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STRONGLY INDEFINITE FUNCTIONALS WITH PERTURBED
SYMMETRIES AND MULTIPLE SOLUTIONS OF

NONSYMMETRIC ELLIPTIC SYSTEMS

MÓNICA CLAPP, YANHENG DING, SERGIO HERNÁNDEZ-LINARES

Abstract. We prove a critical-point result which provides conditions for the
existence of infinitely many critical points of a strongly indefinite functional
with perturbed symmetries. Then we apply this result to obtain infinitely
many solutions of non-symmetric super-quadratic noncooperative elliptic sys-
tems, allowing some supercritical growth.

1. Introduction

Consider the noncooperative elliptic system

−∆u = |u|p−2u+ fu(x, u, v) in Ω

∆v = |v|q−2v + fv(x, u, v) in Ω
u = 0, v = 0 on ∂Ω ,

(1.1)

where Ω ⊂ RN is a bounded smooth domain, N ≥ 3, p ∈ (2, 2∗), q ∈ [2,∞), and
f ∈ C1(Ω × R2,R) is a lower order term, which is not necessarily symmetric in
(u, v). As usual, 2∗ := 2N

N−2 denotes the critical Sobolev exponent.
In the previous decades there has been a great amount of activity in the study of

elliptic systems. Elliptic systems leading to strongly indefinite functionals have been
studied, for example, in [4, 5, 6, 11, 12, 15, 16, 17, 18]. However, only subcritical
systems have been considered in these papers, and the multiplicity results therein
require some symmetry assumption on f . Recently De Figueiredo and Ding [14]
considered the case q ≥ 2∗. Under appropriate growth conditions, they established
the existence of infinitely many solutions of (℘) for functions f which are even
in (u, v). Here we will show that one can do without the symmetry assumption.
Namely, we prove the following.
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Theorem 1.1. If p ∈ (2, 2N−2
N−2 ), q ∈ [p,∞), and f ∈ C1(Ω× R2,R) satisfies

|fu(x, u, v)| ≤ c(|u|γp−1 + |v|σ−1 + 1)

|fv(x, u, v)| ≤ c(|u|γp−1 + |v|γq−1 + 1)

for all (x, u, v) ∈ Ω × R2, and some c > 0, 0 ≤ σ − 1 ≤ q
p (γp − 1), and 1

p ≤ γ <

min{( 1
p −

1
2∗ )N, q

q−1 ( 2∗−1
2∗ )}, then (1.1) has infinitely many solutions.

This result is a special case of a stronger result (Theorem 3.1) which is obtained
as an application of an abstract critical point theorem for strongly indefinite func-
tionals with perturbed symmetries which we state and prove in section 2.

Variational methods for establishing existence of infinitely many solutions of an
elliptic equation with perturbed symmetries were first introduced by Bahri and
Berestycki [1], Struwe [26] and Rabinowitz [22] in the early eighties, further devel-
oped by Bahri and Lions [3] and Tanaka [27] and, more recently, by Bolle, Ghous-
soub and Tehrani [7, 8], among others.

On the other hand, various methods for dealing with symmetric strongly indef-
inite functionals are now well known. The first one is due to Rabinowitz [21] who
reduced the indefinite problem to a finite-dimensional one. Another useful approach
is due to Benci and Rabinowitz [6] who showed that the original methods of critical
point theory still work if one restricts the class of deformations appropriately. A
different approach, based on a Galerkin type approximation, was given by Bartsch
and Clapp in [4].

The abstract result we present here is also based on a Galerkin type approxi-
mation which reduces the study of strongly indefinite functionals with perturbed
symmetries to a semidefinite situation, thus allowing the use of Morse theory meth-
ods as in [3] and [27]. However, unlike the symmetric case or the semidefinite case,
the strongly indefinite perturbed case requires fine knowledge on the topology of
the sublevel sets of the approximations of the associated symmetric functional (see
Remark (e) at the end of section 2). The key step in the proof of Theorem 1.1 con-
sists in a careful study of such sublevel sets. Our description will yield, in addition,
estimates for the energy of the solutions of the system (℘), similar to those given by
Bahri and Lions [3] in the symmetric single equation case, and recently extended
by Castro and Clapp [9] to the perturbed single equation case (see Theorem 3.1).

This paper is organized as follows. In section 2 we state and prove an abstract
critical point result for strongly indefinite functionals with perturbed symmetries,
and in section 3 we apply this result to prove Theorem 1.1.

2. Strongly indefinite functionals with perturbed symmetries

Let X be a Banach space with a direct sum decomposition X = X+⊕X∗⊕X−.
According to this decomposition, a point in X will be denoted u = (u+, u∗, u−).
Let

X+
1 ⊂ X+

2 ⊂ · · · ⊂ X+, X∗
1 ⊂ X∗

2 ⊂ · · · ⊂ X∗, X−
1 ⊂ X−

2 ⊂ · · · ⊂ X−

be sequences of finite dimensional linear subspaces of X+, X∗ and X− such that
dimX+

k = k. For k, n ≥ 1 we write

Xn := X+ ⊕X∗
n ⊕X−

n and Xn
k := X+

k ⊕X∗
n ⊕X−

n .
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Let ι : X → X be the involution

ι(u+, u∗, u−) = (−u+, u∗,−u−).

Then X∗ = {u ∈ X : ιu = u} is the fixed point set of ι. We say that a subspace V
of X is ι-invariant if ιu ∈ V for every u ∈ V , and we say that a map σ : V → W
between two ι-invariant subspaces is ι-equivariant if σ(ιu) = ι(σ(u)) for every u ∈
V .

Let Φ : X × [0, 1] → R be a C1-functional, and let Φn : Xn × [0, 1] → R be its
restriction to Xn × [0, 1]. We think of Φ and Φn as being paths of functionals

Φt : X → R, Φt(u) = Φ(u, t), 0 ≤ t ≤ 1,

Φn
t : Xn → R, Φn

t (u) = Φn(u, t), 0 ≤ t ≤ 1, n ≥ 1,

and write

Φ′t(u) :=
∂

∂u
Φ(u, t), (Φn

t )′(u) :=
∂

∂u
Φn(u, t).

for their derivatives with respect to u. We assume that Φ satisfies the following
assumptions.

(H1) Every sequence (uk, tk) in X × [0, 1] with uk ∈ Xnk , nk → ∞, tk → t,
Φtk

(uk) → c, ‖(Φnk
tk

)′(uk)‖ → 0, has a subsequence converging in X to a
critical point of Φt.

(H2) For every n ∈ N large enough and b ∈ R there is a constant C = C(n, b)
such that∣∣ ∂
∂t

Φ(u, t)
∣∣ ≤ C(‖(Φn

t )′(u)‖+ 1)(‖u‖+ 1) if u ∈ Xn, |(Φn
t )(u)| ≤ b.

