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CONVERGENCE AND PERIODICITY IN A DELAYED
NETWORK OF NEURONS WITH THRESHOLD NONLINEARITY

SHANGJIANG GUO, LIHONG HUANG, & JIANHONG WU

Abstract. We consider an artificial neural network where the signal trans-
mission is of a digital (McCulloch-Pitts) nature and is delayed due to the
finite switching speed of neurons (amplifiers). The discontinuity of the sig-
nal transmission functions, however, makes it difficult to apply the existing

dynamical systems theory which usually requires continuity and smoothness.
Moreover, observe that the dynamics of the network completely depends on

the connection weights, we distinguish several cases to discuss the behaviors
of their solutions. We show that the dynamics of the model can be understood
in terms of the iterations of a one-dimensional map. As, a result, we present a
detailed analysis of the dynamics of the network starting from non-oscillatory
states and show how the connection topology and synaptic weights determine
the rich dynamics.

1. Introduction

In this paper, we consider the following model for an artificial neural network of
two neurons,

ẋ = −µx+ a11f(x(t− τ)) + a12f(y(t− τ)),

ẏ = −µy + a21f(x(t− τ)) + a22f(y(t− τ)),
(1.1)

where ẋ = dx/dt, x(t) and y(t) denote the activation of two neurons, µ > 0 is
the decay rate, τ > 0 is the synaptic transmission delay, aij with 1 ≤ i, j ≤ 2
are the synaptic weights, f : R → R is the activation function. Such a model
describes the computational performance of a Hopfield net [8] where each neuron
is represented by a linear circuit consisting of a resistor and a capacitor, and each
neuron is connected to another via the nonlinear activation function f multiplied
by the synaptic weights aij (i 6= j). We also allow that a neuron has self-feedback
and signal transmission is delayed due to the finite switching speed of neurons.

Networks of two neurons have been used as prototypes for us to understand
the dynamics of large networks with delayed activation functions, but much of the
existing work has concentrated on the case of a smooth activation function (see, for
example, [1, 2, 3, 6, 11, 12, 15]). In this paper, we consider the McCulloch-Pitts
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activation function

f(ξ) =

{
−δ, if ξ > 0,
δ, if ξ ≤ 0,

(1.2)

where δ 6= 0 is a given constant. This case arises when the signal transmission is
of digital nature: a neuron is either fully active or completely inactive. Very little
has been done in this case since results of the aforementioned references cannot be
applied as the dynamical systems theory heavily used in these references usually
requires the continuity and smoothness of the nonlinear terms. In [4, 5, 9, 10, 13],
model equation (1.1) with a piecewise constant activation function is studied when
the synaptic connection topology satisfies [a11 = a22 = 0, a21 = a12 = 1] or
[a11 = a22 = 0, a21 = −a12 = 1], and more generally, [a11 + a12 = 0, a11 > 0,
a21 < 0, a21 < a22 ≤ −a21].

To simplify the presentation, we first rescale the variables by

t∗ = µt, τ∗ = µτ, x∗(t∗) =
µ

δ
x(t), y∗(t∗) =

µ

δ
y(t), f∗(ξ) =

1
δ
f(
δ

µ
ξ), (1.3)

and then drop the ∗ to get

ẋ = −x+ a11f(x(t− τ)) + a12f(y(t− τ)),

ẏ = −y + a21f(x(t− τ)) + a22f(y(t− τ))
(1.4)

with

f(ξ) =

{
−1, if ξ > 0,
1, if ξ ≤ 0.

(1.5)

Let
a = a11 + a12, b = a21 + a22, c = a11 − a12, d = a21 − a22. (1.6)

We can rewrite (1.4) as

ẋ = −x+
a

2
[f(x(t− τ)) + f(y(t− τ))] +

c

2
[f(x(t− τ))− f(y(t− τ))] ,

ẏ = −y +
b

2
[f(x(t− τ)) + f(y(t− τ))] +

d

2
[f(x(t− τ))− f(y(t− τ))] .

(1.7)

To state our main results, we set the phase space X = C([−τ, 0]; R2) as the
Banach space of continuous mappings from [−τ, 0] to R2 equipped with the sup-
norm, see [7]. Note that for each given initial value Φ = (ϕ,ψ)T ∈ X, one can solve
system (1.7) on intervals [0, τ ], [τ, 2τ ], · · · successively to obtain a unique mapping(
xΦ, yΦ

)T : [−τ,∞) → R2 such that xΦ |[−τ,0]= ϕ, yΦ |[−τ,0]= ψ,
(
xΦ, yΦ

)T is
continuous for all t ≥ −τ , almost differentiable and satisfies (1.7) for t > 0. This
gives a unique solution of (1.7) defined for all t ≥ −τ . In applications, a network
usually starts from a constant (or nearly constant) state. Therefore, in this paper,
we shall concentrate on the case where each component of Φ has no sign change
on [−τ, 0]. More precisely, we consider Φ ∈ X+,+

⋃
X+,−⋃

X−,+
⋃
X−,− = X0,

where

C± =
{
± ϕ : ϕ : [−τ, 0] → [0,∞) is continuous and

has only finitely many zeros on [−τ, 0]
}

and
X±,± =

{
Φ ∈ X; Φ = (ϕ,ψ)T , ϕ ∈ C± and ψ ∈ C±

}
.
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Clearly, all constant initial values (except 0) are contained in X0. Our analysis
shows that the semiflow defined by system (1.7) on X0 (in other words, the behavior
of a solution

(
xΦ(t), yΦ(t)

)T of system (1.7) with initial value Φ ∈ X0) is completely
determined by the value (ϕ(0), ψ(0))T and the synaptic connection topology.

