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A GENERALIZED SOLUTION TO A
CAHN-HILLIARD/ALLEN-CAHN SYSTEM

JOSÉ LUIZ BOLDRINI, PATRÍCIA NUNES DA SILVA

Abstract. We study a system consisting of a Cahn-Hilliard and several Allen-
Cahn type equations. This system was proposed by Fan, L.-Q. Chen, S. Chen
and Voorhees for modelling Ostwald ripening in two-phase system. We prove
the existence of a generalized solution whose concentration component is in
L∞.

1. Introduction

Ostwald ripening is a phenomenon observed in a wide variety of two-phase sys-
tems in which there is coarsening of one phase dispersed in the matrix of another.
Because its practical importance, this process has been extensively studied in sev-
eral degrees of generality. In particular for Ostwald ripening of anisotropic crystals,
Fan et al. [6] presented a model taking in consideration both the evolution of the
compositional field and of the crystallographic orientations. In the work of Fan et
al. [6], there are also numerical experiments used to validate the model, but there
is no rigorous mathematical analysis of the model. Our objective in this paper is
to do such mathematical analysis.

By defining orientation and composition field variables, the kinetics of coupled
grain growth can be described by their spatial and temporal evolution, which is
related with the total free energy of the system. The microstructural evolution of
Ostwald ripening can be described by the Cahn-Hilliard/Allen-Cahn system

∂tc = ∇ · [D∇(∂cF − κc∆c)], (x, t) ∈ ΩT

∂tθi = −Li(∂θiF − κi∆θi), (x, t) ∈ ΩT

∂nc = ∂n(∂cF − κc∆c) = ∂nθi = 0, (x, t) ∈ ST

c(x, 0) = c0(x), θi(x, 0) = θi0(x), x ∈ Ω

(1.1)

for i = 1, . . . , p. Here, Ω is the physical region where the Ostwald process is
occurring; ΩT = Ω × (0, T ); ST = ∂Ω × (0, T ); 0 < T < +∞; n denotes the
unitary exterior normal vector and ∂n is the exterior normal derivative at the
boundary; c(x, t) is the compositional field (fraction of the soluto with respect to
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the mixture) which takes one value within the matrix phase, another value within a
second phase grain and c(x, t) varies between these values at the interfacial region
between the matrix phase and a second phase grain; θi(x, t), for i = 1, . . . , p, are the
crystallographic orientations fields; D, λc, Li, λi are positive constants related to
the material properties. The function F = F(c, θ1, . . . , θp) is the local free energy
density which is given by

F(c, θ1, . . . , θp)

= −A
2

(c− cm)2 +
B

4
(c− cm)4 +

Dα

4
(c− cα)4

+
Dβ

4
(c− cβ)4 +

p∑
i=1

[−γ
2
(c− cα)2θ2i +

δ

4
θ4i ] +

p∑
i=1

p∑
i 6=j=1

εij

2
θ2i θ

2
j .

(1.2)

where cα and cβ are the solubilities in the matrix phase and the second phase
respectively, and cm = (cα + cβ)/2. The positive coefficients A, B, Dα, Dβ , γ, δ
and εij are phenomenological parameters.

In this paper we obtain a (p + 2)-tuple which satisfies a variational inequal-
ity related to Problem (1.1) and also satisfies the physical requirement that the
concentration takes values in the closed interval [0, 1].

Our approach to the problem is to analyze a three-parameter family of suitable
systems which contain a logarithmic perturbation term and approximate the model
presented by Fan et al. [6]. In this analysis, we show that the approximate solutions
converge to a generalized solution of the original continuous model and this, in
particular, will furnish a rigorous proof of the existence of generalized solutions
(see the statement of Theorem 2.1). Our approach is similar to that used by Passo
et al. [3] for an Cahn-Hilliard/Allen-Cahn system with degenerate mobility.

2. Existence of Solutions

Including the physical restriction on the concentration, Problem (1.1) is stated
as follows:

∂tc = ∇[D∇(∂cF − κc∆c)], (x, t) ∈ ΩT

∂tθi = −Li(∂θiF − κi∆θi), (x, t) ∈ ΩT

∂nc = ∂n(∂cF − κc∆c) = ∂nθi = 0, (x, t) ∈ ST

c(x, 0) = c0(x), θi(x, 0) = θi0(x), x ∈ Ω

0 ≤ c ≤ 1 (x, t) ∈ ΩT

(2.1)

for i = 1, . . . , p.
Throughout this paper, standard notation will be used for the several required

functional spaces. We denote by f the mean value of f in Ω of a given f ∈ L1(Ω).
The duality pairing between H1(Ω) and its dual is denoted by 〈·, ·〉 and (·, ·) denotes
the inner product in L2(Ω). We will prove the following:

Theorem 2.1. Let T > 0 and Ω ⊂ Rd, 1 ≤ d ≤ 3 be a bounded domain with C3–
boundary. For all c0, θi0, i = 1, . . . , p, satisfying c0, θi0 ∈ H1(Ω), for i = 1, . . . , p,
0 ≤ c0 ≤ 1, there exists a unique (p + 2)-tuple (c, w − w, θ1, . . . , θp) such that, for
i = 1, . . . , p,

(a) c, θi ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H2(Ω)),
(b) w ∈ L2(0, T,H1(Ω))
(c) ∂tc ∈ L2(0, T, [H1(Ω)]′), ∂tθi ∈ L2(ΩT )
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(d) 0 ≤ c ≤ 1 a.e. in ΩT

(e) c(x, 0) = c0(x), θi(x, 0) = θi0(x)
(f) ∂cF(c, θ1, . . . , θp), ∂θiF(c, θ1, . . . , θp) ∈ L2(ΩT )
(g) ∂nc|ST

= ∂nθi|ST
= 0 in L2(ST )

(h) (c, w, θ1, . . . , θp) satisfies∫ T

0

〈∂tc, φ〉dt = −
∫∫

ΩT

∇w∇φ, ∀φ ∈ L2(0, T,H1(Ω)), (2.2)

∫ T

0

ξ(t) {κcD(∇c,∇φ−∇c)− (w −D∂cF(c, θ1, . . . , θp), φ− c)} dt ≥ 0, (2.3)

for all ξ ∈ C[0, T ), ξ ≥ 0, ∀φ ∈ K = {η ∈ H1(Ω), 0 ≤ η ≤ 1, η = c0}, and∫∫
ΩT

∂tθiψi = −
∫∫

ΩT

L(∂θi
F(c, θ1, . . . , θp)− κi∆θi)ψi, (2.4)

for all ψi ∈ L2(ΩT ), i = 1, . . . , p, where F is given by (1.2).

Remark 2.2. The inequality obtained (2.3) is similar to one obtained by Elliott
and Luckhaus [5] in the case of the deep quench limit problem for a system of
nonlinear diffusion equations.

Remark 2.3. We observe that (2.3) comes from the fact that classically w is
expected to be equal to D(∂cF − κc∆c) up to a function of time.

Remark 2.4. The solution presented in Theorem 2.1 is a generalized solution of
(2.1). In fact, as will be shown at the end of this article, (2.3) holds as an equality
in the region where 0 < c(x, t) < 1 for almost all times.

We start by proving the uniqueness referred to in Theorem 2.1.

Lemma 2.5. Consider a solution of (2.2)–(2.4) as in Theorem 2.1. Under the hy-
potheses (a)–(e) and (h) of Theorem 2.1, the components c, θ1, . . . , θp are uniquely
determined; the component w is uniquely determined up to a function of time.

Proof. We argue as Elliott and Luckhaus [5]. We introduce the Green’s operator
G: given f ∈ [H1(Ω)]′null = {f ∈ [H1(Ω)]′, 〈f, 1〉 = 0}, we define Gf ∈ H1(Ω) as
the unique solution of∫

Ω

∇Gf∇ψ = 〈f, ψ〉, ∀ψ ∈ H1(Ω) and
∫

Ω

Gf = 0.

Let zc = c1 − c2, zw = w1 − w2 and zθi = θi1 − θi2, i = 1, . . . , p be the differences
of two pair of solutions to (2.2)–(2.4) as in Theorem 2.1. Since equation (2.2)
implies that the mean value of the composition field in Ω is conserved, we have
that (zc, 1) = 0 and we find from (2.2) that

−Gzc
t = zw.

The definition of the Green operator and the fact that (zc, 1) = 0 give

−(∇Gzc
t ,∇Gzc) = −(Gzc

t , z
c) = (zw, zc) = (zw, zc).