(H3) There exist two continuous functions θ1, θ2 : [0, 1]×R→ R, θ1 ≤ θ2, which
are Lipschitz continuous in the second variable and such that

θ1(t,Φt(u)) ≤
∂

∂t
Φ(u, t) ≤ θ2(t,Φt(u)) if Φ′t(u) = 0.

(H4) For every finite dimensional subspace W of X and a ∈ R there exists an
R > 0 such that Φt(w) ≤ a for every t ∈ [0, 1], w ∈W with ‖w‖ ≥ R.

(H5) Φ0(ιu) = Φ0(u) for every u ∈ X, and there exists an M ≥ 0 such that
Φt(u∗) ≤M for every t ∈ [0, 1], u∗ ∈ X∗.

(H6) sup{Φ0(u) : u ∈ X+
k ⊕X∗ ⊕X−} =: Mk <∞ for every k ≥ 1.

(H7) For each k ≥ 1 there exist nk ≥ 1 and a nondecreasing function `k : R→ R
with the following property: Given n ≥ nk, an ι-equivariant map σ ∈
C0(Xn

k , X
n) and an R > 0 such that σ(u) = u if ‖u‖ > R, there exist an

ι-equivariant map σ̃ ∈ C0(Xn
k+1, X

n) and an R̃ > R such that σ̃(u) = σ(u)
if u ∈ Xn

k , σ̃(u) = u if ‖u‖ > R̃, and

supΦ0(σ̃(Xn
k+1)) ≤ `k(supΦ0(σ(Xn

k ))).

We shall prove the following statement.

Theorem 2.1. Assume that Φ satisfies (H1)-(H7). Then there exists a sequence
(ck) of real numbers such that, if the sequence( ck+1 − ck

max0≤t≤1 |θ1(t, ck+1)|+ max0≤t≤1 |θ2(t, ck)|+ 1

)
(2.1)

is unbounded, then Φ1 has an unbounded sequence of critical values.
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The numbers ck are defined as follows (see (2.2) below): For each n ∈ N, let

cnk := inf
σ∈Γn

k

sup
u∈Xn

k

Φ0(σ(u))

where Γn
k is the set of maps σ ∈ C0(Xn

k , X
n) with the following three properties:

(i) σ is ι-equivariant, that is, σ(ι(u)) = ι(σ(u)) for each u ∈ Xn
k ,

(ii) There exists R > 0 such that σ(u) = u if ‖u‖ > R.
(iii) σ(u) = u for each u ∈ X∗

n.

These values have the following linking property for Φ0.

Lemma 2.2. Let e ∈ X+
k+1 \X

+
k and let

ϑ : {v + se ∈ Xn
k+1 : v ∈ Xn

k , s ∈ [0,∞)} → Xn

be a continuous map with the following properties:

(i) ϑ | Xn
k is ι-equivariant.

(ii) There exists R > 0 such that ϑ(u) = u if ‖u‖ > R.
(iii) ϑ(v) = v for all v ∈ X∗

n.

Then there exists (v0, s0) ∈ Xn
k × [0,∞) such that

Φ0(ϑ(v0 + s0e)) ≥ cnk+1.

Proof. We extend ϑ to a map ϑ̃ : Xn
k+1 → Xn as follows:

ϑ̃(v + se) := ιϑ(ιv − se) if (v, s) ∈ Xn
k × (−∞, 0].

Since dimXn
k+1 = dimXn

k + 1 and since ϑ | Xn
k is ι-equivariant, ϑ̃ is well defined.

By definition, ϑ̃ ∈ Γn
k+1. Hence there exists u0 ∈ Xn

k+1 with Φ0(ϑ̃(u0)) ≥ cnk+1. But
Φ0 ◦ ι = Φ0 by assumption (H5). Therefore ιu0 also satisfies Φ0(ϑ̃(ιu0)) ≥ cnk+1.
So, without loss of generality, u0 = v0 + s0e with (v0, s0) ∈ Xn

k × [0,∞). �

Since the inclusion Xn
k ↪→ Xn belongs to Γn

k , assumption (H6) guarantees that

cnk ≤ sup
u∈Xn

k

Φ0(u) ≤Mk <∞ for all k, n ≥ 1.

The numbers ck in Theorem 2.1 are defined as follows:

ck :=lim sup
n→∞

cnk . (2.2)

Note that ck ≤ ck+1 for all k ≥ 1.
We shall assume without loss of generality that cnk → ck as n → ∞. We also

assume from now on that (H1)-(H7) hold and that the sequence (2.1) is unbounded.
We wish to show that the linking property of Φ0 is preserved by the flow of the path
of functionals Φt in a suitable sense. We start with the following easy observation.

Lemma 2.3. For every b, δ > 0 there exist n0 ∈ N and ρ > 0 such that

θ1(t,Φt(u))− δ <
∂

∂t
Φ(u, t) < θ2(t,Φt(u)) + δ

for every (u, t) ∈ Xn × [0, 1], with n ≥ n0, |Φt(u)| < b and ‖(Φn
t )′(u)‖ < ρ.
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The statement of the above lemma is an immediate consequence of (H1) and
(H3).

Fix δ > 0. For θ1 and θ2 as in (H3) we consider the flows ζ1, ζ2 : [0, 1]× R→ R
defined by

ζ1(0, s) = s

∂

∂t
ζ1(t, s) = θ1(t, ζ1(t, s))− δ

and

ζ2(0, s) = s

∂

∂t
ζ2(t, s) = θ2(t, ζ2(t, s)) + δ .

Following Bolle [7] we prove the following deformation lemma for the path of func-
tionals Φt.

Lemma 2.4. For every pair of real numbers d1 ≤ d2 there exist n0 ∈ N and, for
each n ≥ n0 and each ν = 1, 2, there exists a homotopy ηn

ν : Xn × [0, 1] → Xn with
the following properties:

(i) ηn
ν (u, 0) = u for all u ∈ Xn.

(ii) ηn
ν (u, t) = u if either Φt(u) ≤min0≤t≤1 ζν(t, d1)− 1 or

Φt(u) ≥max0≤t≤1 ζν(t, d2) + 1.
(iii) ηn

ν (·, t) : Xn → Xn is a homeomorphism for every t ∈ [0, 1].
(iv) If c ∈ [d1, d2] and Φ0(u) ≥ c, then Φt(ηn

1 (u, t)) ≥ ζ1(t, c) for all t ∈ [0, 1].
(v) If c ∈ [d1, d2] and Φ0(u) ≤ c, then Φt(ηn

2 (u, t)) ≤ ζ2(t, c) for all t ∈ [0, 1].