Guo, Huang and Wu [4] showed that using form (1.2) and some simple changes
of variables, we can see that the semiflow defined by the system

u̇ = −u+
1
2
f(u(t− τ))− 1

2
f(v(t− τ)),

v̇ = −v − 1 +B

2
f(u(t− τ)) +

1−B

2
f(v(t− τ))

(1.8)

withB ≥ 0 is topologically equivalent to that of (1.7)-(1.5) while one of the following
four conditions is satisfied:

(A1) a = 0, b ≤ 0, c > 0, d < 0
(A2) a ≤ 0, b = 0, c > 0, d < 0
(A3) a > 0, b > 0, c = 0, d ≥ 0
(A4) a > 0, b > 0, c ≤ 0, d = 0.

Theorem 1.1 ([4]). Let ω = 2 ln(2eτ −1), M = (1− e−τ )(eτ − B
B+1 ), m = 1−e−τ

B+e−τ ,
η = (ϕ(0) + ψ(0))/(1− ϕ(0)) ≥ 0, the ω-periodic function q : R → R be

q(t) =

{
e−(t+τ) − 1, if − ω/2 ≤ t ≤ 0,
(e−τ − 2)e−t + 1, if 0 < t ≤ ω/2,

and polynomials

h(B) = B3(e−τ − 1− eτ ) +B2(e2τ − 3eτ + e−τ + e−2τ − 3)

+B(2e2τ − eτ + e−2τ − 4) + e2τ + eτ − e−τ − 1,

g(x) = (Beτ −B − 1)x2 + [(1 + 3B)(eτ − 1) +Be−τ −B(B + e−τ )(eτ + 1)]x

−B(B − 1)(eτ − 1).

Then the behavior of the solution (u(t), v(t))T of system (1.8) with initial value
Φ = (ϕ,ψ)T ∈ X−,+ and ϕ(0) + ψ(0) ≥ 0 is as follows:

(i) Suppose that B = 2(1−e−τ ) and τ > ln 2. If η ∈ [0,m], then (u(t), v(t))T is
eventually periodic with minimal period ω; If η ∈ (m,M), then (u(t), v(t))T

approaches the periodic solution corresponding to η = m as t → ∞; If
η ∈ [M,∞), then (u(t), v(t))T tends to (0, B)T as t→∞.

(ii) Suppose that B = 2(1−e−τ ) and τ < ln 2. If η ∈ [0,m], then (u(t), v(t))T is
eventually periodic with minimal period ω; If η ∈ (m,∞), then (u(t), v(t))T

tends to (0, B)T as t→∞.
(iii) Suppose that 0 ≤ B < 2(1− e−τ ) and τ ≥ ln 2 or 0 ≤ B ≤ B∗1 and τ < ln 2.

Then (u(t), v(t))T approaches the periodic solution (−q(t), q(t))T as t→∞,
where B∗1 is the unique positive zero of h(B).
(iv) Suppose that B > 2(1 − e−τ ) and τ ≤ ln 2 or B ≥ B∗2 and τ > ln 2.
Then (u(t), v(t))T tends to (0, B)T as t → ∞, where B∗2 is the unique
positive zero of h(B).
(v) Suppose that B∗1 < B < 2(1 − e−τ ) and τ < ln 2. Then there must
exist T1 ≥ 0 and Φ1 = (ϕ1, ψ1)T ∈ X−,+ with ϕ1(0) + ψ1(0) > 0 such
that for t ≥ T1, the solution

(
u1(t), v1(t)

)T of (1.8) with initial value Φ1 is
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periodic. Moreover, as t→∞, every other solution (u(t), v(t))T of system
(1.8) with initial value Φ = (ϕ,ψ)T ∈ X−,+ and ϕ(0) + ψ(0) > 0 either
tends to (0, B)T or approaches the periodic solution (−q(t), q(t))T .

(vi) Suppose that 2(1 − e−τ ) < B < B∗2 and τ > ln 2. Then there must exist
T2 ≥ 0 and Φ2 = (ϕ2, ψ2)T ∈ X−,+ with ϕ2(0) + ψ2(0) > 0 such that for
t ≥ T2, the solution

(
u2(t), v2(t)

)T of (1.8) with initial value Φ2 is periodic
and the minimal period is 2τ +ln[(2−2e−τ −B)x∗2 +(1−e−τ )2 +3−2e−τ ],
where x∗2 is the positive zero of g(x). Moreover, as t → ∞, every solution
(u(t), v(t))T of system (1.8) with initial value Φ = (ϕ,ψ)T ∈ X−,+ and
ϕ(0) +ψ(0) > 0 either tends to (0, B)T or approaches the periodic solution(
u2(t), v2(t)

)T .
(vii) Suppose that B = 1 and τ = ln 2. If η ∈ [0,M), then (u(t), v(t))T is

eventually periodic; If η ∈ [M,∞), then (u(t), v(t))T → (0, B)T as t→∞.