Since c1, c2 ∈ K = {η ∈ H1(Ω), 0 ≤ η ≤ 1, η = c0}, we find from (2.3) that

−κcD|∇zc|2 + (zw, zc)−D(∂cF(c1, θ11, . . . , θp1)− ∂cF(c2, θ12, . . . , θp2), zc) ≥ 0.
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Thus, we have

1
2
d

dt
|∇Gzc|+ κcD|∇zc|2

≤ −D(∂cF(c1, θ11, . . . , θp1)− ∂cF(c2, θ12, . . . , θp2)− κc∆zc, zc).

We find from (2.4) that

D

2Li

d

dt
|zθi |2 +Dλi|∇zθi |2

+D
(
∂θiF(c1, θ11, . . . , θp1)− ∂θiF(c2, θ12, . . . , θp2), zθi

)
= 0.

By adding the above equations, using the convexity of [F +H](c, θ1, . . . , θp),

[F +H](c, θ1, . . . , θp) =
Dα

4
(c− cα)4 +

Dβ

4
(c− cβ)4 +

δ

4

p∑
i=1

θ4i

where

H(c, θ1, . . . , θp) =
A

2
(c− cm)2 +

γ

2

p∑
i=1

c2θ2i −
p∑

i=1

p∑
i 6=j=1

εij

2
θ2i θ

2
j ,

we obtain

1
2
d

dt
|∇Gzc|2 + κcD|∇zc|2 +

p∑
i=1

[
D

2Li

d

dt
|zθi |2 +Dλi|∇zθi |2]

≤
(
∇(H(c1, θ11, . . . , θp1)−H(c2, θ12, . . . , θp2)) · (zc, zθ1 , . . . , zθp), 1

) (2.5)

To estimate the right-hand side of the above inequality, we use the regularity of ci
and θik. Then

(∇(θ2i1θ
2
j1 − θ2i2θ

2
j2) · (zθi , zθj ), 1)

= 2((θi1θ
2
j1 − θi2θ

2
j2, θ

2
i1θj1 − θ2i2θj2) · (zθi , zθj ), 1)

= 2((zθiθ2j1 + θi2(θ2j1 − θ2j2), θ
2
i1θj1 − θ2i2θj2) · (zθi , zθj ), 1)

= 2((zθiθ2j1 + θi2(θj1 + θj2)zθj , zθjθ2i1 + θj2(θi1 + θi2)zθi) · (zθi , zθj ), 1)

≤ C[|zθi |2 + |zθj |2] +
Dλi

8(p− 1)
|∇zθi |2 +

Dλj

8(p− 1)
|∇zθj |2

and

γ(∇(c21θ
2
i1 − c22θ

2
i2) · (zc, zθi), 1) ≤ C[|zc|2 + |zθi |2] +

κcD

2p
|∇zc|2 +

Dλi

4
|∇zθi |2.

The above inequalities and (2.5) imply

1
2
d

dt
|∇Gzc|2 +

κcD

2
|∇zc|2 +

p∑
i=1

[ D
2Li

d

dt
|zθi |2 +

Dλi

2
|∇zθi |2

]
≤ C

[
‖zc‖2

L2(Ω) +
p∑

i=1

‖zθi‖2
L2(Ω)

]
.
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From the definition of the Green operator, |zc|2 = (∇Gzc,∇zc). Using the Hölder
inequality, we rewrite the above inequality as

1
2
d

dt
|∇Gzc|2 +

κcD

4
|∇zc|2 +

p∑
i=1

[ D
2Li

d

dt
|zθi |2 +

Dλi

2
|∇zθi |2

]
≤ C

[
‖∇Gzc‖2

L2(Ω) +
p∑

i=1

‖zθi‖2
L2(Ω)

]
.

A standard Gronwall argument then yields

∇Gzc = 0 and zθi = 0, i = 1, . . . , p,

since
Gzc(0) = 0 and zθi(0) = 0, i = 1, . . . , p.

The uniqueness is proved since |zc|2 = (∇Gzc,∇zc) = 0. �

As a corollary of this, we have the following:

Lemma 2.6. Under the conditions of Theorem 2.1, when either c0 ≡ 0 or c0 ≡ 1
almost everywhere on Ω, there is a solution of (2.2)–(2.4).

Proof. In such cases, since 0 ≤ c0(x) ≤ 1, we have in fact that either c0(x) = 0
or c0(x) = 1. Now, take c identically zero or one, respectively. Then, equation
(2.2) is trivially satisfied and will imply that w is a constant. Otherwise, (2.3) is
also trivially satisfied and to obtain a solution of the Problem (2.2)–(2.4), we just
have to solve the nonlinear parabolic system (2.4). But this system can be solved
rather easily by standard methods, like Galerkin method, for instance, since the
nonlinearities have the right sign and thus furnish suitable estimates. �

By the above lemma, we have uniqueness of c in the cases where either c0 ≡ 0 or
c0 ≡ 1 almost everywhere on Ω. Thus, to prove Theorem 2.1, it just remain to deal
with the cases where the mean value of the initial condition c0 is strictly between
to zero and one. Thus, in the following we assume that

c0, θi0 ∈ H1(Ω), i = 1, . . . , p,

0 ≤ c0 ≤ 1, c0 ∈ (0, 1),
(2.6)

To obtain the result in Theorem 2.1, we approximate system (2.1) by a three-
parameter family of suitable systems which contain a logarithmic perturbation term
and then pass to the limit. In Section 3, we use the results of Passo et al. [3]
to construct such perturbed systems and together with some ideas presented by
Copetti and Elliott [2] and by Elliott and Luckhaus [5], we take the limit in these
systems in the last three sections.

For sake of simplicity of exposition, without loosing generality, we develop the
proof for the case of dimension one and for only one orientation field variable, that
is, when Ω is a bounded open interval and p is equal to one, and thus we have just
one orientation field that we denote θ. In this case, the local free energy density is
reduced to

F(c, θ) = −A
2

(c− cm)2 +
B

4
(c− cm)4 +

Dα

4
(c− cα)4 +

Dβ

4
(c− cβ)4

+
δ

4
θ4 − γ

2
(c− cα)2θ2.

(2.7)
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We remark that, even though the cross terms of (1.2) involving the orientation field
variables are absent in above expression, their presences when p is greater than one
will not bring any difficulty for extending the result, as we will point out at the end
of the paper.

3. Perturbed Systems

In this section we construct a three-parameter family of perturbed systems. The
auxiliary parameter M controls a truncation of the local free energy F which will
permit the application of an existence result of Passo et al. [3]. The parameters σ
and ε are associated to the logarithmic term, their introduction will enable us to
guarantee that the composition field variable c takes values in the closure of the set
I = (0, 1).

For each positive constants σ, M and ε ∈ (0, 1), we define the perturbed local
free energy density as follows:

FσεM (c, θ) = f(c) + gM (θ) + hM (c, θ) + ε[Fσ(c) + Fσ(1− c)]. (3.1)

where the first three terms give a truncation of the original F(c, θ) given in (2.7),
and the last term is a logarithmic perturbation. To obtain a truncation of the local
free energy density, we introduce bounded functions whose summation coincides
with F for (c, θ) ∈ [0, 1]× [−M,M ]. Let f, gM and hM be such that

f(c) = −A
2

(c− cm)2 +
B

4
(c− cm)4 +

Dα

4
(c− cα)4 +

Dβ

4
(c− cβ)4, 0 ≤ c ≤ 1,

gM (θ) =
δ

4
h2

2(M ; θ) and hM (c, θ) = h1(c)h2(M ; θ)

with

h1(c) = −γ
2
(c− cα)2, 0 ≤ c ≤ 1,

h2(M ; θ) = θ2, −M ≤ θ ≤M.

Outside the intervals [0, 1] and [−M,M ], we extend the above functions to satisfy

‖f‖C2(R) ≤ U0, ‖gM‖C2(R) ≤ V0(M), (3.2)

‖h1‖C2(R) ≤W0, ‖hM‖C2(R2) ≤ Z0(M), (3.3)

|h2(M ; θ)| ≤ Kθ2, |h′2(M ; θ)| ≤ K|θ|, ∀M > 0, | ∀θ ∈ R, (3.4)

where U0,W0,K > 0 are constants and, for each M , V0(M) and Z0(M) are also
constants.

We took the logarithmic term ε[Fσ(c)− Fσ(1− c)] as in Passo et al. [3]. Let us
denote

F (s) = s ln s.

For σ ∈ (0, 1/e), we choose F ′σ(s) such that

F ′σ(s) =


σ

2σ−s + lnσ, if s < σ,

ln s+ 1, if σ ≤ s ≤ 1− σ,

fσ(s), if 1− σ < s < 2,
1, if s ≥ 2,
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where fσ ∈ C1([1− σ, 2]) is chosen having the following properties:

fσ ≤ F ′, f ′σ ≥ 0,

fσ(1− σ) = F ′(1− σ), fσ(2) = 1,

f ′σ(1− σ) = F ′′(1− σ), f ′σ(2) = 0.