Proof. We extend Bolle’s argument [7] to Banach spaces and C1-functionals as
follows. Let Mn = {(u, t) ∈ Xn × [0, 1] : (Φn

t )′(u) 6= 0} and let Wn : Mn → Xn be
a pseudogradient vector field for the map (u, t) 7→ (Φn

t )′(u), that is, Wn is locally
Lipschitz continuous and satisfies

‖Wn(u, t)‖ ≤ 2‖(Φn
t )′(u)‖ and 〈(Φn

t )′(u),Wn(u, t)〉 ≥ ‖(Φn
t )′(u)‖2 (2.3)

for every (u, t) ∈ Mn [28, Lemma 2.2]. Set αν = min{ζν(t, d1) : 0 ≤ t ≤ 1} and
βν = max{ζν(t, d2) : 0 ≤ t ≤ 1}. For b = max{|αν |, |βν | : ν = 1, 2} and δ as above
we choose n0 ∈ N and ρ > 0 as in Lemma 2.3. Let λν , µ ∈ C∞(R, [0, 1]) be such
that λν ≡ 0 on (−∞, αν − 1

2 ] ∪ [βν + 1
2 ,∞) and λν ≡ 1 on [αν , βν ], and µ ≡ 0 on

[−ρ
2 ,

ρ
2 ] and µ ≡ 1 on (−∞,−ρ] ∪ [ρ,∞).

Fix n ≥ n0 and consider the vector fields V n
ν : Xn × [0, 1] → Xn given by

V n
1 (u, t)

= 4
(
(
∂

∂t
Φ)−(u, t) + 1 + θ+1 (t, ζ1(t, c))

)
λ1(Φt(u))µ(‖Wn(u, t)‖) Wn(u, t)

‖Wn(u, t)‖2
,

V n
2 (u, t)

= −4
(
(
∂

∂t
Φ)+(u, t) + 1 + θ−2 (t, ζ2(t, c))

)
λ2(Φt(u))µ(‖Wn(u, t)‖) Wn(u, t)

‖Wn(u, t)‖2
,

where h± := max{±h, 0} ≥ 0. Note that V n
ν (u, t) = 0 if Φt(u) /∈ [αν − 1

2 , βν + 1
2 ] or

‖Wn(u, t)‖ ≤ ρ
2 . On the other hand, if Φt(u) ∈ [αν− 1

2 , βν + 1
2 ] and ‖Wn(u, t)‖ ≥ ρ

2



6 M. CLAPP, Y. DING, S. HERNÁNDEZ-L. EJDE-2004/100

then, conditions (H2) and (2.3) imply that

‖V n
ν (u, t)‖ ≤

4(|( ∂
∂tΦ)(u, t)|+ 1 + |θν(t, ζν(t, c))|)

‖Wn(u, t)‖

≤ C̃(‖(Φn
t )′(u)‖+ 1)(‖u‖+ 1)
‖Wn(u, t)‖

≤ Ĉ(‖u‖+ 1)

for some positive constants C̃ and Ĉ. This, and the fact that V n
ν is locally Lipschitz

continuous, imply the existence of a global flow ηn
ν : Xn× [0, 1] → Xn for V n

ν given
by

ηn
ν (u, 0) = u

∂

∂t
ηn

ν (u, t) = V n
ν (ηn

ν (u, t), t)

Properties (i)-(iii) are immediate. We prove (iv): Let u ∈ Xn satisfy Φ0(u) ≥ c for
some c ∈ [d1, d2]. Set f(t) := Φt(ηn

1 (u, t)). Since f(0) = Φ0(u) ≥ c = ζ1(0, c) it
suffices to show that

f(t) = ζ1(t, c) =⇒ f ′(t) >
∂

∂t
ζ1(t, c) = θ1(t, ζ1(t, c))− δ. (2.4)

So let us assume f(t) = ζ1(t, c). Then λ1(f(t)) = 1. Hence, setting

ϕ(t) := (
∂

∂t
Φ)−(ηn

1 (u, t), t) + 1 + θ+1 (t, ζ1(t, c)),

we obtain

f ′(t) = 〈(Φn
t )′(ηn

1 (u, t)), V n
1 (ηn

1 (u, t), t)〉+
∂

∂t
Φ(ηn

1 (u, t), t)

= 4ϕ(t)µ(‖Wn(ηn
1 (u, t), t)‖) 〈(Φ

n
t )′(ηn

1 (u, t)),Wn(ηn
1 (u, t), t)〉

‖Wn(ηn
1 (u, t), t)‖2

+
∂

∂t
Φ(ηn

1 (u, t), t)

≥ ϕ(t)µ(‖Wn(ηn
1 (u, t), t)‖) +

∂

∂t
Φ(ηn

1 (u, t), t)

If ‖Wn(ηn
1 (u, t), t)‖ < ρ then ‖(Φn

t )′(ηn
1 (u, t))‖ < ρ and, by Lemma 2.3,

f ′(t) ≥ ∂

∂t
Φ(ηn

1 (u, t), t) > θ1(t, ζ1(t, c))− δ.

If ‖Wn(ηn
1 (u, t), t)‖ ≥ ρ then µ(‖Wn(ηn

1 (u, t), t)‖) = 1, hence,

f ′(t) ≥ ϕ(t) +
∂

∂t
Φ(ηn

1 (u, t), t) ≥ θ1(t, ζ1(t, c)) > θ1(t, ζ1(t, c))− δ.

This proves (2.4). Therefore, ηn
1 satisfies (iv). Similarly, ηn

2 satisfies (v). �

Given a subset A of Xn we define

Γn
k (A) :=

{
τ ∈ C0(Xn, Xn) : τ(u) = u if either u ∈ A,
or u ∈ Xn

k+1 and ‖u‖ is large}.

Let M ≥ 0 be as in (H5), and let nk ≥ 1 and `k : R → R be as in (H7). We now
prove a linking property for Φ1.
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Lemma 2.5. For every k ∈ N such that

M + 1 ≤ ζ2(t, ck) < ζ1(t, ck+1) for all t ∈ [0, 1],

there exist εk > 0, mk ≥ nk and, for each n ≥ mk, two subsets An
k ⊂ Bn

k of Xn

with the following properties:
(a) supΦ1(An

k ) ≤ ζ2(1, ck + εk) < ζ1(1, ck+1 − εk).
(b) supΦ1(Bn

k ) ≤ ζ2(1, `k(ck + εk)).
(c) infτ∈Γn

k (An
k ) supΦ1(τ(Bn

k )) ≥ ζ1(1, ck+1 − εk).