Guo, Huang and Wu [5] also showed that the semiflow defined by the system

u̇ = −u+
1 +m

2
f(u(t− τ)) +

1−m

2
f(v(t− τ)),

v̇ = −v +
1 +m

2
f(u(t− τ)) +

1−m

2
f(v(t− τ)).

(1.9)

with m > 0 is topologically equivalent to that of (1.7)-(1.5) when one of the follow-
ing four conditions are satisfied:

(B1) a > 0, b > 0, c > 0, d > 0, ad = bc
(B2) a > 0, b < 0, c > 0, d < 0, ad = bc
(B3) a < 0, b > 0, c > 0, d < 0, ad = bc
(B4) a > 0, b > 0, c < 0, d < 0, ad = bc.

Theorem 1.2 ([5]). Every solution (u(t), v(t))T of system (1.9) with initial value
Φ = (ϕ,ψ)T ∈ X0 is either eventually periodic with minimal period ω or approaches
the periodic solution (q(t), q(t))T as t→∞, where constant ω and ω-periodic func-
tion q(t) are defined as in Theorem 1.1.

In this paper, we consider the following cases:

(H1) a ≤ 0, b ≤ 0, c ≤ 0, d ≥ 0
(H2) a > 0, b ≤ 0, c ≤ 0, d ≥ 0
(H3) a ≤ 0, b > 0, c ≤ 0, d ≥ 0
(H4) a ≤ 0, b ≤ 0, c ≤ 0, d < 0
(H5) a ≤ 0, b ≤ 0, c > 0, d ≥ 0
(H6) a < 0, b > 0, c > 0, d > 0
(H7) a > 0, b < 0, c < 0, d < 0
(H8) a < 0, b > 0, c < 0, d < 0
(H9) a > 0, b < 0, c > 0, d > 0.

Let (x(t), y(t))T be a solution of (1.7) with initial value Φ ∈ X0. In this paper, we
shall obtain the following results:

Theorem 1.3. Suppose that (H1) holds. Then as t → ∞, (x(t), y(t))T tends to
(−a,−b)T provided Φ ∈ X+,+, to (c, d)T provided Φ ∈ X−,+, to (a, b)T provided
Φ ∈ X−,−, and to (−c,−d)T provided Φ ∈ X+,−.
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Theorem 1.4. (i) If (H2) holds, then as t→∞, (x(t), y(t))T tends to (c, d)T

provided Φ ∈ X+,+
⋃
X−,+, and to (−c,−d)T provided Φ ∈ X+,−⋃

X−,−;
(ii) If (H3) holds, then as t → ∞, (x(t), y(t))T tends to (−c,−d)T provided

Φ ∈ X+,+
⋃
X+,−, and to (c, d)T provided Φ ∈ X−,+

⋃
X−,−;

(iii) If (H4) holds, then as t → ∞, (x(t), y(t))T tends to (−a,−b)T provided
Φ ∈ X+,+

⋃
X+,−, and to (−a,−b)T provided Φ ∈ X−,+

⋃
X−,−;

(iv) If (H5) holds, then as t → ∞, (x(t), y(t))T tends to (−a,−b)T provided
Φ ∈ X+,+

⋃
X−,+, and to (a, b)T provided Φ ∈ X+,−⋃

X−,−.

Theorems 1.3 and 1.4 show that a simple network described by (1.7) can be used
as an associative memory device because points representing the stored memories
are locally stable in some sense, and from any initial state close to one of these
attractors which represents partial knowledge of the memory stored at the attractor,
the trajectory is driven by the system to the attractor, hence producing the full
retrieval of the stored memory. By Theorems 1.3 and 1.4, system (1.7) has a point
as the global attractor if we further restrict the parameters as follows:

Corollary 1.5. Suppose that the parameters a, b, c and d satisfy one of the following
conditions: (1) ab ≤ 0, c = d = 0; (2) a = b = 0, cd ≥ 0. Then trajectories of
system (1.7) starting from non-oscillatory states converge to (0, 0)T .

We now consider the remaining cases.

Theorem 1.6. If one of the two conditions (H6) and (H7) holds, then there exist
Φ0 = (ϕ0, ψ0)T ∈ X0 and T0 ≥ 0 such that the solution (xΦ0(t), yΦ0(t))T of (1.7)
with initial value Φ0 is periodic for t ≥ T0. Moreover, limt→∞[xΦ(t)− xΦ0(t)] = 0
and limt→∞[yΦ(t) − yΦ0(t)] = 0 for every solution (xΦ(t), yΦ(t))T of (1.7) with
Φ = (ϕ,ψ)T ∈ X0.

This theorem shows that when we restrict the initial value Φ to X0, then system
(1.7) has a unique limit cycle which is the global attractor. Note that this rep-
resents significant improvement over a corresponding theorem in [10]. The proof,
elementary but technical, will be presented in Section 3. The basic idea is to show
that a typical trajectory of (1.7), when described in the 2-dimensional Euclidean
space (not the phase space), is spiraling and rotates round the point (0, 0) (Section
2).