Defining

Fσ(s) = −1
e

+
∫ s

1
e

F ′σ(ξ)dξ,

we have Fσ ∈ C2(R) and F ′′σ ≥ 0.
Clearly, FσεM has a lower bound which is independent of σ and ε. We claim

that FσεM can also be bounded from below independently of M . To prove this
fact, we just have to estimate gM (θ) + hM (c, θ). We have

gM (θ) + hM (c, θ) =
δ

4
h2

2(M ; θ) + h1(c)h2(M ; θ)

=
δ

4
h2(M ; θ)

[
h2(M ; θ) +

4
δ
h1(c)

]
≥ −h

2
1(c)
δ

≥ −W
2
0

δ

Therefore,

− U0 −
W 2

0

δ
− 2
e
≤ FσεM (c, θ) in R2,

FσεM (c, θ) < U0 + gM (θ)− hM (c, θ) in cl I.
(3.5)

Then, the perturbed systems we will consider are

∂tc = D(∂cFσεM (c, θ)− κccxx)xx, (x, t) ∈ ΩT

∂tθ = −L[∂θFσεM (c, θ)− κθxx], (x, t) ∈ ΩT

∂nc = ∂n(∂cFσεM (c, θ)− κccxx) = ∂nθ = 0 (x, t) ∈ ST

c(x, 0) = c0(x), θ(x, 0) = θ0(x), x ∈ Ω

(3.6)

To solve the above problem, we shall use the next proposition which is an existence
result stated by Passo et al. [3] for the system

∂tu = [q1(u, v)(f1(u, v)− κ1uxx)x]x, (x, t) ∈ ΩT

∂tv = −q2(u, v)[f2(u, v)− κ2vxx], (x, t) ∈ ΩT

∂nu = ∂nuxx = ∂nv = 0 (x, t) ∈ ST

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

(3.7)

where qi and fi satisfy the following hypotheses:
(H1) qi ∈ C(R2,R+), with qmin ≤ qi ≤ qmax for some 0 < qmin ≤ qmax;
(H2) f1 ∈ C1(R2,R) and f2 ∈ C(R2,R), with ‖f1‖C1 + ‖f2‖C0 ≤ F0 for some

F0 > 0.

Proposition 3.1. Assuming (H1), (H2) and that u0, v0 ∈ H1(Ω), there exists a
pair of functions (u, v) such that

(1) u ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H3(Ω)) ∩ C([0, T ];Hλ(Ω)), λ < 1
(2) v ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H2(Ω)) ∩ C([0, T ];Hλ(Ω)), λ < 1
(3) ∂tu ∈ L2(0, T, [H1(Ω)]′), ∂tv ∈ L2(ΩT )
(4) u(0) = u0 and v(0) = v0 in L2(Ω)
(5) ∂nu|ST

= ∂nv|ST
= 0 in L2(ST )
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(6) (u, v) solves (3.7) in the following sense∫ t

0

〈∂tu, φ〉 = −
∫∫

Ωt

q1(u, v)(f1(u, v)− κ1uxx)xφx, ∀φ ∈ L2(0, T,H1(Ω))∫∫
Ωt

∂tvψ = −
∫∫

Ωt

q2(u, v)(f2(u, v)− κ2vxx)ψ, ∀φ ∈ L2(ΩT ).

where Ωt = Ω× (0, t) and
∫∫

Ωt
is the integral over Ωt.

Remark 3.2. The regularity of the test functions with respect to t allow us to
obtain the integrals over (0, t), instead of (0, T ) as originally presented by Passo et
al. [3].

Applying the above proposition, for each ε, σ,M > 0 there exists a solution
(cσεM , θσεM ) of Problem (3.6) in the following sense∫ t

0

〈∂tcσεM , φ〉 = −
∫∫

Ωt

D(∂cFσεM (cσεM , θσεM )− κc[cσεM ]xx)xφx, (3.8)

for φ ∈ L2(0, T,H1(Ω)) and∫∫
Ωt

∂tθσεMψ = −
∫∫

Ωt

L(∂θFσεM (cσεM , θσεM )− κ[θσεM ]xx)ψ, (3.9)

for ψ ∈ L2(ΩT ). Let us observe that equation for c in equation (3.8) implies that
the mean value of cσεM in Ω is

cσεM (t) = c0 ∈ (0, 1) (3.10)

4. Limit as M →∞

In this section we obtain some a priori estimates that will allow us to take the
limit in the parameter M . Actually, some of these estimates are also independent
of the parameters σ and ε and will be useful in next sections.

Lemma 4.1. There exists a constant C1 independent of M (sufficiently large), σ
(sufficiently small) and ε such that

(1) ‖cσεM‖L∞(0,T,H1(Ω)) ≤ C1

(2) ‖θσεM‖L∞(0,T,H1(Ω)) ≤ C1

(3) ‖(∂cFσεM − κc(cσεM )xx)x‖L2(ΩT ) ≤ C1

(4) ‖∂θFσεM − κ(θσεM )xx‖L2(ΩT ) ≤ C1

(5) ‖∂tcσεM‖L∞(0,T,[H1(Ω)]′) ≤ C1

(6) ‖∂tθσεM‖L2(ΩT ) ≤ C1

(7) ‖FσεM (cσεM , θσεM )‖L∞(0,T,L1(Ω)) ≤ C1

Proof. To obtain items 3, 4 and 7, we argue as Passo et al. [3] and Elliott and
Garcke [4]. First, we observe that by the regularity of cσεM and θσεM , we could
take

∂cFσεM − κc(cσεM )xx and ∂θFσεM − κ(θσεM )xx



EJDE-2004/126 A GENERALIZED SOLUTION 9

as test functions in the equations (3.8) and (3.9), respectively. By adding the
resulting identities, we obtain∫ t

0

〈∂tcσεM , ∂cFσεM − κc(cσεM )xx〉+
∫∫

Ωt

∂tθσεM∂θFσεM − κ(θσεM )xx

= −
∫∫

Ωt

D[(∂cFσεM − κc(cσεM )xx)x]2 −
∫∫

Ωt

L[∂θFσεM − κ(θσεM )xx]2.
(4.1)

Now, given a small h > 0, we consider the functions

cσεMh(x, t) =
1
h

∫ t

t−h

cσεM (τ, x)dτ

where we set cσεM (x, t) = c0(x) for t ≤ 0. Since ∂tcσεMh(x, t) ∈ L2(ΩT ), we have∫ T

0

〈(cσεMh)t, [∂cFσεMh − κc(cσεMh)xx]〉dt

+
∫∫

ΩT

(θσεM )t[∂θFσεMh − κ(θσεM )xx]

=
∫

Ω

[
κc

2
|[cσεMh(t)]x|2 +

κ

2
|[θσεM ]x(t)|2 + FσεMh(t)]

−
∫

Ω

[
κc

2
|[c0]x|2 +

κ

2
|[θ0]x|2 + FσεM (c0, θ0)].

Taking the limit as h tends to zero in the above expression and using the result in
(4.1), we obtain∫∫

Ωt

D[(∂cFσεM − κc(cσεM )xx)x]2 +
∫∫

Ωt

L[∂θFσεM − κ(θσεM )xx]2

+
κc

2
‖[cσεM ]x(t)‖2

L2(Ω) +
κ

2
‖[θσεM ]x(t)‖2

L2(Ω) +
∫

Ω

FσεM (t)

=
κc

2
‖[c0]x‖2

L2(Ω) +
κ

2
‖[θ0]x‖2

L2(Ω) +
∫

Ω

FσεM (c0, θ0)

for almost every t ∈ (0, T ]. Using (2.6) and (3.5), we could choose M0 and σ0,
depending only on the initial conditions, to obtain for all M > M0 and all σ < σ0∫∫

ΩT

D[(∂cFσεM − κc(cσεM )xx)x]2 +
∫∫

ΩT

L[∂θFσεM − κ(θσεM )xx]2

+
κc

2
‖[cσεM ]x(t)‖2

L2(Ω) +
κ

2
‖[θσεM ]x(t)‖2

L2(Ω) +
∫

Ω

FσεM (t) ≤ C1

(4.2)

which implies items 3, 4 and 7 since we have (3.5). Using the Poincaré’s inequality,
(3.5) and (3.10), Item 1 is also verified.

To prove Item 6, we choose ψ = ∂tθσεM as a test function in (3.9), which yields∫∫
ΩT

[∂tθσεM ]2 = −
∫∫

ΩT

(∂θFσεM − κ(θσεM )xx)∂tθσεM

≤
( ∫∫

ΩT

(∂θFσεM − κ(θσεM )xx)2
)1/2( ∫∫

ΩT

[∂tθσεM ]2
)1/2

.