Proof. Fix 0 < εk < 1 such that

ζ2(t, ck + εk) < ζ1(t, ck+1 − εk) for all t ∈ [0, 1]. (2.5)

Let mk ≥ nk be such that, for each n ≥ mk,

cnk < ck + εk and cnk+1 > ck+1 − εk,

and there exist homotopies ηn
ν : Xn × [0, 1] → Xn which satisfy (i)-(v) of Lemma

2.4 for d1 = d2 = ck+1− εk if ν = 1, and for d1 = ck + εk, d2 = `k(ck + εk) if ν = 2.
In particular,

Φt(ηn
1 (u, t)) ≥ ζ1(t, ck+1 − εk) if Φ0(u) ≥ ck+1 − εk (2.6)

Φt(ηn
2 (u, t)) ≤ ζ2(t, c) if Φ0(u) ≤ c and ck + εk ≤ c ≤ `k(ck + εk) (2.7)

for all t ∈ [0, 1]. Fix n ≥ mk and choose σ ∈ Γn
k such that

supΦ0(σ(Xn
k )) ≤ ck + εk.

By assumption (H7), σ has an extension σ̃ ∈ Γn
k+1 such that

supΦ0(σ̃(Xn
k+1)) ≤ `k(ck + εk).

Inequalities (2.5), (2.6) and (2.7) imply that

(ηn
2 )t(σ(Xn

k )) ∩ (ηn
1 )t(Φn

0 )>ck+1−εk = ∅ for all t ∈ [0, 1], (2.8)

where (Φn
0 )>ck+1−εk := {u ∈ Xn : Φ0(u) > ck+1 − εk}. Choose e ∈ X+

k+1 \X
+
k and

define

An
k := {(ηn

2 )1(σ(u)) : u ∈ Xn
k }

Bn
k := {(ηn

2 )1(σ̃(u+ te)) : u ∈ Xn
k , t ≥ 0}.

It follows from (2.7) that

supΦ1(An
k ) ≤ ζ2(1, ck + εk) and sup Φ1(Bn

k ) ≤ ζ2(1, `k(ck + εk)).

Thus (a) and (b) hold. Let us prove (c). For every τ ∈ Γn
k (An

k ), the function
ϑ : {u+ te : u ∈ Xn

k , t ∈ [0,∞)} → Xn, defined by

ϑ(u+ te) =

{
(ηn

1 )−1
2t ◦ (ηn

2 )2t ◦ σ(u) if 0 ≤ t ≤ 1/2
(ηn

1 )−1
1 ◦ τ ◦ (ηn

2 )1 ◦ σ̃(u+ (2t− 1)e) if 1/2 ≤ t ≤ 1

satisfies the hypotheses of Lemma 2.2. Hence there exists (u0, t0) ∈ Xn
k × [0,∞)

with
Φ0(ϑ(u0 + t0e)) ≥ cnk+1 > ck+1 − εk. (2.9)

If t0 ≤ 1/2 then (ηn
1 )2t0(ϑ(u0 + t0e)) = (ηn

2 )2t0(σ(u0)), contradicting (2.8). There-
fore, t0 > 1/2 and (ηn

1 )1(ϑ(u0 + t0e)) = τ [(ηn
2 )1(σ̃(u0 + (2t0 − 1)e)]. Inequalities

(2.6) y (2.9) yield

Φ1(τ [(ηn
2 )1(σ̃(u0 + (2t0 − 1)e)]) = Φ1((ηn

1 )1(ϑ(u0 + t0e))) ≥ ζ1(1, ck+1 − εk)
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and, since (ηn
2 )1(σ̃(u0 + (2t0 − 1)e) ∈ Bn

k , it follows that

supΦ1(τ(Bn
k )) ≥ ζ1(1, ck+1 − εk).

This proves (c). �

We now show that, if the sequence (2.1) is unbounded, the hypothesis of Lemma
2.5 holds for infinitely many k’s.

Lemma 2.6. If the sequence (2.1) is unbounded, then the sequences(
min

0≤t≤1
(ζ1(t, ck+1)− ζ2(t, ck))

)
and

(
min

0≤t≤1
ζ2(t, ck)

)
are unbounded above.

Proof. The flows ζν satisfy |s− ζν(t, s)| ≤ a(max{|θν(t, s)| : t ∈ [0, 1]}+ δ) for some
constant a > 0 (cf. for example [25]). Therefore,

0 ≤ ck+1− ck ≤ ζ1(t, ck+1)− ζ2(t, ck)+ a( max
0≤t≤1

|θ1(t, ck+1)|+ max
0≤t≤1

|θ2(t, ck)|+2δ).

Since the sequence (2.1) is unbounded, our claim follows. �

Proof of Theorem 2.1. By Lemma 2.6, passing to a subsequence if necessary, we
may assume that

M + 1 < ζ2(t, ck) < ζ1(t, ck+1) for all t ∈ [0, 1], k ≥ 1.

Let An
k ⊂ Bn

k ⊂ Xn, n ≥ mk, be as in Proposition 2.5, and let

c̃nk := inf
τ∈Γn

k (An
k )

sup
u∈Bn

k

Φ1(τ(u))

Then

ζ2(1, ck) < ζ1(1, ck+1) ≤ c̃nk ≤ ζ2(1, `k(ck + 1)) for all n ≥ mk. (2.10)

Define
c̃k := lim sup

n→∞
c̃nk .

It follows from assumption (H1) and Proposition 2.6 (b) in [4] that c̃k is a critical
value of Φ1 : X → X. Since c̃k ≥ ζ2(1, ck), Lemma 2.6 implies that the sequence
(c̃k) is unbounded. �

We conclude this section with some remarks.

Remarks. (a) If dim(X∗ ⊕ X−) < ∞ then assumptions (H6) and (H7) follow
easily from assumption (H4).
(b) If X∗ = {0}, assumptions (H2)-(H5) are the same as those of Theorem 2.2
in [8], and our assumption (H1) is stronger than the one given there. But, if
dim(X−) = ∞, the minimax levels ck as defined by Bolle, Ghoussoub and Tehrani
in [8] will all be zero. So their result does not yield critical values in the strongly
indefinite situation.
(c) Our definition of ck allows us to take advantage of the topology of the sublevel
sets of the semidefinite approximations Φn

0 of Φ0 and, in particular, to apply Morse
theory methods (as was done by Bahri-Lions [3] and Tanaka [27]) to estimate the
growth of the ck’s and derive conditions for the unboundedness of ( 2.1), see Lemma
3.9 below.
(d) Assumption (H1) is the obvious extension to paths of functionals of the (PS)∗-
condition introduced by Bahri and Berestycki [2] and Li and Liu [19]. It yields
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critical values c̃k of Φ1 provided that the minimax values c̃nk of its approximations
Φn

1 are uniformly bounded. This is where (H7) comes into play.
(e) Assumption (H7) requires some knowledge on the topology of the sublevel sets
of the approximations of Φ0. Note that every ι-equivariant map σ ∈ C0(Xn

k , X
n)

such that σ(u) = u for ‖u‖ large enough, has an ι -equivariant extension σ̃ ∈
C0(Xn

k+1, X
n) such that σ̃(u) = u for ‖u‖ sufficiently large. The key point in

assumption (H7) is that

supΦ0(σ̃(Xn
k+1)) ≤ `k(supΦ0(σ(Xn

k )))

for some function `k which does not depend on n. In fact, in our application the
function `k will be linear and will be also independent of k, see Proposition 3.8
below.
(f) It follows from (2.10) that the critical values c̃k of the perturbed functional Φ1

satisfy
ζ2(1, ck) < ζ1(1, ck+1) ≤ c̃k ≤ ζ2(1, `k(ck + 1)).