Theorem 1.7. If one of the two conditions (H8) and (H9) holds, then there exist
Φ0 = (ϕ0, ψ0)T ∈ X0 and T0 ≥ 0 such that the solution (xΦ0(t), yΦ0(t))T of (1.7)
with initial value Φ0 is periodic for t ≥ T0, and (−xΦ0(t),−yΦ0(t))T is also a
solution of (1.7). Moreover, either limt→∞[xΦ(t)−xΦ0(t)] = 0 and limt→∞[yΦ(t)−
yΦ0(t)] = 0 or limt→∞[xΦ(t)+xΦ0(t)] = 0 and limt→∞[yΦ(t)+yΦ0(t)] = 0 for every
solution (xΦ(t), yΦ(t))T of (1.7) with Φ = (ϕ,ψ)T ∈ X0.

Therefore, system (1.7) may have two stable limit cycles. Moreover, if we restrict
initial value Φ to X0, then every solution of system (1.7) approaches one of the
limit cycles as t→∞. Theorems 1.6 and 1.7 show that a simple two neuron model
network is capable of producing and sustaining periodic behaviors. It is worthy of
noticing that periodic sequences of neural impulses are of fundamental significance
for the control of dynamic functions of the human body. Therefore, it is of great
interest to understand various mechanisms of neural networks which cause and
sustain such periodic activities.
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2. Preliminary results

In this section, we establish several technical lemmas, which play important roles
in the proof of our main results. For the sake of simplicity, for the remaining part
of this paper, for a given s ∈ [0,∞) and a continuous function z : [−τ,∞) → R, we
define zs : [−τ, 0] → R by zs(θ) = z(s+ θ) for θ ∈ [−τ, 0].

Lemma 2.1. The semiflow defined by model (1.7) with parameters a, b, c and d
satisfying (H2) is topologically equivalent to that defined by model (1.7) with pa-
rameters a, b, c and d satisfying any one of (H3), (H4) and (H5).

Proof. We consider only the topological equivalence between the semiflow defined
by (1.7) under the condition (H2) and that defined by model (1.7) under condition
(H3). The remaining cases can be dealt with analogously.

If (H2) holds, we can further redefine variables in (1.7) by

x∗(t) = y(t), y∗(t) = x(t), a∗ = b, b∗ = a, c∗ = −d, d∗ = −c
and then drop the ∗ to get (1.7) where the new parameters a, b, c and d satisfy (H3).
The converse holds true as well. This justifies the claimed equivalence, according
to the definition of topological equivalence in [7]. We complete the proof of Lemma
2.1. �

Using similar arguments, we can also establish the following lemmas.

Lemma 2.2. The semiflow defined by the system

ẋ = −x+
1−A

2
f(x(t− τ))− 1 +A

2
f(y(t− τ)),

ẏ = −y +
1 +B

2
f(x(t− τ)) +

1−B

2
f(y(t− τ)),

(2.1)

with A > 0 and B > 0 is topologically equivalent to that defined by model (1.7) with
parameters a, b, c and d satisfying either (H6) or (H7).

Lemma 2.3. The semiflow defined by the system

ẋ = −x− 1 +M

2
f(x(t− τ)) +

1−M

2
f(y(t− τ)),

ẏ = −y − 1−N

2
f(x(t− τ)) +

1 +N

2
f(y(t− τ)),

(2.2)

with M > 0 and N > 0 is topologically equivalent to that defined by model (1.7)
with parameters a, b, c and d satisfying either (H8) or (H9).

Lemma 2.4. If (x(t), y(t))T is the solution of system (1.7)(or (2.1), (2.2)) with
initial value Φ = (ϕ,ψ)T ∈ X0, then the solution of (1.7)(respectively, (2.1), (2.2))
with initial value Φ = (−ϕ,−ψ)T ∈ X0 is (−x(t),−y(t))T .

We now describe the transition from one component of X0 to another.

Lemma 2.5. Suppose that (x(t), y(t))T is a solution of (2.1) with initial value in
X0. Then

(i) if there exists some t0 ≥ 0 such that (xt0 , yt0)
T ∈ X+,+, then there exists

some t∗0 ≥ t0 such that
(
xt∗0+τ , yt∗0+τ

)T ∈ X+,−

(ii) if there exists some t0 ≥ 0 such that (xt0 , yt0)
T ∈ X+,−, then there exists

some t∗0 ≥ t0 such that
(
xt∗0+τ , yt∗0+τ

)T ∈ X−,−
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(iii) if there exists some t0 ≥ 0 such that (xt0 , yt0)
T ∈ X−,−, then there exists

some t∗0 ≥ t0 such that
(
xt∗0+τ , yt∗0+τ

)T ∈ X−,+

(iv) if there exists some t0 ≥ 0 such that (xt0 , yt0)
T ∈ X−,+, then there exists

some t∗0 ≥ t0 such that
(
xt∗0+τ , yt∗0+τ

)T ∈ X+,+.