Since ∫
Ω

θ2σεM ≤ 2
∫

Ω

|θ0|2 + 2t
∫∫

ΩT

(∂tθσεM )2dτ ≤ C2,
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Item 6 and (4.2), it follows that Item 2 is verified. Finally, Item 5 follows since

∣∣ ∫ T

0

〈∂tcσεM , φ〉
∣∣ ≤ ( ∫∫

ΩT

[(∂cFσεM − κc(cσεM )xx)x]2
)1/2( ∫∫

ΩT

(φx)2
)1/2

for all φ ∈ L2(0, T,H1(Ω)). �

Remark 4.2. From (4.2), using (3.5), we obtain∫∫
ΩT

D[(∂cFσεM − κc(cσεM )xx)x]2 +
∫∫

ΩT

L[∂θFσεM − κ(θσεM )xx]2

+
κc

2
‖[cσεM (t)]x‖2

L2(Ω) +
κ

2
‖[θσεM ]x(t)‖2

L2(Ω) ≤ C1.

(4.3)

Lemma 4.3. For M sufficiently large and σ sufficiently small, there exist a con-
stant C3 independent of σ,M and ε and a constant C ′3(σ) independent of M and ε
such that

(1) ‖∂cFσεM‖L2(0,T,H1(Ω)) ≤ C ′3,
(2) ‖∂θFσεM‖L2(ΩT ) ≤ C3,
(3) ‖[cσεM ]xx‖L2(ΩT ) ≤ C3,
(4) ‖[θσεM ]xx‖L2(ΩT ) ≤ C3,

Proof. First, we prove items 2 and 4. From Item 4 of Lemma 4.1, we have∫∫
ΩT

(∂θFσεM )2 − 2κ
∫∫

ΩT

∂θFσεM [θσεM ]xx + κ2

∫∫
ΩT

[θσεM ]2xx ≤ C3. (4.4)

Since

∂θFσεM [θσεM ]xx = [g′M (θσεM ) + ∂θhM (cσεM , θσεM )][θσεM ]xx

= [g′M (θσεM ) + h1(cσεM )h′2(M ; θσεM )][θσεM ]xx,

using (3.3) and (3.4), we obtain

2κ∂θFσεM [θσεM ]xx ≤
κ2

2
[θσεM ]2xx + C3[θ6σεM +W 2

0 θ
2
σεM ].

Thus, from Item 2 of Lemma 4.1, it follows from (4.4) that∫∫
ΩT

(∂θFσεM )2 +
κ2

2

∫∫
ΩT

[θσεM ]2xx ≤ C3. (4.5)

Now, we prove Item 3. Defining, HσεM = ∂cFσεM −κc[cσεM ]xx, since [cσεM ]x|ST
=

0, we have ∫∫
ΩT

HσεM =
∫∫

ΩT

∂cFσεM ,

and from Item 3 of Lemma 4.1,∫∫
ΩT

[HσεM ]2x ≤ C1.
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Using the definition of FσεM , given in (3.1), and an integration by parts, we obtain∫∫
ΩT

H2
σεM

=
∫∫

ΩT

(∂cFσεM )2 + 2κcε

∫∫
ΩT

[F ′′σ (cσεM ) + F ′′σ (1− cσεM )][cσεM ]2x

− 2κcL

∫∫
ΩT

(f ′(cσεM ) + h′1(cσεM )h2(M ; θσεM ))[cσεM ]xx + κ2
c

∫∫
ΩT

[cσεM ]2xx.

On the other hand, we can write∫∫
ΩT

H2
σεM =

∫∫
ΩT

[HσεM −HσεM ]2 +
∫∫

ΩT

HσεM
2

≤ CP

∫∫
ΩT

[HσεM ]2x +
∫∫

ΩT

(∂cFσεM )2

where CP denotes the constant appearing in Poincaré’s inequality. From these two
last results, Item 3 follows recalling that [F ′′σ (cσεM ) +F ′′σ (1− cσεM )] ≥ 0 and using
(3.2), (3.3), (3.4) and Item 2 of Lemma 4.1.

Finally, recalling that for each σ, F ′σ(s) is bounded in R, using again the defini-
tion of f and hM and Item 2 of Lemma 4.1, we obtain

‖∂cFσεM‖2
L2(ΩT ) ≤ C

∫∫
ΩT

{[f ′(cσεM )]2 + [h′1(cσεM )]2[h2(M ; θσεM )]2

+ ε2[F ′σ(cσεM )− F ′σ(1− cσεM )]}
≤ C{[U2

0 |ΩT |+W 2
0 ‖θσεM‖4

L4 ] + C(σ)} ≤ C ′3(σ).

A similar argument shows that ‖[∂cFσεM ]x‖2
L2(ΩT ) is also bounded by a constant

which depends only on σ. Thus, we have proved the Item 1. �

We can now state the following result.

Proposition 4.4. For σ (sufficiently small), there exists a pair (cσε, θσε) such that:
(1) cσε ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H3(Ω))
(2) θσε ∈ L∞(0, T,H1(Ω)) ∩ L2(0, T,H2(Ω))
(3) ∂tcσε ∈ L2(0, T, [H1(Ω)]′), ∂tθσε ∈ L2(ΩT )
(4) ∂cFσε(cσε, θσε), ∂θFσε(cσε, θσε) ∈ L2(ΩT )
(5) cσε(0) = c0 and θσε(0) = θ0 in L2(Ω)
(6) [cσε]x|ST

= [θσε]x|ST
= 0 in L2(ST )

(7) (cσε, θσε) solves the perturbed system (3.6) in the following sense:∫ T

0

〈∂tcσε, φ〉 = −
∫∫

ΩT

D[∂cFσε(cσε, θσε)− κc(cσε)xx]xφx (4.6)

for all φ ∈ L2(0, T,H1(Ω)), and∫∫
ΩT

∂tθσεψ = −
∫∫

ΩT

L(∂θFσε(cσε, θσε)− κ(θσε)xx)ψ (4.7)

for all ψ ∈ L2(ΩT ), and Fσε is given by

Fσε(c, θ) = f(c) +
δ

4
θ4 + h1(c)θ2 + ε[Fσ(c) + Fσ(1− c)].
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Proof. First, let us observe that from Item 3 of Lemma 4.1 and Item 1 of Lemma 4.3,
the norm of [cσεM ]xxx in L2(ΩT ) is bounded by a constant which does not depend
on M . This fact, the estimates of Lemmas 4.1 and 4.3 together with a compactness
argument imply that there exists a subsequence (still denoted by {(cσεM , θσεM )})
that satisfies (as M goes to infinity)

cσεM , θσεM converge weakly-* to cσε, θσε in L∞(0, T,H1(Ω)),

cσεM , converges weakly to cσε in L2(0, T,H3(Ω)),

θσεM , converges weakly to θσε in L2(0, T,H2(Ω)),

∂tcσεM , converges weakly to ∂tcσε in L2(0, T, [H1(Ω)]′),

∂tθσεM , converges weakly to ∂tθσε in L2(ΩT )

cσεM , θσεM converge to cσε, θσε in L2(ΩT ).

By recalling Lemmas 4.1 and 4.3, items 1–3 now follow. Now, items 1 and 2 of
Lemma 4.3 imply that

∂cFσεM (cσεM , θσεM ) converges weakly to G in L2(ΩT ),

∂θFσεM (cσεM , θσεM ) converges weakly to H in L2(ΩT ).

Since the strong convergence of the sequence (cσεM ) implies that (at least for a
subsequence) ∂cFσεM (cσεM , θσεM ) converges pointwise in ΩT , it follows from Lions
[7, Lemma 1.3], that G = ∂cFσε(cσε, θσε). Similarly, we have H = ∂θFσε(cσε, θσε).
Thus Item 4 is proved.

Item 5 is straightforward. Now, by compactness we have that

cσεM converges to cσε in L2(0, T,H2−λ(Ω)), λ > 0,

θσεM converges to θσε in L2(0, T,H2−λ(Ω)), λ > 0,

which imply Item 6. To prove Item 7, by using the previous convergences, we pass
to the limit as M goes to infinity in the equations (3.8) and (3.9). �

5. Limit as σ → 0+

In this section we obtain some a priori estimates that allow taking the limit in
the parameter σ.

First, let us note that (4.6) implies that the mean value of cσε in Ω is given by

cσε(t) = c0 ∈ (0, 1), (5.1)

We start with the following Lemma.