This inequality will be used to obtain estimates on the energy of the solutions of
problem (℘), see Theorem 3.1.

3. Strongly indefinite elliptic systems

We apply Theorem 2.1 to obtain infinitely many solutions of the elliptic system
(1.1). The variational setting is as follows: Let 0 < λ1 ≤ · · · ≤ λj ≤ . . . be
the Dirichlet eigenvalues of −∆ on H1

0 (Ω) counted with their multiplicity, and let
ej ∈ H1

0 (Ω) be the eigenfunction which corresponds to λj with |ej |2 = 1. Consider
the Banach space H1

0 (Ω)∩Lq(Ω) equipped with the norm ‖v‖(q) := (|∇v|22+|v|2q)1/2,
where | · |r denotes the usual norm in Lr. Let V q(Ω) be the closure of span{en :
n ≥ 1} in H1

0 (Ω)∩Lq(Ω) with respect to the ‖v‖(q)-norm. Then V q(Ω) is a Banach
space. Since the eigenfunctions satisfy |en|2∞ ≤ Cλ

N/2
n for some positive constant

C [10, Chap. IV, Theorem 8], integrating by parts one can easily show that the
Fourier coefficients of a function ϕ ∈ C2m

0 (Ω) decrease as λ−m
n . It follows that

C∞0 (Ω) ⊂ V q(Ω).
Let X be the direct sum

X := H1
0 (Ω)⊕ V q(Ω)

We denote the elements of X by z = (u, v), and their norm by

‖z‖q := (|∇u|22 + ‖v‖2(q))
1/2 = (|∇u|22 + |∇v|22 + |v|2q)1/2.

Set

X+
k := span{e1, ..., ek} ⊂ H1

0 (Ω) =: X+,

X−
n := span{e1, ..., en} ⊂ V q(Ω) =: X−,

and X∗ := {0}. The orthogonal projection H1
0 (Ω) → span{e1, . . . , en} ⊂ H1

0 (Ω)
restricts to a continuous operator

Pn : V q(Ω) → X−
n

which satisfies Pnv → v in V q(Ω) as n → ∞ for every v ∈ V q(Ω) because, by
definition, ∪n≥1X

−
n is dense in X−.
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Set

H(x, z, t) :=
1
p
|u|p +

1
q
|v|q + tf(x, z), x ∈ Ω, z = (u, v) ∈ R2,

Φ(z, t) :=
1
2

∫
Ω

(
|∇u|2 − |∇v|2

)
dx−

∫
Ω

H(x, z, t)dx.

Theorem 1.1 is a special case of the following result.

Theorem 3.1. Let p ∈ (2, 2∗), q ∈ (2,∞), and f ∈ C1(Ω × R2,R). If there exist
d > 0, γ ∈ [0, 1), γ < min{( 1

p −
1
2∗ )N, q

q−1 ( 2∗−1
2∗ )} such that

|f(x, z)|+ |fz(x, z)z| ≤ d(|u|γp + |v|γq + 1),

|fz(x, z)| ≤ d(|u|γ(p−1) + |v|γ(q−1) + 1)

for all x ∈ Ω, z = (u, v) ∈ R2, then problem (1.1) has a sequence of solutions
zk = (uk, vk) which satisfy

C1k
ν ≤ Φ1(zk) ≤ C2k

ν ,

with ν := 2p
N(p−2) , C1, C2 > 0.

The assumptions of Theorem 3.1 guarantee that the functional Φ is well defined
and of class C1. The critical points of Φ1 := Φ(·, 1) are weak solutions of (1.1). As
in section 2 we set

Xn := X+ ⊕X−
n , Xn

k := X+
k ⊕X−

n ,

and write Φn
t : Xn → R for the functional Φn

t (z) = Φ(z, t), z ∈ Xn. We now show
that Φ satisfies assumptions (H1)-(H7) of Theorem 2.1. In order to prove (H1) we
need the following lemma.

Lemma 3.2. Let zk ∈ Xnk , tk ∈ [0, 1] be such that nk → ∞, Φtk
(zk) → c and

(Φnk
tk

)′(zk) → 0 as k →∞. Then (zk) is bounded in X.

Proof. Our assumptions on f yield
1
2
Hz(x, z, t)z −H(x, z, t) ≥ a1 (|u|p + |v|q)− a2. (3.1)

Therefore, for k large enough,

|uk|pp + |vk|qq ≤ a3(Φtk
(zk)− 1

2
(Φnk

tk
)′(zk)zk + 1) ≤ a4(1 + ‖zk‖q). (3.2)

By assumption, η = q/(q − γ(q − 1)) < 2∗. So, using Hölder’s inequality, Sobolev’s
embedding theorem and inequality (3.2), we obtain∫

Ω

|vk|γ(q−1)|uk| ≤ |vk|γ(q−1)
q |uk|η ≤ a5(1 + ‖zk‖1+[γ(q−1)/q]

q ). (3.3)

Our assumptions on f and γ, together with (3.2) and (3.3), imply∫
Ω

Hu(x, zk, tk)uk = |uk|pp + tk

∫
Ω

fu(x, zk)uk

≤ |uk|pp + d

∫
Ω

(|uk|γ(p−1) + |vk|γ(q−1) + 1)|uk|

≤ a6(1 + ‖zk‖σ
q )
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with 1 < σ < 2. They also imply

−
∫

Ω

Hv(x, zk, tk)vk

=
∫

Ω

Hu(x, zk, tk)uk −
∫

Ω

Hz(x, zk, tk)zk

≤ a6(1 + ‖zk‖σ
q )−

∫
Ω

(|uk|p + |vk|q) + d

∫
Ω

(|uk|γp + |vk|γq + 1)

≤ a6(1 + ‖zk‖σ
q )− c2(|uk|pp + |vk|qq) + c3

≤ a7(1 + ‖zk‖σ
q ).

We conclude that, for k large enough,

|∇uk|22 = (Φnk
tk

)′(zk)(uk, 0) +
∫

Ω

Hu(x, zk, tk)uk ≤ a7(1 + ‖zk‖σ
q ), (3.4)

|∇vk|22 = −(Φnk
tk

)′(zk)(0, vk)−
∫

Ω

Hv(x, zk, tk)vk ≤ a7(1 + ‖zk‖σ
q ). (3.5)

Inequalities (3.2), (3.4) and (3.5) yield

‖zk‖2q ≤ a8(1 + ‖zk‖σ
q )

with σ < 2. Therefore (zk) must be bounded in X. �

Proposition 3.3. The function Φ satisfies (H1).