Proof. We consider only the case where (xt0 , yt0)
T ∈ X+,+ for some t0 ≥ 0, the

remaining cases can be dealt with analogously. In view of (2.1), we have
ẋ = −x+A,

ẏ = −y − 1
(2.3)

for t ∈ [t0, t0 + τ ] except at most finitely many t. Therefore, the variation-of-
constants formula and the continuity of solutions yield

x(t) = [x(t0)−A]e−(t−t0) +A,

y(t) = [y(t0) + 1]e−(t−t0) − 1
(2.4)

for all t ∈ [t0, t0 + τ ]. Let t1 be the first zero of x(t) · y(t) in (t0,∞). Then
(x(t), y(t))T satisfies system (2.3) for t ∈ (t0, t1 + τ) except at most finitely many
t, and so (2.4) holds for t ∈ [t0, t1 + τ ]. It follows from (2.4) that

t1 = t0 + ln[y(t0) + 1],

which implies that

xt1+τ (θ) =
x(t0)−A

y(t0) + 1
e−(τ+θ) +A > 0,

yt1+τ (θ) = e−(τ+θ) − 1 < 0

for θ ∈ (−τ, 0], and so (xt1+τ , yt1+τ )T ∈ X+,−. Thus, claim (i) holds with t∗0 =
t1. �

Lemma 2.6. Suppose that (x(t), y(t))T is a solution of (2.2) with initial value in
X0. Then

(i) if there exists some t0 ≥ 0 such that (xt0 , yt0)
T ∈ X+,+, then there exists

some t∗0 ≥ t0 such that
(
xt∗0+τ , yt∗0+τ

)T ∈ X+,−

(ii) if there exists some t0 ≥ 0 such that (xt0 , yt0)
T ∈ X+,−, then there exists

some t∗0 ≥ t0 such that
(
xt∗0+τ , yt∗0+τ

)T ∈ X+,+.

Proof. (i) Using equations (2.2), (1.5) and the fact that (xt0 , yt0)
T ∈ X+,+, we have

ẋ = −x+M,

ẏ = −y −N
(2.5)

for t ∈ [t0, t0 + τ ] except at most finitely many t. Therefore, the variation-of-
constants formula and the continuity of solutions yield

x(t) = [x(t0)−M ]e−(t−t0) +M,

y(t) = [y(t0) +N ]e−(t−t0) −N
(2.6)

for all t ∈ [t0, t0 + τ ]. Let t1 be the first zero of x(t) · y(t) in (t0,∞). Then
(x(t), y(t))T satisfies system (2.5) for t ∈ (t0, t1 + τ) except at most finitely many
t, and so (2.6) holds for t ∈ [t0, t1 + τ ]. It follows from (2.6) that

t1 = t0 + ln[y(t0) +N ]− lnN,
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which implies that

xt1+τ (θ) =
x(t0)−M

y(t0) +N
Ne−(τ+θ) +M > 0

yt1+τ (θ) = e−(τ+θ) − 1 < 0

for θ ∈ (−τ, 0], and so (xt1+τ , yt1+τ )T ∈ X+,−.
(ii) Using equations (2.1) and (1.5), as well as the fact that (xt0 , yt0)

T ∈ X+,−, we
have

ẋ = −x+ 1,
ẏ = −y + 1

(2.7)

for t ∈ [t0, t0 + τ ] except at most finitely many t. Therefore, the variation-of-
constants formula and the continuity of solutions yield

x(t) = [x(t0)− 1]e−(t−t0) + 1,

y(t) = [y(t0)− 1]e−(t−t0) + 1
(2.8)

for all t ∈ [t0, t0 + τ ]. Let t1 be the first zero of x(t) · y(t) in (t0,∞). Then
(x(t), y(t))T satisfies system (2.7) for t ∈ (t0, t1 + τ) except at most finitely many
t, and so (2.8) holds for t ∈ [t0, t1 + τ ]. It follows from (2.8) that

t1 = t0 + ln[1− y(t0)],

which implies

xt1+τ (θ) =
x(t0)− 1
1− y(t0)

e−(τ+θ) + 1 > 0,

yt1+τ (θ) = 1− e−(τ+θ) > 0

for θ ∈ (−τ, 0], and so (xt1+τ , yt1+τ )T ∈ X+,+. This completes the proof. �

In what follows, we will need the following continuous functions:

f1(x) =
(AB + 1− e−τ )e−τx+ (A+ 1)(AB + 1)(1− e−τ )

(B + 1)e−τx+ (A+ 1)(B + 1)(1− e−τ ) + 2e−τ − e−2τ
, (2.9)

T (x) = 2τ + ln
[
(B + 1)e−τx+ (A+ 1)(B + 1)(1− e−τ ) + 2e−τ − e−2τ

]
, (2.10)

f2(x) = A+
B(x−A)e−2τ +B(1−A)(1 +B)(1− e−τ )

[1 +B(1− e−τ )](1 +B − e−τ )
(2.11)

for x ∈ [0,∞).