Lemma 5.1. There exists a constant C1 independent of ε and σ (sufficiently small)
such that

(1) ‖cσε‖L∞(0,T,H1(Ω)) ≤ C1

(2) ‖θσε‖L∞(0,T,H1(Ω)) ≤ C1

(3) ‖[∂cFσε − κc(cσε)xx]x‖L2(ΩT ) ≤ C1

(4) ‖∂θFσε − κ(θσε)xx‖L2(ΩT ) ≤ C1

(5) ‖∂tcσε‖L∞(0,T,[H1(Ω)]′) ≤ C1

(6) ‖∂tθσε‖L2(ΩT ) ≤ C1

(7) ‖Fσε(cσε, θσε)‖L∞(0,T,L1(Ω)) ≤ C1
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Proof. Let us observe that in the proof of Proposition 4.4, we have identified the
weak limits, when M goes to infinity, of the sequences ∂cFσεM and ∂θFσεM as
∂cFσε and ∂θFσε, respectively. Thus, by taking the inferior limit as M goes to
infinity, of estimate (4.3), we obtain

κc

2
‖(cσε)x‖2

L∞(0,T,L2(Ω)) +
κ

2
‖(θσε)x‖2

L∞(0,T,L2(Ω))

+D‖[∂cFσε − κc(cσε)xx]x‖2
L2(ΩT ) + L‖∂θFσε − κ(θσε)xx‖2

L2(ΩT ) ≤ C1.
(5.2)

The items 3 and 4 follow from (5.2). Using (5.2), Poincaré’s inequality and (5.1),
we obtain Item 1. To prove items 2, 5 and 6, we just take the inferior limit of
items 2, 5 and 6 of Lemma 4.1. Finally, using (3.2), (3.3), (3.4) and the esti-
mates of Lemma 4.1, we can estimate ‖f(c) + δ

4θ
4 + h1(c)θ2‖L∞(0,T,L1(Ω)). Also

with the estimates of Lemma 4.1, we get the strong convergence of a subsequence
of (cσε). Using this convergence and the Fatou’s Lemma, we get a bound for
‖ε[Fσ(c)+Fσ(1− c)]‖L∞(0,T,L1(Ω)) which together with the previous estimate yield
Item 7. �

As Passo et al. [3], by arguing in a standard way (see Bernis and Friedman [1]
for a proof, p. 183), we obtain

Corolary 5.2. There exists a constant C2 independent of ε and σ (sufficiently
small) such that

‖cσε‖
C0, 1

2 , 1
8 (cl ΩT )

≤ C2 and ‖θσε‖
C0, 1

2 , 1
8 (cl ΩT )

≤ C2 (5.3)

By Corollary 5.2, we can extract a subsequence (still denoted by (cσε, θσε)) such
that

(cσε, θσε) converges uniformly to (cε, θε) in cl ΩT as σ approaches zero,

cε ∈ C0, 1
2 , 1

8 (cl ΩT ) and θε ∈ C0, 1
2 , 1

8 (cl ΩT ).
(5.4)

We now demonstrate that the limit cε lies within the interval

I = {c ∈ R, 0 < c < 1}.

Lemma 5.3. |ΩT \ B(cε)| = 0 with B(c) = {(x, t) ∈ cl ΩT , c(x, t) ∈ I}.

Proof. Arguing as Passo et al. [3], let N denote the operator defined as minus the
inverse of the Laplacian with zero Neumann boundary conditions. That is, given
f ∈ [H1(Ω)]′null = {f ∈ [H1(Ω)]′, 〈f, 1〉 = 0}, we define Nf ∈ H1(Ω) as the unique
solution of ∫

Ω

(Nf)′ψ′ = 〈f, ψ〉, ∀ψ ∈ H1(Ω) and
∫

Ω

Nf = 0. (5.5)

By (5.1) and Item 1 of Lemma 5.1, N(cσε − cσε) is well defined. Choosing
φ = N(cσε − cσε) as a test function in the equation (4.6), we have∫ T

0

〈∂tcσε, N(cσε − cσε)〉dt

= −
∫∫

ΩT

D[∂cFσε − κc(cσε)xx]x[N(cσε − cσε)]x

= −
∫∫

ΩT

D(cσε − cσε)∂cFσε(cσε, θσε)−Dκc

∫∫
ΩT

[(cσε)x]2
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Now, estimates in Lemma 5.1 and the definition of N imply∫∫
ΩT

(cσε − cσε)∂cFσε(cσε, θσε) ≤ C4. (5.6)

We observe that the following identity holds for any m ∈ R,
(c−m)∂cFσε(c, θ)

= (c−m)[f ′(c) + h′1(c)θ
2 + ε(F ′σ(c)− F ′σ(1− c))]

= ε{c[F ′σ(c)− 1] + (1− c)[F ′σ(1− c)− 1] + 2}
+ (c−m)[f ′(c) + h′1(c)θ

2]− ε− εmF ′σ(c)− ε(1−m)F ′σ(1− c)

(5.7)

We observe that the terms inside the braces are bounded from below since for any
σ ∈ (0, 1/e), we have

−1/e ≤ σ lnσ ≤ s[F ′σ(s)− 1] ≤ 0, s ≤ σ,

−1/e ≤ s ln s = s[F ′σ(s)− 1] ≤ 0, σ ≤ s ≤ 1− σ,

−2 ≤ s[F ′σ(s)− 1] ≤ 0, 1− σ ≤ s ≤ 2,

0 = s[F ′σ(s)− 1], s ≥ 2.

We now recall that the mean value of cσε in Ω is conserved and is equal to c0 which
belongs to the interval (0, 1). Thus, since f ′, h′1 are uniformly bounded, using the
estimates in Lemma 5.1, by setting m = cσε = c0 in (5.7) and noting F ′σ ≤ 1, it
follows from (5.6) that

−ε
∫∫

ΩT

[F ′σ(cσε) + F ′σ(1− cσε)] ≤ C4 (5.8)

To complete the proof, suppose by contradiction that the set ΩT \ B(cε) has a
positive measure. We start supposing that

A = {(x, t) ∈ ΩT , cε ≤ 0}
has positive measure. Since F ′σ ≤ 1, the estimate (5.8) gives

−ε
∫∫

A

F ′σ(cσε) ≤ C4.

Note, however, that the uniform convergence of cσε implies that

∀λ > 0, ∃σλ, cσε ≤ λ, ∀(x, t) ∈ A, σ < σλ

therefore, due to the convexity of Fσ, we have F ′σ(cσε) ≤ F ′σ(λ). Hence

−ε|A|(lnλ+ 1) = −ε lim
σ→0+

∫∫
A

F ′σ(λ) ≤ C4

which leads to a contradiction for λ ∈ (0, 1) sufficiently small. The same argument
shows that B = {(x, t) ∈ ΩT , cε ≥ 1} has zero measure. �

In the next lemma we derive additional estimates which allow us to pass to the
limit as σ tends to zero. Its proof follows directly from the estimates of Lemma 5.1.

Lemma 5.4. There exists a constant C3 which is independent of ε and σ (suffi-
ciently small) such that

(1) ‖∂θFσε‖L2(ΩT ) ≤ C3,
(2) ‖[cσε]xx‖L2(ΩT ) ≤ C3,
(3) ‖[θσε]xx‖L2(ΩT ) ≤ C3,
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To pass to the limit as σ goes to zero, we need an estimate of ∂cFσε that is
independent of σ. We cannot repeat the argument that we used in Lemma 4.3
because there we obtained with a constant that depends on σ. The desired estimate
will be obtained by using the next lemma, presented by Copetti and Elliott [2, p. 48],
and by Elliott and Luckhaus [5, p. 23].

Lemma 5.5. Let v ∈ L1(Ω) such that there exist positive constants δ1 and δ′1
satisfying

8δ1 <
1
|Ω|

∫
Ω

vdx < 1− 8δ1, (5.9)

1
|Ω|

∫
Ω

([v − 1]+ + [−v]+)dx < δ′1. (5.10)

If 16δ′1 < δ21 then

|Ω+
δ1
| = |{x ∈ Ω, v(x) > 1− 2δ1}| < (1− δ1)|Ω|

and

|Ω−
δ1
| = |{x ∈ Ω, v(x) < 2δ1}| < (1− δ1)|Ω|.

Our task is now to verify the hypothesis of this lemma for the functions cσε. To
obtain (5.10), we note that items 2 and 7 of Lemma 5.1, (3.2) and (3.3) imply that,
for almost every t ∈ [0, T ],

ε

∫
Ω

[Fσ(cσε) + Fσ(1− cσε)]dx

≤ C1 +
∥∥f(cσε) + δθ4σε/4 + h1(cσε)θ2σε

∥∥
L∞(0,T,L1(Ω))

≤ C.

From the definition of Fσ(s) for s < σ (see page 6), we obtain∫
{cσε<0}

Fσ(cσε)dx

≥ | lnσ|
∫

Ω

[−cσε(·, t)]+dx− σ[| lnσ|+ 2σ]|Ω| − σ‖cσε(t)‖L2(Ω)|Ω|1/2.