Proof. Let zk ∈ Xnk , tk ∈ [0, 1] be such that nk → ∞, tk → t, Φtk
(zk) → c and

(Φnk
tk

)′(zk) → 0 as k →∞. Write zk = (uk, vk). Since (zk) is bounded in X, uk ⇀ u

weakly in H1
0 (Ω) and vk ⇀ v weakly in H1

0 (Ω) ∩ Lq(Ω). Hence uk → u strongly
in Ls(Ω) for every s ∈ [1, 2∗) and, by interpolation, vk → v strongly in Ls(Ω) for
every s ∈ [1,max{2∗, q}). Our assumptions and Hölder’s inequality yield∣∣ ∫

Ω

Hu(x, zk, tk)(uk − u)
∣∣ ≤ a1

(
|uk|p−1

p |uk − u|p + |vk|γ(q−1)
q |uk − u|η + |uk − u|1

)
,

with η = q/(q − γ(q − 1)) < 2∗. Hence,∫
Ω

∇uk∇(uk − u) = (Φnk
tk

)′(zk)(uk − u, 0) +
∫

Ω

Hu(x, zk, tk)(uk − u) −→ 0

as k →∞; therefore, uk → u strongly in H1
0 (Ω).

The projection Pn : V q(Ω) → V q(Ω)n satisfies Pnv → v in V q(Ω) as n→∞ for
every v ∈ V q(Ω). Thus, (vk−Pnk

v) → 0 in Ls(Ω) for every s ∈ [1,max{2∗, q}). As
above we have∣∣ ∫

Ω

tkfv(x, zk)(vk − Pnk
v)|

≤ a1

(
|uk|p−1

p |vk − Pnk
v|p + |vk|γ(q−1)

q |vk − Pnk
v|η + |vk − Pnk

v|1
)
,

with η = q/(q − γ(q − 1)) < 2∗. Hence,∫
Ω

tkfv(x, zk)(vk − Pnk
v) → 0 as k →∞.
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Therefore,

|∇vk|22 − |∇v|22 + o(1) =
∫

Ω

∇vk∇(vk − Pnk
v)

= −(Φnk
tk

)′(zk)(0, vk − Pnk
v)−

∫
Ω

Hv(x, zk, tk)(vk − Pnk
v)

= o(1)−
∫

Ω

|vk|q−2vk(vk − Pnk
v)

= o(1) +
∫

Ω

|vk|q−2vk(v − vk)

≤ o(1) + |v|qq − |vk|qq,
where o(1) → 0 as k →∞. It follows that

0 ≤ lim inf |∇vk|22 − |∇v|22 ≤ lim sup |∇vk|22 − |∇v|22 ≤ |v|qq − lim inf |vk|qq ≤ 0.

Hence, up to a subsequence, vk → v strongly in V q(Ω). This proves that zk → z
strongly inX. In particular, Φ′tk

(zk)ζ → Φ′t(z)ζ for every ζ ∈ X. Hence, Φ′t(z)ζ = 0
for every ζ ∈ ∪n≥1X

n. Since ∪n≥1X
n is dense in X, z is a critical point of Φt. �

Proposition 3.4. The function Φ satisfies (H2)-(H6) with θ2(t, s) = A(s2+1)γ/2 =
−θ1(t, s), A > 0.

Proof. Our assumptions on f yield

| ∂
∂t

Φ(z, t)| ≤
∫

Ω

|f(x, z)| ≤ d1

∣∣Φt(z)−
1
2
Φ′t(z)z + 1

∣∣γ . (3.6)

If z ∈ Xn and | (Φn
t ) (z)| ≤ b, this inequality implies that

| ∂
∂t

Φ(z, t)| ≤ d2(‖ (Φn
t )′ (z)‖(Xn)′‖z‖q + 1).

This proves (H2). If Φ′t(z) = 0 then (3.6) yields

| ∂
∂t

Φ(z, t)| ≤ d1|Φt(z) + 1|γ ≤ A(Φt(z)2 + 1)γ/2.

This proves (H3) with A(Φt(z)2 + 1)γ/2 = θ2(t,Φt(z)) = −θ1(t,Φt(z)). Properties
(H4)-(H6) are also easy. �

We now show that (H7) holds with `(t) = αt + β, α, β positive constants inde-
pendent of k. We split the proof into several lemmas.The first two were proved in
[9]. We sketch their proofs for the readers convenience.

Lemma 3.5. Let Ω be a bounded smooth domain in RN . Then there exists a ∈ R
with the following properties:

(i) (x′, a) ∈ Ω for some x′ ∈ RN−1.
(ii) If (x′, b) ∈ Ω and b ≥ a, then (x′, t) ∈ Ω for all a ≤ t ≤ b.

Proof. Let eN = (0, . . . , 0, 1) ∈ RN , let M = max{x · eN : x ∈ Ω} and let K = {x ∈
Ω : x · eN = M}. Let ν : ∂Ω → RN be the outer unit normal field, and let O =
{x ∈ ∂Ω : ν(x) · eN > 0}. Then O is an open neighborhood of K in ∂Ω and, since
K is compact, there is an a < M such that the set A = {x ∈ ∂Ω : x · eN ≥ a} ⊂ O.
Thus, for every (x′, t) ∈ A there exists ε > 0 such that (x′, s) /∈ Ω if t < s < t + ε
and (x′, s) ∈ Ω if t− ε < s < t. It follows that, for every (x′, t) ∈ A,

({x′} × [a,M ]) ∩ ∂Ω = {(x′, t)} and {x′} × [a, t) ⊂ Ω
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as claimed. �

Set

I(u) :=
1
2

∫
Ω

|∇u|2 − 1
p

∫
Ω

|u|p,

J(v) :=
1
2

∫
Ω

|∇v|2 +
1
q

∫
Ω

|v|q,

I#(u) := 2
∫

Ω

|∇u|2 − 1
p

∫
Ω

|u|p.

Lemma 3.6. There is an even continuous function τ : H1
0 (Ω) → [0,∞) with the

following properties:
(i) I([(1− s) + sτ(u)]u) ≤ I(u) for every u ∈ H1

0 (Ω), 0 ≤ s ≤ 1.
(ii) If I#(u) ≤ 0 then τ(u) = 1.
(iii) If 2I(u) ≤ maxt≥0 I(tu) then I#(τ(u)u) ≤ 0.
(iv) I#(τ(u)u) ≤ max{αI(u), 0} with α := 2(3p−2)/(p−2).

Proof. Fix v ∈ H1
0 (Ω) with ‖v‖ = 1 and define 0 < t−v < t̂v < t+v < Tv < ∞ as

follows:

I(t̂vv) = max
t≥0

I(tv),

2I(tv) ≥ max
t≥0

I(tu) ⇐⇒ t ∈ [t−v , t
+
v ],

2(Tv)2 =
1
p
|v|pp(Tv)p.