Lemma 2.7. The function f1 : [0,∞) → R is continuous and has a unique 2-
period point x∗1 which is stable (that is limn→∞ fn

1 (x) = x∗1 for all x ∈ (0,∞)).
Moreover, f1 is monotonically increasing provided that max{A,B} < 1 − e−τ or
min{A,B} > 1− e−τ , and is monotonically decreasing provided that min{A,B} <
1− e−τ < max{A,B}.

Proof. It is easy to see that f1 is continuous and has a unique fixed point x∗1 ∈
[0,∞). We first consider the case where max{A,B} < 1 − e−τ or min{A,B} >
1− e−τ . Then it is easy to verify that f1 is monotonically increasing, f1(x) > x for
x ∈ [0, x∗1) and f1(x) < x for x ∈ (x∗1,∞). Thus, the fixed point x∗1 is stable, i.e.,
limn→∞ fn

1 (x) = x∗1 for all x ∈ [0,∞), where fn
1 (x) = f1

(
fn−1
1 (x)

)
. It is obvious

that x∗1 is also a 2-period point of f1(x), i.e., the fixed point of f2
1 (x). We can

claim that x∗1 is the unique 2-period point of f1(x). Suppose to the contrary, let
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u∗ ∈ [0,∞) be another 2-period point of f1(x), namely, f2
1 (u∗) = u∗ 6= x∗1. Since

limn→∞ fn
1 (u∗) = x∗1, let n = 2k, then

u∗ = lim
k→∞

(f2
1 )k(u∗) = lim

n→∞
f2k
1 (u∗) = x∗1,

which is a contradiction. Therefore, The function f1 has the unique 2-period point
x∗1. Also since f2

1 (x) > f1(x) > x for x ∈ [0, x∗1) and f2
1 (x) < f1(x) < x for x ∈

(x∗1,∞), it is easy to see that x∗1 is the stable 2-period point of f1(x). On the other
hand, if min{A,B} < 1 − e−τ < max{A,B}, then f1 is monotonically decreasing.
However, f2

1 is monotonically increasing and has one and only one unique x∗1, which
implies that x∗1 is the stable 2-period point of f1(x). This completes the proof. �

Lemma 2.8. The function f2 : [0,∞) → R is continuous, monotonically increasing
and has a unique fixed point x∗2 which is stable.

The proof of Lemma 2.8 is similar to that of Lemma 2.7 and thus it is omitted.

3. Proof of main results

Proof of Theorem 1.3. We consider only the case where Φ ∈ X+,+. The remaining
cases can be dealt analogously. Using the definition of f and the fact Φ ∈ X+,+,
x(t) and y(t) satisfy

ẋ = −x− a,

ẏ = −y − b
(3.1)

for t ∈ [0, τ ]. Therefore, for t ∈ [t0, t0 + τ ] we have

x(t) = (ϕ(0) + a)e−t − a,

y(t) = (ψ(0) + b)e−t − b,
(3.2)

which implies that xτ (θ) = x(τ + θ) > 0 and yτ (θ) = y(τ + θ) > 0 for θ ∈ (−τ, 0),
and so xτ ∈ C+ and yτ ∈ C+. Repeating this argument on [τ, 2τ ], [2τ, 3τ ], · · · ,
successively, we obtain that xt ∈ C+ and yt ∈ C+ for all t ≥ 0. Therefore, (3.1)
holds for almost all t > 0. It follows that (x(t), y(t))T → (−a,−b)T as t→∞. �

Proof of Theorem 1.4. In view of Lemma 2.1, it suffices to consider system (1.7)
under the condition (H2). We distinguish four cases in our discussions of the be-
haviors of a solution for (1.7).
Case 1. Φ ∈ X−,+. Using a similar argument to that of Theorem 1.3, we can show
that (x(t), y(t))T → (c, d)T as t→∞.
Case 2. Φ ∈ X+,+. In view of the definition of f(ξ), x(t) and y(t) satisfy (3.1) for
t ∈ (0, τ). Therefore, (3.2) holds for t ∈ [t0, t0 + τ ]. Let t1 be the first nonnegative
zero of x(t) · y(t) on [0,∞). Then for t ∈ (0, t1 + τ), (3.1) holds. Namely, (3.2)
holds for t ∈ [0, t1 + τ ]. In particular,

t1 = ln[ϕ(0) + a]− ln a.

It follows that

xt1+τ (θ) = ae−(τ+θ) − a < 0,

yt1+τ (θ) =
ψ(0) + b

ϕ(0) + a
ae−(τ+θ) − b > 0

for θ ∈ (−τ, 0], and so (xt1+τ , yt1+τ )T ∈ X−,+. Then from the result for Case 1,
(x(t), y(t))T → (c, d)T as t→∞.
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Case 3 Φ ∈ X−,+. From the result for Case 1 and by Lemma 2.4, it is easy to see
that (x(t), y(t))T → (−c,−d)T as t→∞.
Case 4 Φ ∈ X−,−. From the result for Case 2 and by Lemma 2.4, it is easy to
see that (x(t), y(t))T → (−c,−d)T as t → ∞. Thus the proof of Theorem 1.4 is
complete. �

Proof of Theorem 1.6. In view of Lemmas 2.2 and 2.5, it suffices to discuss the
behavior of a solution (x(t), y(t))T of (2.1) with initial value Φ ∈ X++. For the
sake of convenience, we introduce the parameter u:

u =
ϕ(0) +Aψ(0)

1 + ψ(0)
.

