We can apply the Gronwall lemma to (3.33) and, thanks to (3.30) and (3.26), we
get

lim
n→+∞

‖θn − T1(ũ)‖L∞(0,T ;H)∩L2(0,T ;V ) = 0, (3.34)

and eventually θ in (3.28) can be identified with T1(ũ). Notice in particular that
the following strong convergence holds

θn → θ in C0([0, T ];H) ∩ L2(0, T ;V ). (3.35)

Now, it is a standard matter to observe that (3.30) and (3.35) allow us to pass to
the limit as n → +∞ in (2.16) and, thanks to the uniqueness result for the limit
equation, once θ is fixed, eventually identify u with T2(θ), from which (3.31) easily
follows. Finally, we have to complete the proof of (2.17). To this aim, after adding
to both sides of (2.15) θ, we test by J−1θt (cf. (2.1)) and integrate over (0, t). By
definition of J and using the Hölder inequality, we get (cf. (2.18) and (3.35))

‖θt‖2
L2(0,t;V ′) + ‖θ(t)‖2

H

≤ c
(
‖θ0‖2

H +
∫ t

0

‖θ‖H‖div ut‖L4(Ω)‖J−1θt‖V

+
∫ t

0

‖ε(ut)‖L4(Ω)‖ε(ut)‖H‖J−1θt‖V

+
∫ t

0

‖R‖V ′‖J−1θt‖V +
∫ t

0

‖θ‖H‖J−1θt‖H

)
≤ 1

2
‖θt‖2

L2(0,t;V ′) + c
(
1 + ‖div ut‖2

L2(0,T ;L4(Ω))‖θ‖
2
L∞(0,t;H)

+ ‖ε(ut)‖2
L2(0,T ;L4(Ω)3)‖ε(ut)‖2

L∞(0,T ;H3) + ‖θ‖2
L2(0,T ;H)

)
,

(3.36)

from which (2.17) is easily deduced.

Remark 3.1. Due to the regularity of θ and u and (2.10), we could iterate the
above argument, starting from T0 and so on. Nonetheless, even if we can extend
the existence result to some interval [0, T ∗0 ], with T0 < T ∗0 ≤ T , we are not allowed
to infer that a solution exists on the whole interval [0, T ].

4. Proof of the uniqueness result

This section is devoted to the proof of the uniqueness result in Theorem 2.2,
i.e. we show uniqueness of the solution to the system (2.15)–(2.16), (1.19)–(1.20),
during [0, T0], with the regularity specified by (2.17)–(2.18). Let us point out that
this uniqueness result is stated in any interval [0, T0], with T0 ∈ [0, T ] (cf. Remark
2.3).
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First, we make some remarks about the notation to be used. We assume that
(2.15)–(2.16), (1.19)–(1.20) admit two solutions

S1 = {θ1,u1}, S2 = {θ2,u2}, (4.1)

whose regularity is given by (2.17)–(2.18). We denote by f̂ the difference of two
functions f1 and f2, i.e.

f̂ = f1 − f2, (4.2)

and make use of two trivial identities

p1q1 − p2q2 = p̂q = p̂q2 + p1q̂ = p̂q1 + p2q̂, (4.3)

so that, without loss of generality, in the sequel let us rewrite (4.3) and subsequent
computations omitting subscripts, i.e.

p̂q = p̂q + pq̂. (4.4)

Now, we take the difference of (2.15), written for S1 and S2, and integrate it in
time

θ̂ + 1 ∗Aθ̂ = 1 ∗ ̂θ div ut + 1 ∗ ̂|ε(ut)|2, (4.5)

where by ∗ we denote the usual convolution product over (0, t), namely

(p ∗ q)(t) =
∫ t

0

p(t− s)q(s) ds. (4.6)

Then, we can test (4.5) by θ̂ and integrate over (0, t). After an integration by parts
in time and eploiting (4.4), we can infer

‖θ̂‖2
L2(0,t;H) +

1
2
‖(1 ∗ ∇θ̂)(t)‖2

H ≤
6∑

i=4

Ii(t), (4.7)

where the integrals Ii(t), i = 4, 5, 6, are specified as follows

I4(t) =
∫ t

0

∫
Ω

(1 ∗ θ div ût)θ̂, (4.8)

I5(t) =
∫ t

0

∫
Ω

(1 ∗ θ̂ div ut)θ̂, (4.9)

I6(t) = 2
∫ t

0

∫
Ω

(1 ∗ ε(ut)ε̂(ut))θ̂ . (4.10)

