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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR A SINGULAR PROBLEM ASSOCIATED TO THE

P-LAPLACIAN OPERATOR

CARLOS ARANDA, TOMAS GODOY

Abstract. Consider the problem

−∆pu = g(u) + λh(u) in Ω

with u = 0 on the boundary, where λ ∈ (0,∞), Ω is a strictly convex bounded
and C2 domain in RN with N ≥ 2, and 1 < p ≤ 2. Under suitable assumptions
on g and h that allow a singularity of g at the origin, we show that for λ positive

and small enough the above problem has at least two positive solutions in
C(Ω)∩C1(Ω) and that λ = 0 is a bifurcation point from infinity. The existence

of positive solutions for problems of the form −∆pu = K(x)g(u)+λh(u)+f(x)
in Ω, u = 0 on ∂Ω is also studied.

1. Introduction

This paper concerns problems of the form

−∆pu = Kg(u) + λh(u) + f in Ω,

u = 0 on ∂Ω
u > 0 in Ω.

(1.1)

Here λ is a nonnegative parameter, ∆p is the p-laplacian operator defined by ∆pu :=
div(|∇u|p−2∇u) with 1 < p < ∞. We assume that

(H1) Ω is a C2 and bounded domain in RN with N ≥ 2
(H2) g : (0,∞) → (0,∞) is a continuous and non increasing function (that may

be singular at the origin)
(H3) h : [0,∞) → [0,∞) is a continuous and non decreasing function
(H4) K and f are nonnegative functions defined on Ω which satisfy that K is

non identically zero, K ∈ L∞(Ω) and f ∈ C(Ω).
As usual, g(u), h(u) denote the Nemitskii operators associated with g and h re-
spectively. The solutions of (1.1) will be understood in the following weak sense:
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u ∈ W 1,p
loc (Ω) ∩ C(Ω) satisfying u = 0 on ∂Ω and

∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 =
∫

Ω

(Kg(u) + λh(u) + f)ϕ

for all ϕ ∈ C∞
c (Ω).

Singular bifurcation problems of the form −∆u = g(x, u) + h(x, λu) in Ω, u = 0
on ∂Ω, u > 0 in Ω have been considered in [4] for the case where, for some α > 0 and
p > 0 g(x, u) and h(x, λu) behave like u−α and (λu)p respectively. There, existence
of positive solutions for λ nonnegative and small enough is obtained via a sub and
supersolutions method and non existence of such solutions is also shown for large
values of λ. From these results it seems a natural question to ask for similar results
when the laplacian is replaced by the degenerated operator ∆p. Our aim in this
paper is to study existence and (at least for the case K = 1, f = 0) multiplicity of
positive solutions of (1.1). Our approach to this problem is somewhat different from
the followed in [4] and it is more in the line of fixed point theorems for nonlinear
eigenvalue problems. We first study in section 2, for a nonnegative F ∈ C(Ω), the
problem −∆pu = Kg(u) + F in Ω, u = 0 on ∂Ω, u > 0 in Ω. Lemma 2.6 states
that this problem has unique solution and Lemma 2.10 says that the corresponding
solution operator S for this problem, defined by S(F ) := u is a compact, continuous
and non decreasing map from P ∪{0} into P , where P is the positive cone in C(Ω).
These results (Lemmas 2.6 and 2.10) are suggested by the work of several authors
in [2, 4, 5, 10, 11] where existence of positive solutions for this problem is obtained
under different assumptions on K and f .

In section 3 we consider problem (1.1). We write it as u = S(λh(u) + f) with
S as above. The above stated properties of S allow us to apply a classical fixed
point theorem for nonlinear eigenvalue problems to obtain in Theorem 3.1 that
for λ nonnegative and small enough there exists at least a (positive) solution of
(1.1) and that the solution set for this problem (i.e., the set of the pairs (λ, u)
that solve it) contains an unbounded subcontinuum (i.e., an unbounded connected
subset) emanating from (0, u∗), where u∗ is the (unique) solution of the problem
−∆pu = Kg(u) + f in Ω, u = 0 on ∂Ω, u > 0 in Ω.

Concerning multiplicity of positive solutions of (1.1), in section 4, Theorem 4.6,
we prove that, if in addition,

(H5) Ω is a strictly convex domain in RN

(H6) g and h are locally Lipchitz on (0,∞) and [0,∞) respectively
(H7) 1 < p ≤ 2, infs>0 h(s)/sp−1 > 0 and lims→∞ h(s)/sq < ∞ for some q ∈

(p− 1, N(p−1)
N−p ],

then the problem

−∆pu = g(u) + λh(u) in Ω,

u = 0 on ∂Ω
u > 0 in Ω

(1.2)

has at least two positive solutions for λ positive and small enough and that λ = 0
is a bifurcation point from infinity for this problem.
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To see this in section 4 we study, for j ∈ N, the problem

−∆pu = g(u +
1
j
) + λh(u) in Ω,

u = 0 on ∂Ω
u > 0 in Ω.