We can show that the behavior of the solution (x(t), y(t))T as t→∞ are completely
determined by the value u. Let t1 be the first zero of x(t) ·y(t) on [0,∞), then from
the proof of case (i) in Lemma 2.5 it follows that

t1 = ln(1 + ψ(0)), x(t1) =
ϕ(0) +Aψ(0)

1 + ψ(0)
= u ≥ 0, y(t1) = 0,

x(t1 + τ) = (u−A)e−τ +A > 0, y(t1 + τ) = e−τ − 1 < 0.

Moreover, it is easy to see that (xt1+τ , yt1+τ )T ∈ X+,−. Therefore, for t ∈ (t1 +
τ, t1 + 2τ), we have x(t− τ) > 0, y(t− τ) < 0 and (x(t), y(t))T satisfies

ẋ = −x− 1,
ẏ = −y −B,

(3.3)

from which and the continuity of the solution it follows that

x(t) = [x(t1 + τ) + 1]et1+τ−t − 1

= [(u−A)e−τ +A+ 1]et1+τ−t − 1,

y(t) = [y(t1 + τ) +B]et1+τ−t −B

= [B − 1 + e−τ ]et1+τ−t −B

(3.4)

for t ∈ [t1 + τ, t1 + 2τ ]. Let t2 be the second zero of x(t) · y(t) on [0,∞). Then for
t ∈ (t1+τ, t2+τ), (x(t), y(t))T satisfies (3.3). Thus, (3.4) holds for t ∈ [t1+τ, t2+τ ].
It follows from (3.4) that

t2 = t1 + τ + ln[(u−A)e−τ +A+ 1],

x(t2 + τ) = e−τ − 1 < 0,

y(t2 + τ) =
B − 1 + e−τ

(u−A)e−τ +A+ 1
e−τ −B < 0.

Moreover, it is easy to see that (xt2+τ , yt2+τ )T ∈ X+,−. Therefore, for t ∈ (t2 +
τ, t2 + 2τ), we have x(t− τ) > 0, y(t− τ) < 0 and (x(t), y(t))T satisfies

ẋ = −x−A,

ẏ = −y + 1.
(3.5)
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Hence,
x(t) = [x(t2 + τ) +A]et2+τ−t −A

= [e−τ +A− 1]et2+τ−t −A,

y(t) = [y(t2 + τ)− 1]et2+τ−t + 1

=
( B − 1 + e−τ

(u−A)e−τ +A+ 1
e−τ −B − 1

)
et2+τ−t + 1

(3.6)

for t ∈ [t2 + τ, t2 + 2τ ]. Let t3 be the third zero of x(t) · y(t) on [0,∞). Then (3.5)
holds for t ∈ (t2 + τ, t3 + τ). Namely, (3.6) holds for t ∈ [t2 + τ, t3 + τ ]. Thus, it
follows from (3.6) that

t3 = t2 + τ + ln(1− y(t2 + τ))

= t1 + 2τ + ln
[
(B + 1)e−τx+ (A+ 1)(B + 1)(1− e−τ ) + 2e−τ − e−2τ

]
= t1 + T (u)

and

x(t3) =
x(t2 + τ) +Ay(t2 + τ)

1− y(t2 + τ)

=
(e−τ − 1−AB)e−τu+ (A+ 1)(AB + 1)(e−τ − 1)

(B + 1)e−τu+ (A+ 1)(B + 1)(1− e−τ ) + 2e−τ − e−2τ

= −f1(u) < 0,

y(t3) = 0,

where the function T and f1 are defined as (2.10) and (2.9), respectively. Let t4
and t5 be the next zeroes of x(t) · y(t). Then from the above arguments and by
Lemma 2.1, we have (xt4+τ , yt4+τ )T ∈ X+,+ and

t5 = t3 + T (f1(u)) = t1 + T (u) + T (f1(u)) ,

x(t5) = f2
1 (u),

y(t5) = 0.

Thus, we can repeat the same argument to get a sequence

u, f1(u), f2
1 (u), · · · , fn

1 (u), · · · .

In particular, the behavior of (x(t), y(t))T is determined by the iteration f1. By
Lemma 2.7, the function f1 has a 2-period point x∗1. Namely, f2

1 (x∗1) = x∗1. Let
(x∗(t), y∗(t))T be a solution of (2.1) with the initial value Φ∗ = (ϕ∗, ψ∗)T ∈
X+,+ satisfying [ϕ∗(0) + Aψ∗(0)]/[1 + ψ∗(0)] = x∗1. Then for t ≥ ln(1 + ψ∗(0)),
(x∗(t), y∗(t))T is periodic with minimal period ω = T (x∗1) + T (f1(x∗1)) = 2T (x∗1).
Also since x∗1 is the stable 2-period point, it is obvious that the periodic solution
(x∗(t), y∗(t))T is attractive, i.e., every solution of initial value problem (2.1) ap-
proaches (x∗(t), y∗(t))T as t → ∞. Therefore, it is a stable limit cycle and its
uniqueness is guaranteed by the uniqueness of the 2-period point of f1. Thus, we
complete the proof of Theorem 1.6. �

Proof of Theorem 1.7. In view of Lemmas 2.3 and 2.4, it suffices to discuss the
behavior of a solution (x(t), y(t))T of (2.2) with initial value Φ ∈ X++. For the
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sake of convenience, we introduce the two parameters

u = M +
ϕ(0)−M

ψ(0) +N
N,

ω = 2τ + ln[1 +N(1− e−τ )] + ln(1 +N − e−τ )− lnN.