Hence, since Fσ(s) ≥ −1/e, we have∫
Ω

Fσ(cσε)dx

≥ | lnσ|
∫

Ω

[−cσε(·, t)]+dx− σ[| lnσ|+ 2σ + e−1]|Ω| − σ‖cσε(t)‖L2(Ω)|Ω|1/2.

In the same way, we have∫
Ω

Fσ(1− cσε)dx ≥ | lnσ|
∫

Ω

[cσε(·, t)− 1]+dx− σ[| lnσ|+ 2σ − 1

+ e−1]|Ω| − σ‖cσε(t)‖L2(Ω)|Ω|1/2.

Thus, using the above estimates and Item 1 of Lemma 5.1, we obtain∫
Ω

[cσε(·, t)− 1]+dx+
∫

Ω

[−cσε(·, t)]+dx ≤
C

ε| lnσ|
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The equation (5.1) says that the mean value of cσε is equal to c0 which belongs to
(0, 1). Thus there exists δ1 > 0, such that 8δ1 < c0 < 1 − 8δ1. Using Lemma 5.5,
for σ sufficiently small, we have for almost every t ∈ [0, T ]

|Ω+
σδ1

| = {x ∈ Ω, cσε(x, t) > 1− 2δ1} < (1− δ1)|Ω|,
|Ω−

σδ1
| = {x ∈ Ω, cσε(x, t) < 2δ1} < (1− δ1)|Ω|.

(5.11)

We are now in position to estimate ∂cFσε(cσε, θσε).

Lemma 5.6. There exists a constant C4 which is independent of ε and σ (suffi-
ciently small) such that

‖∂cFσε(cσε, θσε)‖L2(ΩT ) ≤ C4.

Proof. First, let us recall that

∂cFσε = f ′(cσε) + h′1(cσε)θ2σε + ε[F ′σ(cσε)− F ′σ(1− cσε)].

In view of Item 2 of Lemma 5.1, (3.2) and (3.3), to obtain the desired estimate it
is enough to obtain a bound for the norm of ε[F ′σ(cσε) − F ′σ(1 − cσε)] in L2(ΩT ).
Arguing as Copetti and Elliott [2], we obtain this bound by using the next equality

∥∥∥ε[F ′σ(cσε)− F ′σ(1− cσε)]− ε[F ′σ(cσε)− F ′σ(1− cσε)]
∥∥∥2

L2(ΩT )

= ‖ε[F ′σ(cσε)− F ′σ(1− cσε)]‖
2
L2(ΩT ) −

∫∫
ΩT

(
ε[F ′σ(cσε)− F ′σ(1− cσε)]

)2 (5.12)

and estimating the term at the left hand side and the last term at the right hand
side of the above equation.

Let us note that using Poincaré’s inequality and Item 3 of Lemma 5.1, we obtain

‖∂cFσε(cσε, θσε)− κc(cσε)xx − ∂cFσε(cσε, θσε)− κc(cσε)xx‖L2(ΩT ) ≤ C1.

Recalling that cx|ST
= 0, we have

∂cFσε(cσε, θσε)− κc(cσε)xx = f ′(cσε) + h′1(cσε)θ2σε + ε[F ′σ(cσε)− F ′σ(1− cσε)].

Thus, using the estimates for (cσε)xx in Item 2 of Lemma 5.4 and for θσε in Item 2
of Lemma 5.1 together (3.2) and (3.3), we obtain

‖ε[F ′σ(cσε)− F ′σ(1− cσε)]− ε[F ′σ(cσε)− F ′σ(1− cσε)]‖L2(ΩT ) ≤ C̃1 (5.13)

We now use the monotonicity of F ′σ(s)− F ′σ(1− s) and (5.11) to obtain for almost
every t ∈ [0, T ]:

ε[F ′σ(cσε)− F ′σ(1− cσε)]

= ε|Ω|−1

∫
Ω+

σδ1

[F ′σ(cσε)− F ′σ(1− cσε)] + ε|Ω|−1

∫
[Ω+

σδ1
]c
[F ′σ(cσε)− F ′σ(1− cσε)]

≤ (1− δ1)1/2|Ω|−1/2‖ε[F ′σ(cσε)− F ′σ(1− cσε)]‖L2(Ω)

+ ε[F ′σ(1− 2δ1)− F ′σ(2δ1)].

In the same way, observing that F ′σ(2δ1)− F ′σ(1− 2δ1) < 0, we have

ε[F ′σ(cσε)− F ′σ(1− cσε)] ≥ −(1− δ1)1/2|Ω|−1/2‖ε[F ′σ(cσε)

− F ′σ(1− cσε)]‖L2(Ω) + ε[F ′σ(2δ1)− F ′σ(1− 2δ1)].



EJDE-2004/126 A GENERALIZED SOLUTION 17

Therefore, by using that (a+ b)2 ≤ a2(1 + 1
δ1

) + b2(1 + δ1), we have(
ε[F ′σ(cσε)− F ′σ(1− cσε)]

)2

≤ ε
(
1 +

1
δ1

)
[F ′σ(1− 2δ1)− F ′σ(2δ1)]2(1− δ21)

1
|Ω|

‖ε[F ′σ(cσε)− F ′σ(1− cσε)]‖2
L2(Ω).

(5.14)

Multiplying the above estimate by |Ω|, integrating it in t and using (5.12) and
(5.13), it results that for σ sufficiently small, we have

δ21‖ε[F ′σ(cσε)− F ′σ(1− cσε)]‖2
L2(ΩT )

≤ ε|ΩT |(1 +
1
δ1

)[F ′σ(2δ1)− F ′σ(1− 2δ1)]2

+
∥∥∥ε[F ′σ(cσε)− F ′σ(1− cσε)]− ε[F ′σ(cσε)− F ′σ(1− cσε)]

∥∥∥2

L2(ΩT )

≤ ε|ΩT |(1 +
1
δ1

)[F ′(2δ1)− F ′(1− 2δ1)]2 + C̃1 ≤ C̃2.

�

We define
wσε = D(∂cFσε(cσε, θσε)− κc[cσε]xx).

Then the estimates in Lemmas 5.1, 5.4 and 5.6 and Lemma 5.3 imply that wσε

converge weakly to wε in L2(0, T,H1(Ω)), where

wε = D(∂cFε(cε, θε)− κc[cε]xx),

and where Fε is defined as in the next Proposition. To identify the limit of the
nonlinear term, we use Lemmas 5.1 and 5.3 to see that ∂cFε(cε, θε) is the pointwise
limit of a subsequence of ∂cFσε(cσε, θσε). This fact with Lemma 5.6 and Fatou’s
Lemma imply ∂cFε(cε, θε) ∈ L2(ΩT ). Finally, we use Lion’s Lemma ([7], p. 12) to
identify the weak limit of ∂cFσε(cσε, θσε) as ∂cFσε(cσε, θσε). Therefore, arguing as
in Proposition 4.4, we can pass to the limit as σ goes to zero to obtain the following
result.

Proposition 5.7. There exists a triplet (cε, wε, θε) such that:
(1) cε, θε ∈ L∞(0, T,H1(Ω)),
(2) ∂tcε ∈ L2(0, T, [H1(Ω)]′) and ∂tθε ∈ L2(ΩT ),
(3) [cε]xx, [θε]xx ∈ L2(ΩT ),
(4) |ΩT \ B(cε)| = 0,
(5) ∂cFε(cε, θε), ∂θFε(cε, θε) ∈ L2(ΩT ),
(6) wε ∈ L2(0, T,H1(Ω))
(7) cε(0) = c0(x), θεM (0) = θ0(x)
(8) [cε]x|ST

= [θεM ]x|ST
= 0 in L2(ST )

(9) (cε, wε, θε) satisfies∫ T

0

〈∂tcε, φ〉dt = −
∫∫

ΩT

[wε]xφx, ∀φ ∈ L2(0, T,H1(Ω)) (5.15)

wε = D[∂cFε(cε, θε)− κc(cε)xx] (5.16)∫∫
ΩT

∂tθεψ = −
∫∫

ΩT

L(∂θFε(cε, θε)− κ(θε)xx)ψ, ∀ψ ∈ L2(ΩT ) (5.17)
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where, since cε ∈ (0, 1) a.e in ΩT ,

Fε(c, θ) = −A
2

(c− cm)2 +
B

4
(c− cm)4 +

Dα

4
(c− cα)4

+
Dβ

4
(c− cβ)4 +

δ

4
θ4 − γ

2
c2θ2 + ε[F (c) + F (1− c)]

with F (s) = s ln s.