We first treat the integral I4 recalling (2.17), integrating by parts in time, and
applying the Young inequality. We have

|I4(t)| ≤
∫

Ω

|(1 ∗ θ̂)(t)|
∫ t

0

|θ div ût|+
∫ t

0

∫
Ω

|1 ∗ θ̂||θ div ût|

≤ ‖(1 ∗ θ̂)(t)‖L4(Ω)

∫ t

0

‖div ût‖H‖θ‖L4(Ω)

+
∫ t

0

‖1 ∗ θ̂‖L4(Ω)‖div ût‖H‖θ‖L4(Ω)

≤ δ‖1 ∗ θ̂‖2
L∞(0,t;V ) + c5

∫ t

0

‖θ‖2
V ‖ût‖2

L2(0,t;W),

(4.11)
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for a suitable positive constant c5 depending only on the data of the problem and
δ > 0. Analogously, by (2.18) we have

|I5(t)| ≤
∫

Ω

|(1 ∗ θ̂)(t)|
∫ t

0

|div utθ̂|+
∫ t

0

∫
Ω

|1 ∗ θ̂| |div utθ̂|

≤ ‖(1 ∗ θ̂)(t)‖V

∫ t

0

‖div ut‖L4(Ω)‖θ̂‖H +
∫ t

0

‖1 ∗ θ̂‖V ‖div ut‖L4(Ω)‖θ̂‖H

≤ δ‖1 ∗ θ̂‖2
L∞(0,t;V ) + c6

∫ t

0

‖ut‖2
H2(Ω)3‖θ̂‖

2
L2(0,t;H).

(4.12)
Finally, by analogous arguments we obtain

|I6(t)| ≤ 2
∫

Ω

|(1 ∗ θ̂)(t)|
∫ t

0

|ε(ut)ε(ût)|+ 2
∫ t

0

|1 ∗ θ̂| |ε(ut)ε(ût)|

≤ δ‖1 ∗ θ̂‖2
L∞(0,t;V ) + c7

∫ t

0

‖ut‖2
H2(Ω)3‖ût‖2

L2(0,t;W).

(4.13)

Now, we test the difference of (2.16) by ût, integrate over (0, t), and infer, using
fairly standard arguments,

‖ût(t)‖2
H + ‖ût‖2

L2(0,t;W) + ‖û(t)‖2
W ≤ c9‖θ̂‖2

L2(0,t;H) +
1
2
‖ût‖2

L2(0,t;W), (4.14)

for a suitable positive constant c9. Hence, we combine (4.11)–(4.13) with (4.7) and
add the resulting inequality to (4.14) multiplied by 1/(2c9). In particular, after
recalling that

‖(1 ∗ θ̂)(t)‖H ≤ T 1/2‖θ̂‖L2(0,t;H),

we can take e.g. c8 = min
{

1
2 , 1

4T

}
, fix δ = c8/6, and write

1
4
‖θ̂‖2

L2(0,t;H) + c8‖(1 ∗ θ̂)(t)‖2
V +

1
2c9

‖ût(t)‖2
H +

1
4c9

‖ût‖2
L2(0,t;W)

≤ c8

2
‖1 ∗ θ̂‖2

L∞(0,t;V ) +
(
c5

∫ t

0

‖θ‖2
V + c7

∫ t

0

‖ut‖2
H2(Ω)3

)
‖ût‖2

L2(0,t;W)

+ c6

∫ t

0

‖ut‖2
H2(Ω)3‖θ̂‖

2
L2(0,t;H).

(4.15)

Note that because of (2.17)–(2.18), ‖ut‖2
H2(Ω)3 and ‖θ‖2

V belong to L1(0, T ). Thus,
we can find τ sufficiently small such that, e.g.

max
{

c5

∫ t̂+τ

t̂

‖θ‖2
V , c6

∫ t̂+τ

t̂

‖ut‖2
H2(Ω)3 , c7

∫ t̂+τ

t̂

‖ut‖2
H2(Ω)3

}
≤ min

{1
8
,

1
8c9

}
,

(4.16)

for any t̂ ∈ [0, T − τ ]. Thus, at the end, by combining (4.15) with (4.16), we
eventually get

1
8
‖θ̂‖2

L2(0,t;H) + c8‖(1 ∗ θ̂)(t)‖2
V +

1
2c9

‖ût(t)‖2
H ≤ c8

2
‖1 ∗ θ̂‖2

L∞(0,t;V ), (4.17)

for any t ∈ (0, τ). Now, from (4.17) it easily follows

θ̂ = û = 0 a.e. in Ω× (0, τ). (4.18)
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Finally, as we can repeat the same estimates for any interval (t̂, τ + t̂), by iterating
the above procedure we are allowed to extend (4.18) to the whole interval (0, T ),
which concludes the proof of the uniqueness result.