We show that the behavior of the solution (x(t), y(t))T as t → ∞ is completely
determined by the value u. Let t1 be the first zero of x(t) ·y(t) on [0,∞), then from
the proof of Lemma 2.6 (i) we have

t1 = ln(ψ(0) +N)− lnN,

x(t1) = M +
ϕ(0)−M

ψ(0) +N
N = u ≥ 0,

y(t1) = 0,

x(t1 + τ) = (u−M)e−τ +M > 0,

y(t1 + τ) = Ne−τ −N < 0.

Moreover, it is easy to see that (xt1+τ , yt1+τ )T ∈ X+,−. This, together with the
proof of Lemma 2.6 (ii), implies that the second zero of x(t) · y(t) is

t2 = t1 + τ + ln[1− y(t1 + τ)] = t1 + τ + ln[1 +N(1− e−τ )].

Moreover,
x(t) = [x(t1 + τ)− 1]et1+τ−t + 1

= [(u−M)e−τ +M − 1]et1+τ−t + 1,

y(t) = [y(t1 + τ)− 1]et1+τ−t + 1

= [Ne−τ −N − 1]et1+τ−t + 1

(3.7)

for all t ∈ [t1 + τ, t2 + τ ]. It follows that

x(t2 + τ) =
(u−M)e−τ +M − 1

1 +N(1− e−τ )
e−τ + 1 > 0,

y(t2 + τ) = 1− e−τ > 0.

Moreover, it is easy to see that (xt2+τ , yt2+τ )T ∈ X+,+. Again from the proof of
Lemma 2.6 (i), the third zero of x(t) · y(t) is

t3 = t2 + τ + ln[y(t2 + τ) +N ]− lnN

= t1 + 2τ + ln[1 +N(1− e−τ )] + ln(1 +N − e−τ )− lnN
= t1 + ω.

Moreover,

x(t3) = M +
x(t2 + τ)−M)
y(t2 + τ) +N

N

= M +
(u−M)e−2τ + (1 +N)(1−M)(1− e−τ )

[1 +N(1− e−τ )](1 +N − e−τ )
N

= f2(u) > 0,

y(t3) = 0,
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where the function f2 is defined as (2.11). Thus, we can repeat the same argument
to get a sequence

u, f2(u), f2
2 (u), · · · , fn

2 (u), · · · .

Therefore, the behavior of (x(t), y(t))T as t → ∞ is determined by the itera-
tion of the function f2. By Lemma 2.8, the function f2 has a fixed point x∗2.
Namely, f2(x∗2) = x∗2. Let (x∗(t), y∗(t))T be a solution of (2.2) with initial value
Φ∗ = (ϕ∗, ψ∗)T ∈ X+,+ satisfying M +N [ϕ∗(0)−M ]/[ψ∗(0) +N ] = x∗2. Then for
t ≥ ln(ψ∗(0) + N) − lnN , (x∗(t), y∗(t))T is periodic and is of the minimal period
ω. Also since x∗2 is the stable fixed point, the periodic solution (x∗(t), y∗(t))T is at-
tractive, i.e., every solution of (2.2) with initial value Φ = (ϕ,ψ)T ∈ X+,+

⋃
X+,−

approaches (x∗(t), y∗(t))T as t→∞. By Lemma 2.4, every solution of (2.2) with ini-
tial value Φ = (ϕ,ψ)T ∈ X−,−⋃

X−,+ approaches the solution (−x∗(t),−y∗(t))T

as t→∞. Thus, we complete the proof of Theorem 1.6. �

4. Conclusions

The model equation (1.1) with the McCulloch-Pitts nonlinearity (1.2) describes
a combination of analog and digital signal processing in a network of two neurons
with delayed feedback. For the sake of convenience, we can transform system (1.1)–
(1.2) to the form (1.4)–(1.5) by the appropriate change of variables (1.3). Observe
that the dynamics of the network completely depends on the connection weights,
we distinguish several cases and discuss the behaviors of solutions of (1.4). We show
that the dynamics of the model (1.4) can be understood in terms of the iterations of
a one-dimensional map. As a result, we obtain the convergence of solutions as well
as the existence, multiplicity and attractivity of periodic solutions. Throughout
the paper, we only consider the case where the initial value Φ = (ϕ,ψ)T ∈ X does
not change sign at the initial time interval. Moreover, the digital nature of the
sigmoid function allows us to relate equation (1.4) to four systems of simple linear
nonhomogeneous ordinary differential equations. In future work, we shall describe
the dynamics of solutions of (1.1)–(1.2) with initial data in X \X0 (i.e., solutions
whose initial states oscillate around 0 with high frequencies).
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