6. Limit as ε→ 0+

In this section we finally prove Theorem 2.1 when the spatial dimension is one
and the number of crystallographic orientations is p = 1. We recall that we treat
this simpler case just for simplicity of notation and exposition, since, as we will
show in Section 7, the necessary changes to extend the results of Theorem 2.1 to
higher spatial dimensions and p > 1 are simple ones.

We start by observing that, as before, we have the mean value of cε in Ω given
by

cε = c0 ∈ (0, 1), (6.1)
Since the estimates obtained for σ in Lemmas 5.1, 5.4 and 5.6 do not depend on ε,
we have

Lemma 6.1. There exists a constant C1 independent of ε such that
(1) ‖cε‖L∞(0,T,H1(Ω)) ≤ C1

(2) ‖θε‖L∞(0,T,H1(Ω)) ≤ C1

(3) ‖(wε)x‖L2(ΩT ) ≤ C1

(4) ‖∂θFε − κ(θε)xx‖L2(ΩT ) ≤ C1

(5) ‖∂tcε‖L∞(0,T,[H1(Ω)]′) ≤ C1

(6) ‖∂tθε‖L2(ΩT ) ≤ C1

(7) ‖∂cFε(cε, θε)‖L2(ΩT ) ≤ C1,
(8) ‖∂θFε(cε, θε)‖L2(ΩT ) ≤ C1,
(9) ‖[cε]xx‖L2(ΩT ) ≤ C1,

(10) ‖[θε]xx‖L2(ΩT ) ≤ C1

Now, we complete the proof of Theorem 2.1.

Proof of the case d = 1 and p = 1. We recall

F(c, θ) = −A
2

(c− cm)2 +
B

4
(c− cm)4 +

Dα

4
(c− cα)4

+
Dβ

4
(c− cβ)4 − γ

2
(c− cα)2θ2 +

δ

4
θ4

Then, we argue as Elliott and Luckhaus [5], p. 35. For this, let

φρ ∈ K+ = {φ ∈ H1(Ω), 0 < φ < 1} and ρ < φρ < 1− ρ

for some small positive ρ. We have [F ′(φρ)−F ′(1−φρ)] ∈ L2(Ω) because ρ < φρ <
1− ρ. Hence it follows from (5.16) that∫ T

0

ξ(t)(wε, φ
ρ − cε)dt

= D

∫ T

0

ξ(t)(∂cF(cε, θε) + ε[F ′(cε)− F ′(1− cε)]− κc(cε)xx, φ
ρ − cε)dt.
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Integrating by parts and rewriting, we obtain∫ T

0

ξ(t) {κcD(∇cε,∇φρ)− (wε −D∂cF(cε, θε), φρ − cε)} dt

=
∫ T

0

ξ(t)κcD(∇cε,∇cε)dt

+ εD

∫ T

0

ξ(t)([F ′(φρ)− F ′(1− φρ)]− [F ′(cε)− F ′(1− cε)], φρ − cε)dt

− εD

∫ T

0

ξ(t)([F ′(φρ)− F ′(1− φρ)], φρ − cε)dt.

By using the monotonicity of F ′(·) − F ′(1 − ·) and the convergence properties of
(cε, wε, θε) we may pass to the limit and obtain for ξ ∈ C[0, T ], ξ ≥ 0, that∫ T

0

ξ(t) {κcD(∇c,∇φρ)− (w −D∂cF(c, θ), φρ − c)} dt

≥ lim sup
ε→0+

∫ T

0

ξ(t) {κcD(∇cε,∇φρ)− (w −D∂cF(cε, θε), φρ − cε)} dt

≥ lim inf
ε→0+

∫ T

0

ξ(t)κcD(∇cε,∇cε)dt

− lim
ε→0+

εD

∫ T

0

ξ(t)([F ′(φρ)− F ′(1− φρ)], φρ − cε)dt

≥
∫ T

0

ξ(t)κcD(∇c,∇c)dt.

Furthermore, since any φ ∈ K = {φ ∈ H1(Ω), 0 ≤ φ ≤ 1, φ = c0} can be
approximated by φρ ∈ K+, for small ρ with ρ < φρ < 1 − ρ, we may pass to the
limit as ρ goes to zero in the left hand side of the above inequality and obtain∫ T

0

ξ(t) {κc(∇c,∇φ−∇c)− (w − ∂cF(c, θ), φ− c)} dt ≥ 0 (6.2)

for ξ ∈ C[0, T ), ξ ≥ 0, and φ ∈ K. Arguing as in the previous sections we also
obtain ∫ T

0

〈∂tc, φ〉dt = −
∫∫

ΩT

wxφx, ∀φ ∈ L2(0, T,H1(Ω)), (6.3)∫∫
ΩT

∂tθψ = −
∫∫

ΩT

L(∂θF(c, θ)− κθxx)ψ, ∀ψ ∈ L2(ΩT ). (6.4)

Thus, for spatial dimension one and p = 1, Theorem 2.1 is a direct consequence of
Lemma 6.1, (6.2), (6.3) and (6.4). �

7. Proof of the Case of Higher Spatial Dimensions and p > 1

In the case of higher spatial dimensions and p > 1, we have to slightly change the
previously presented arguments. Firstly, we show the changes to be done when the
spatial dimension satisfies 2 ≤ d ≤ 3. We start by remarking that, as observed by
Passo et al. [3], Proposition 3.1 is valid for any dimension. Also, in higher dimen-
sions, we use an argument of elliptic regularity of the Laplacian to obtain estimates
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in L2(0, T,H2(Ω)) and in L2(0, T,H3(Ω)). Furthermore, all of our previous argu-
ments hold for dimensions 2 ≤ d ≤ 3, except the result of Corollary 5.2, where the
fact that dimension was one was essential. This result was only used in the proof of
Lemma 5.3 to extract an uniformly convergent subsequence and conclude that the
measure of the set ΩT \ B(cε) is zero (where B(c) = {(x, t) ∈ cl ΩT , c(x, t) ∈ I}).
Once Lemma 5.3 is stated for 2 ≤ d ≤ 3, all results but Corollary 5.2 are also
valid for 2 ≤ d ≤ 3. On the next Lemma, we show how to state the same result of
Lemma 5.3 when the dimension d satisfies 2 ≤ d ≤ 3. As mentioned before, all the
results stated before Corollary 5.1 does not depend upon dimension one and can
be extended for dimensions 2 ≤ d ≤ 3. We will use this fact on the proof of the
next Lemma.

Lemma 7.1. |ΩT \ B(cε)| = 0 with B(c) = {(x, t) ∈ cl ΩT , c(x, t) ∈ I}.

Proof. Arguing exactly as in the proof of Lemma 5.3, we obtain

−ε
∫∫

ΩT

[F ′σ(cσε) + F ′σ(1− cσε)] ≤ C4 (7.1)

To complete the proof of the lemma, suppose by contradiction that the set ΩT \B(cε)
has a positive measure. Suppose by instance that

A = {(x, t) ∈ ΩT , cε ≤ 0}

has positive measure. Using Item 1 of Lemma 5.1, we can extract a subsequence
of (cσε) which converges almost everywhere to cε on ΩT . Now, by using Egoroff’s
Theorem, we may conclude that such subsequence also converges almost uniformly

on ΩT . Thus, there exists a set B ⊂ ΩT such that |B| ≤ 1
2
|A| and cσε converges

uniformly to cε on ΩT \B. Let C = A ∩ (ΩT \B). We can see that |C| > 0. Since
F ′σ ≤ 1, the estimate (5.8) gives

−ε
∫∫

C

F ′σ(cσε) ≤ C4.

Note, however, that the uniform convergence of cσε implies that

∀λ > 0, ∃σλ, cσε ≤ λ, ∀(x, t) ∈ C, σ < σλ

therefore, due to the convexity of Fσ, we have F ′σ(cσε) ≤ F ′σ(λ). Hence

−ε|C|(lnλ+ 1) = −ε lim
σ→0+

∫∫
C

F ′σ(λ) ≤ C4

which leads to a contradiction for λ ∈ (0, 1) sufficiently small. The same argument
shows that B = {(x, t) ∈ ΩT , cε ≥ 1} has zero measure. �

We remark that In this last proof we have just repeated the contradiction ar-
gument presented in the proof of Lemma 5.3 with the only difference that now we
have supposed by contradiction that there exists a subset of ΩT \ B(cε) that has
positive measure and where the convergence is uniform.

Now we explain the necessary modifications to be done when the number of
crystallographic orientations is larger than one. In this case, the local free energy
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density is

F(c, θ1, . . . , θp) =− A

2
(c− cm)2 +

B

4
(c− cm)4 +

Dα

4
(c− cα)4 +

Dβ

4
(c− cβ)4

+
p∑

i=1

[−γ
2
(c− cα)2θ2i +

δ

4
θ4i ] +

p∑
i 6=j=1

εij

2
θ2i θ

2
j .