For t ≥ 0 let ρ(tv) be the piecewise linear function such that ρ(tv) = 0 if 0 ≤ t ≤ t−v ,
ρ(t̂vv) = t̂v, ρ(tv) = Tv if t+v ≤ t ≤ Tv, and ρ(tv) = t if t ≥ Tv. For u = tv ∈ H1

0 (Ω)
with ‖v‖ = 1, t ≥ 0, define

τ(u) =
ρ(tv)
t

.

This function is continuous and satisfies (i), (ii), (iii), (iv). �

Lemma 3.7. There exist α, β > 0, depending only on Ω and p, with the following
property: For every map ϕ : Xn

k → Xn such that ϕ(z) = z if ‖z‖ ≥ R, there exist
a map ψ : Xn

k × [0,∞) → Xn and an R′ ≥ R which satisfy:
(i) ψ(z, 0) = ϕ(z) for every z ∈ Xn

k .
(ii) Φ0(ψ(z, s)) ≤ −1 if ‖z‖ ≥ R′ or s ≥ R′.
(iii) Φ0(ψ(z, s)) ≤ max{αΦ0(ϕ(z)) + β, 0} for every z ∈ Xn

k , s ≥ 0.

Proof. Let a be as in Lemma 3.5. We may assume without loss of generality that
a = 0. Let τ : H1

0 (Ω) → R be as in Lemma 3.6. We write x = (x′, xN ) ∈
RN−1 × R ≡ RN . For each u ∈ H1

0 (Ω) ⊂ H1(RN ) and 0 ≤ s ≤ 2, define

us(x) :=


[(1− s) + sτ(u)]u(x) if 0 ≤ s ≤ 1
τ(u)u(x′, sxN ) if xN ≥ 0, 1 ≤ s ≤ 2
τ(u)u(x′, xN ) if xN ≤ 0, 1 ≤ s ≤ 2

Then us ∈ H1
0 (Ω), and∫

Ω

|∇us|2 ≤ s

∫
Ω

|∇(τ(u)u)|2,
∫

Ω

|us|p ≥ s−1

∫
Ω

|τ(u)u|p, if 1 ≤ s ≤ 2.
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Hence, for 1 ≤ s ≤ 2,

I(us) ≤ sI(us) ≤
s2

2

∫
Ω

|∇(τ(u)u)|2 − 1
p

∫
Ω

|τ(u)u|p ≤ I#(τ(u)u). (3.7)

Let Ω2 := {(x′, 1
2xN ) : x ∈ Ω, xN ≥ 0} ∪ {x ∈ Ω : xN ≤ 0}. By Lemma 3.5,

Ω2  Ω. Thus, we may choose ω ∈ C∞c (Ω \ Ω2), ω 6= 0, with∫
Ω

|∇ω|2 =
∫

Ω

|ω|p. (3.8)

Define ψ = (ψ+, ψ−) : Xn
k × [0,∞) → Xn by

ψ+(z, s) :=

{
[ϕ+(z)]s if 0 ≤ s ≤ 2
[ϕ+(z)]2 + (s− 2)ω if 2 ≤ s

ψ−(z, s) :=

{
[(1− s) + αs]ϕ−(z) if 0 ≤ s ≤ 1
αϕ−(z) if 1 ≤ s

with α := 2(3p−2)/(p−2). Then (i) holds. Lemma 3.6, together with (3.7), yields

I(ψ+(z, s)) ≤


I(ϕ+(z)) if 0 ≤ s ≤ 1
I#(τ(ϕ+(z))ϕ+(z)) if 1 ≤ s ≤ 2
I#(τ(ϕ+(z))ϕ+(z)) + I((s− 2)ω) if 2 ≤ s .

Indeed, the first inequality follows from Lemma 3.6(i), the second one is a conse-
quence of (3.7), and the third inequality follows from the second one because ω and
u2 have disjoint supports for every u ∈ H1

0 (Ω) and, therefore,

I([ϕ+(z)]2 + (s− 2)w) = I([ϕ+(z)]2) + I((s− 2)w).

Clearly,

J(ψ−(z, s)) ≥

{
J(ϕ−(z)) if 0 ≤ s ≤ 1
αJ(ϕ−(z)) if 1 ≤ s .

Hence, Lemma 3.6 yields

Φ0(ψ(z, s)) = I(ψ+(z, s))− J(ψ−(z, s)) ≤ max{αΦ0(ϕ(z)) + β, 0}, (3.9)

with β := I(ω). Thus, (iii) holds. Finally, let R′ ≥ max{2, R} be such that

I(u) ≤ −1, τ(u) = 1, I#(u) ≤ −I(ω)− 1 if u ∈ X+
k , ‖u‖ ≥ R′,

I((s− 2)ω) ≤ −max{I#(τ(ϕ+(z))ϕ+(z)) : z ∈ Xn
k } − 1 if s ≥ R′,

J(v) ≥ max{I(ψ+(z, s)) : z ∈ Xn
k , s ≥ 0}+ 1 if v ∈ X−

n , ‖v‖ ≥ R′.

Since, for z = (u, v),

max{‖u‖, ‖v‖} ≥ R′ =⇒ ‖z‖ ≥ R =⇒ ϕ(z) = z,

the previous inequalities yield

Φ0(ψ(z, s)) ≤ I(ψ+(z, s)) ≤ −1 if z = (u, v), max{‖u‖, s} ≥ R′,

Φ0(ψ(z, s)) = I(ψ+(z, s))− J(ψ−(z, s)) ≤ −1 if z = (u, v), ‖v‖ ≥ R′.

This proves (ii). �
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Proposition 3.8. The function Φ satisfies (H7). More precisely, there exist α, β >
0, depending only on Ω and p, with the following property: For every odd map
σ : Xn

k → Xn such that σ(z) = z if ‖z‖ ≥ R, there exist an odd map σ̃ : Xn
k+1 → Xn

and an R̃ ≥ R which satisfy:
(i) σ̃(z) = σ(z) if z ∈ Xn

k .
(ii) σ̃(z) = z if ‖z‖ ≥ R̃.
(iii) Φ0(σ̃(z)) ≤ αΦ0(σ(π(z))) + β where π : Xn

k+1 → Xn
k is the orthogonal

projection.

Proof. For ϕ := σ and R, let ψ : Xn
k × [0,∞) → Xn and R′ > R be as in Lemma

3.7. Fix e ∈ X+
k+1 orthogonal to X+

k with ‖e‖ = 1, and extend σ to the half space
W = {(z, se) : z ∈ Xn

k , s ≥ 0} ⊂ Xn
k+1 by setting

σ(z, se) = ψ(z, s) if z ∈ Xn
k , s ≥ 0.