5. Positivity of the temperature and global estimates

In this section, we aim to prove positivity of the temperature, ensuring that the
second principle of thermodynamics is satisfied, as we have discussed in the intro-
duction. Hence, in the second part of the section, mainly exploiting the positivity
of the temperature, we are able to prove some global estimates on the local solu-
tion of Problem Pa, which do not depend on the choice of T0. In particular, these
estimates could be extended to the whole initial interval (0, T ). We first detail the
proof of the positivity of θ.

Theorem 5.1. Let the hypotheses of Theorem 2.1 hold and suppose in addition

r ≥ 0 a.e. in Ω× (0, T ), (5.1)

h ≥ 0 a.e. in Γ× (0, T ), (5.2)

θ0 ≥ 0 a.e. in Ω. (5.3)

Then, the solution (θ,u) to Problem Pa is such that

θ(x, t) ≥ 0 for a.a. (x, t) ∈ Ω× (0, T0). (5.4)

Remark 5.2. By construction (5.1)–(5.2) imply that R defined in (2.12) is non-
negative in the sense of distributions, i.e. for any positive test function φ one has
〈R(t), φ〉 ≥ 0, for a.a. t.

Proof of Theorem 5.1. We use a maximum principle argument. Thus, we test (2.15)
by −θ−, f− denoting the so-called negative part of a function f , i.e. f− :=
max{0,−f}, and integrate over (0, t). After an integration by parts in time, ex-
ploiting (5.1)–(5.3), and owing to the Hölder inequality, we can infer that

1
2
‖θ−(t)‖2

H + ‖∇θ−‖2
L2(0,t;H)

≤
∫ t

0

‖θ−‖H‖θ−‖L4(Ω)‖div ut‖L4(Ω) −
∫ t

0

∫
Ω

rθ− −
∫ t

0

∫
Γ

hθ−|Γ −
∫ t

0

∫
Ω

|ε(ut)|2θ−

≤ c

∫ t

0

‖θ−‖H‖θ−‖V ‖div ut‖L4(Ω).

(5.5)
Hence, to handle the right hand side of (5.5) we apply the Young inequality and
get, by definition of the V -norm,

1
2
‖θ−(t)‖2

H +
1
2
‖θ−‖2

L2(0,t;V ) ≤ c
(
‖θ−‖2

L2(0,t;H) +
∫ t

0

‖div ut‖2
L4(Ω)‖θ

−‖2
H

)
. (5.6)

Then, since ‖div ut‖2
L4(Ω) belongs to L1(0, T ) (cf. (2.18)), the generalized version

of the Gronwall lemma introduced in [1] allows us to deduce

‖θ−‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ 0, (5.7)

which eventually gives (5.4). �
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In the last part of this section, we show some uniform estimates on the local so-
lution (θ,u) of Problem Pa, which actually could be extended on the whole interval
(0, T ). Indeed, the following Proposition holds.

Proposition 5.3. Under the assumptions of Theorem 5.1, there exists a positive
constant c depending only on Ω, T , and the data of the problem, such that the
following bound is fulfilled by the solution (θ,u) to Problem Pa

‖θ‖L∞(0,T ;L1(Ω)) + ‖u‖W 1,∞(0,T ;H3)∩L∞(0,T ;W) ≤ c. (5.8)

Proof. The estimating process, used for proving (5.8), mainly exploits the positivity
of the temperature stated by Theorem 5.1. We formally proceed by testing (2.15)
by the constant function 1 and (2.16) by ut. Then, we add the resulting equations
and finally integrate over (0, t). As some terms cancel, after an integration by parts
in time, we eventually write∫

Ω

θ(t) + ‖ut(t)‖2
H + ‖u(t)‖2

W

≤ c
( ∫

Ω

θ0 + ‖u1‖2
H + ‖u0‖2

W + ‖R‖L2(0,T ;V ′) +
∫ t

0
W′〈G,ut〉W

)
≤ c

(
1 + ‖R‖L2(0,T ;V ′) +

∫ t

0

‖G‖H‖ut‖H

)
.

(5.9)

Thus, using the Gronwall lemma, one can easily obtain (5.8), after observing that
by (5.4) there holds ∫

Ω

θ(t) = ‖θ(t)‖L1(Ω).

�
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