The introduction of the mixed terms depending only on the θi’s (the last terms)
will not change greatly the arguments presented in the case when p was equal to
one. In fact, in the following we will point out how our previous estimates can be
extended for this case.

The main feature of the perturbed systems in Section 3 is that their correspond-
ing local free energy density have lower bounds that do not depend on the trunca-
tion parameter M . Since the extended local free energy just introduces nonnegative
terms, we can define a similar truncation that maintains the same property, with
such perturbed systems it is then possible to similarly establish Lemma 4.1.

As for Lemma 4.3, we treat the new terms by using the immersion of H1(Ω) in
L4(Ω) and the estimates for the orientation field variables given in Lemma 4.1.

After we have extended the results of Lemmas 4.1 and 4.3, all the other lemmas
are their direct consequence without any significant change due to the introduction
of the new terms.

8. Final Remarks

Remark 8.1. Observe that (2.3) implies that for almost all t ∈ (0, T ] there holds

κcD(∇c(·, t),∇φ−∇c(·, t))
− (w −D∂cF(c(·, t), θ1(·, t), . . . , θp(·, t)), φ− c(·, t)) ≥ 0,

for all φ ∈ K = {η ∈ H1(Ω), 0 ≤ η ≤ 1, η = c0}.
Moreover, since c ∈ L2(0, T,H2(Ω)) and 1 ≤ d ≤ 3, by standard Sobolev imbed-

dings, we can assume that c(x, t) is a continuous function of x for the same times
t as above. Fix such a t and assume that in a neighborhood V of a point x ∈ Ω we
have that 0 < c(x, t) < 1 for x in the closure of V. Thus, for a given C∞–function ϕ
of compact support in V satisfying ϕ = 0, c(·, t) + λϕ(·) ∈ K for small enough real
λ. By taking φ = c+ λϕ back in the last inequality, and observing that λ assumes
positive and negative values, we conclude that for any C∞–function ϕ of compact
support in V such that ϕ = 0,

κcD(∇c(·, t),∇ϕ)− (w −D∂cF(c(·, t), θ1(·, t), . . . , θp(·, t)), ϕ) = 0.

We conclude that in regions such 0 < c(x, t) < 1, for almost all times t ∈ (0, T ],
w = D∇(∂cF − κc∆c), up to a function of time. Substituting back in the first
equation of (1.1), we obtain that ∂tc = ∇ · [D∇(∂cF − κc∆c)] in such regions. In
this sense, the obtained solution is a generalized solution of the original problem.

Remark 8.2. When γ = δ = εij = 0, we obtain c that solves a generalized
formulation of the Cahn–Hilliard equation, and for which the estimate 0 ≤ c ≤ 1 is
still valid. But, we are able to guarantee that the classical Cahn-Hilliard equation
is satisfied only in regions where 0 < c < 1. Thus, unfortunately we are not able to
reach this kind of estimate for the classical Cahn-Hilliard equation with polynomial
free-energy.
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The physical model we are considering in this paper assumes that the coefficients
appearing in the free-energy functions are positive. In mathematical terms, we
could have a more general situation. For instance, εij ≥ 0 is enough to guarantee
that, in the case when p > 1 and the cross terms θ2i θ

2
j are present, the free energy

functional FσεM is still bounded below by a constant that does not depend on M ,
as indicated in formula (3.5), and the results in the paper are true. The coefficient
γ could have any sign. When γ ≤ 0, the problem in fact is simpler because in this
case the corresponding term in the free-energy functional has the “right sign” In
the case that γ > 0, to get the first inequality in (3.5), the coefficient δ must be
positive.

Remark 8.3. In our first attempts to study the problem with the free-energy
functional presented in the paper, we tried to use Galerkin method. However, we
were not able to get the necessary estimates (basically due to presence of the term
c2θ2i ) except in the special case in which the coefficients are such that the original
free-energy functional is bounded from below. In this special case it is possible to
solve the problem using Galerkin method. Even in such special case, however, we
cannot identify such solution with the generalized solution presented in this paper.
This is due to the following facts: our uniqueness result is based upon the fact
that the c presented in the paper is an element of the set K = {η ∈ H1(Ω), 0 ≤
η ≤ 1, η = c0}; however, we are not able to get a L∞–bound for the solution
obtained by the Galerkin method in the special case, and thus we do not know
whether such solution belongs to K. Therefore, even in the special case we are not
able to compare the generalized solution and the solution obtained by the Galerkin
method.

Remark 8.4. The physical meaning of c (concentration of one of the two mate-
rials in the mixture) requires that 0 ≤ c ≤ 1. On the other hand, from physical
arguments, it is expected that asymptotically in time the concentration approach
certain values of the minimizers of the function f appearing in F (maybe different
ones in different regions of Ω.) In terms of mathematical possibilities, it may occur
that in certain situations two of these minimizer (exactly two in the special case of
two-wells potentials) correspond to pure materials (c = 0 or c = 1.) However, in
physical terms, these minimizers may be associated in fact to values of c correspond-
ing to mixtures of materials (say, c1 and c2, 0 < c1 < c2 < 1,) although, maybe,
with clear predominance of one of them (even in cases with two-wells potentials.)
In these cases, it is perfectly possible to have a initial condition for the concentra-
tion, c0 such that the values of c0(x) are not confined to the interval [c1, c2]. As
before, one expects that asymptotically in time the concentration evolves in such
way to approach either c1 or c2, depending on the region of Ω. But, if it does so,
it cannot not satisfy c1 ≤ c(x, t) ≤ c2 for all time t and x, although on physical
grounds it should satisfy 0 ≤ c(x, t) ≤ 1. Thus, the location of the minimizers of
the potential is in fact independent of the required physical range of c. Here, we
considered the problem at this level of possibilities, and our generalized solutions
satisfy this physical requirement.

A more precise and difficult question related to this situation is the following:
suppose c0 satisfies c1 ≤ c0(x) ≤ c2 for all x, does c satisfy c1 ≤ c(x, t) ≤ c2 for all
x and t? For certain parabolic (scalar) equations, one expect this to be true. How-
ever, for general systems, where interactions between the unknown variables play a
significant role, this may be not so. Even in homogeneous situations, when spatial
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variables play no significant role, the trajectories could be spirals approaching the
equilibrium points of the corresponding ordinary differential system. We do not
know whether this is the case of the system considered in this article. Certainly
this is an interesting point to investigate.

Another interesting point to consider is the following. We placed the singularities
of the logarithmic perturbation at 0 and 1 to comply with the required physical
restriction 0 ≤ c ≤ 1 on the concentration. However, suppose that we have an initial
condition for the concentration satisfying 1/3 ≤ c0 ≤ 2/3; if we repeat the argument
of the paper, but with the logarithmic singularities placed at 1/3 and 2/3, we obtain
a solution satisfying 1/3 ≤ c ≤ 2/3. The same sort of reasoning would imply that it
is always possible to construct a solution satisfying min c0 ≤ c ≤ max c0. Moreover,
if we consider that we have uniqueness, this would be the solution, taking us to
the conclusion that every solutions satisfy min c0 ≤ c ≤ max c0. But this is strange
because, as we said above, on physical grounds one expects the values of c approach
either c1 or c2. This raises the question whether there is something wrong.

The key to ease this discomfort is the observation that, when we change where we
place the logarithmic singularities, in fact we are changing the problem to be solved.
For instance, in the previous example of changing the placement of the singularities,
the differential inequality (5) would require that c and the test functions φ belong
to modified K̃ = {η ∈ H1(Ω), 1/3 ≤ η ≤ 2/3, η = c0}. Moreover, the solutions of
these two different problems are not comparable, since it is clear that the uniqueness
stated in Lemma 2.5 holds for exactly the same problem. Thus, we cannot reason
as in the previous paragraph and its “conclusions” do not hold.

A final point must be considered. Since different placements of the logarith-
mic singularities introduce different generalized problems, and therefore different
solutions, which is the “right” one to be picked? We argue that the one in this
paper is the “right” one based on two reasons. First, the only reasonable physi-
cal restriction to the concentration is 0 ≤ c ≤ 1, which requires the placement of
the singularities as we chose, and not in different places. Second, as we explained
in a previous remark, our generalized solutions satisfy the classical Cahn-Hilliard
equation in regions described basically by 0 < c(x, t) < 1, leaving out, maybe, only
the regions of pure materials, where the physical mechanisms for the mixture no
longer apply. The same sort of reasoning, when applied for a problem obtained with
perturbation with singularities placed for instance at 1/3 and 2/3 would guarantee
the Cahn-Hilliard equation only in regions such that 1/3 < c(x, t) < 2/3, leaving
out, maybe, regions where in fact the mechanisms for mixtures still apply, which is
not physically reasonable.
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