Then there exists R′′ ≥ R′ such that Φ0(w) ≤ −1 and Φ0(σ(w)) ≤ −1 for all
w ∈W with ‖w‖ ≥ R′′. The sublevel set

D := {z ∈ Xn : Φ0(z) ≤ −1}
is homotopy equivalent to the unit sphere in Xn. Therefore, it is contractible.
Hence, there exists a homotopy

Ψ : {w ∈W : ‖w‖ = R′′} × [0, 1] → D

such that Ψ(w, 0) = σ(w), Ψ(w, 1) = w, and Ψ(z, t) = z for z ∈ Xn
k , t ∈ [0, 1]. Let

R̃ := R′′ + 1 and define

σ̃(w) =


σ(w) if w ∈W, ‖w‖ ≤ R′′

‖w‖
R′′ Ψ(R′′ w

‖w‖ , ‖w‖ −R′′) if w ∈W, R′′ ≤ ‖w‖ ≤ R̃

w if w ∈W, R̃ ≤ ‖w‖
−σ̃(−w) if − w ∈W

Since σ is odd, σ̃ is well defined and it is, by definition, an odd extension of σ to
Xn

k+1 which satisfies σ̃(w) = w if ‖w‖ ≥ R̃. Note that su ∈ D if u ∈ D and s ≥ 1.
Hence Φ0(σ̃(w)) ≤ −1 if ‖w‖ ≥ R′′ and, by Lemma 3.7,

Φ0(σ̃(z, se)) = Φ0(ψ(z, |s|)) ≤ αΦ0(σ(z)) + β if ‖ (z, se) ‖ ≤ R′′,

as claimed. �

We now give some estimates for the values ck defined in (2.2). We shall use the
semiclassical inequality of Cwickel [13], Lieb [20] and Rosenbljum [24] which states
that, if V ∈ LN/2(RN ), N ≥ 3, then the number of negative or zero eigenvalues
counted with multiplicity of the Schrödinger operator−∆+V on L2(RN ) is bounded
by

C0

∫
RN

|V −|N/2

for some C0 > 0.

Lemma 3.9. There exist positive constants B1, B2 such that

B1k
ν ≤ ck ≤ B2k

ν

where ν := 2
N

p
p−2 .
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Proof. For every n, k ≥ 1 there exists zn
k ∈ Xn such that

Φn
0 (zn

k ) ≤ cnk , (Φn
0 )′(zn

k ) = 0, µ0(zn
k ) ≥ k + n,

where µ0(zn
k ) denotes the Morse index plus the nullity of zn

k [27]. Thus zn
k = (un

k , 0),
and un

k is a critical point of the restriction of Φ0 to X+ with Morse index

µ0(un
k ) ≥ k.

The semiclassical inequality of Cwickel [13], Lieb [20], and Rosenbljum [24] gives

k ≤ µ0(un
k ) ≤ C1

∫
Ω

|un
k |θ

with θ = N
2 (p− 2). Using Hölder’s inequality we obtain

B1k
ν ≤ C2

( ∫
Ω

|un
k |θ

)p/θ

≤ (p− 2)
2p

|un
k |pp = Φn

0 (zn
k ) ≤ cnk

with ν = p
θ = 2

N
p

p−2 . This yields the first inequality of this lemma. We turn to the
second one. Let

Γ+
k := {σ+ ∈ C0(X+

k , X
+) : σ+is odd, and σ+(u) = u if ‖u‖ is large enough}.

If σ+ ∈ Γ+
k and σ ∈ C0(Xn

k , X
n) is given by σ(u, v) = (σ+(u), v), then Φ0(σ(z)) ≤ 0

for ‖z‖ large enough. Arguing as in the proof of Proposition 3.8 we may assume
that σ ∈ Γn

k , and that

max
z∈Xn

k

Φ0(σ(z)) = max
u∈X+

k

Φ0(σ+(u)).

Hence, inequality (40) in [3] yield

cnk ≤ inf
σ+∈Γ+

k

max
u∈X+

k

Φ0(σ+(u)) ≤ B2k
ν .

for all n. Our claim follows. �

Proof of Theorem 3.1. We have shown that assumptions (H1)-(H7) of Theorem 2.1
hold. We now show that the sequence (2.1) is unbounded. Assume, by contradic-
tion, there exists a B > 0 such that

ck+1 − ck ≤ B(θ(ck+1) + θ(ck) + 1)

where θ(s) = −θ1(t, s) = θ2(t, s) = A(s2 + 1)γ/2. As in [23, (10.47)], this implies
the existence of a constant D > 0 such that

ck ≤ Dk1/(1−γ) for all k.

This contradicts Lemma 3.9 if γ < ( 1
p −

1
2∗ )N , as assumed. Thus, Theorem 2.1

yields a sequence of critical values (c̃k) of Φ1 which satisfy

ζ2(1, ck) < c̃k ≤ ζ2(1, α(ck + 1) + β) (3.10)

with a, β > 0 as in Proposition 3.8 (see Remark (f) at the end of section 2). For
our particular θ, we have that s ≤ ζ2(1, s) ≤ A1(s + 1). Thus, (3.10) and Lemma
3.9 yield

C1k
ν ≤ c̃k ≤ C2k

ν

with ν := 2p
N(p−2) , as claimed. �
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Proof of Theorem 1.1. Assume that f satisfies the assumptions of Theorem 1.1.
We show that it satisfies also those of Theorem 3.1, with the same γ. Since 0 ≤
σ − 1 ≤ q

p (γp− 1) and p ≤ q,

|fz(x, u, v)| ≤ d(|u|γp−1 + |v|γq−1 + 1).

Using, in addition, Young’s inequality and the fact that γ ≥ 1
p we obtain

|fz(x, z)z| ≤ d1(|u|γp + |v|γq + |u|γp−1|v|+ |u||v|σ−1 + 1)

≤ d(|u|γp + |v|γq + 1).

Moreover,

|f(x, u, v)| − |f(x, 0, 0)| ≤ |f(x, u, v)− f(x, u, 0)|+ |f(x, u, 0)− f(x, 0, 0)|

≤
∫ |v|

0

|fv(x, u, ξ)|dξ +
∫ |u|

0

|fu(x, ξ, 0)|dξ

≤ d2(|u|γp−1|v|+ |u|γp + |v|γq + 1)

≤ d(|u|γp + |v|γq + 1)

Thus, f satisfies the assumptions of Theorem 3.1. �

In particular, if f(x, u, v) = g(x)u and p < 2N−2
N−2 , Theorem 3.1 yields infinitely

many solutions of the perturbed elliptic equation

−∆u = |u|p−2u+ g(x) in Ω
u = 0 on ∂Ω,

which is Bahri and Lions’s result [3]. The upper estimates for their energy were
recently established by Castro and Clapp [9].
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