(1.3)

Lemma 4.1 provides, for a given λ0 > 0, an a priori bound for the L∞ norm
of the solutions u of (1.3) corresponding to some λ ≥ λ0. On the other hand,
from Theorem 3.1 we have an unbounded subcontinuum Cj of the solution set for
(1.3) emanating now from (0, u∗j ) where u∗j is the (unique) solution of the problem
−∆pv = g(v + 1

j ) + λh(v) in Ω, v = 0 on ∂Ω, v > 0 in Ω. Also (cf. Remark
3.2, part ii)) Cj ⊂ [0, c) × P for some positive constant c. Since Cj is connected
and unbounded, from these facts we obtain, for λ positive and small enough, two
positive solutions of (1.3) and then, going to the limit as j tends to infinity (perhaps
after passing to a subsequence) we obtain two positive solutions for (1.3). Lemmas
4.2, 4.3, 4.5 and Remark 4.4 provide the necessary intermediate statements on order
to do it.

2. Preliminaries

For this section, we assume that the conditions (H1), (H2), (H3) and (H4) stated
at the introduction hold. Let us start with some preliminary remarks collecting
some known facts about the p-Laplacian operator.

Remark 2.1. Let us recall [12, 6, 15] that for v ∈ L∞(Ω) and 1 < p < ∞ the
problem −∆pu = v in Ω, u = 0 on ∂Ω has a unique (weak) solution u which
belongs to C1,α(Ω) for some α ∈ (0, 1) and that the associated solution operator
(−∆p)−1 : L∞(Ω) → C1(Ω) is a positive, continuous and compact map. Moreover,
if v ≥ 0 and v 6= 0 then u belongs to the interior of the positive cone in C1(Ω) So
∂u
∂ν < 0 on ∂Ω and u is bounded from above and from below by positive multiples
of the distance function

δ(x) := dist(x, ∂Ω).

So (−∆p)−1 is a strongly positive operator on C(Ω), i.e., v ∈ P implies (−∆p)−1v ∈
Int(P ) where P denotes the positive cone in C(Ω).

In addition, for the p-laplacian operator the following comparison principle holds:
If U is a bounded domain (non necessarily regular) in RN and if u, v ∈ W 1,p

loc (U) ∩
C(U) with 1 < p < ∞ satisfy (in weak sense) −∆pu ≤ −∆pv on U, u ≤ v on ∂U ,
then u ≤ v.

Remark 2.2. If U is a bounded domain (i.e an open and connected set, non
necessarily regular) in RN and if u, v ∈ W 1,p

loc (U) ∩ C(U) satisfy (in weak sense)
−∆pu−Kg(u) ≤ −∆pv − g(v) in U with u ≤ v on ∂U, then u ≤ v on U . Indeed,
suppose u > v somewhere and consider the non empty open set V = {x ∈ U :
u(x) > v(x)}. Since −∆pu + ∆pv ≤ K(g(u)− g(v)) ≤ 0 in V and u = v on ∂V the
comparison principle gives a contradiction.
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Lemma 2.3. For a nonnegative F ∈ L∞(Ω) and for j ∈ N, the problem

−∆puj = Kg(u +
1
j
) + F in Ω, uj ∈ W 1,p

loc (Ω) ∩ C(Ω),

uj = 0 on ∂Ω,

uj > 0 in Ω

(2.1)

has a unique positive (weak) solution satisfying uj ∈ C1(Ω) and j → 1
j + uj is non

increasing. Moreover, uj ≥ c δ for some positive constant c independent of j.

Proof. Let gj : R → R be defined by gj(s) = g(s) for s ≥ 1
j and gj(s) = g( 1

j ) for
s < 1

j , let Tj : C(Ω) → C(Ω) be given by Tj(v) = (−∆p)−1(Kg( 1
j + v) + F ). Since

for v ∈ C(Ω) we have

‖Kg(
1
j

+ v) + F‖L∞(Ω)‖K‖L∞(Ω)g(
1
j
) + ‖F‖L∞(Ω),

it follows that Tj is a compact operator. Moreover,

0 ≤ T (v) ≤ (−∆p)−1
(
g(

1
j
)‖K‖L∞(Ω) + ‖F‖L∞(Ω)

)
on Ω,

and so the existence assertion of the lemma follows from the Schauder fixed point
theorem (as stated in [8, Corollary 11.2]) applied to Tj on a closed ball (in C(Ω))
around 0 with radius large enough.

If v and w are two different solutions of (2.1) in W 1,p
loc (Ω) ∩ C(Ω), consider the

open set Ω′ := {x ∈ Ω : v(x) > w(x)}. If Ω′ 6= ∅ then

−∆pv + ∆pw = K
(
gj(

1
j

+ v)− gj(
1
j

+ w)
)

in Ω′ (2.2)

and also v = w on ∂Ω′, but, from our assumptions on K and g, the comparison
principle gives v ≤ w on Ω′ which is a contradiction. A similar contradiction is
obtained if v < w somewhere. thus the uniqueness assertion of the lemma holds.
From the facts in Remark 2.1, the solution of (2.1) belongs to C1(Ω) and it is
positive because (−∆p)−1 is a positive operator Again by the comparison principle

1
j+1 + uj+1 ≤ 1

j + uj . Indeed, consider the set U = {x ∈ Ω : 1
j+1 + uj+1 > 1

j + uj}
and observe that −∆p( 1

j+1 +uj+1)+∆p( 1
j +uj) = Kg( 1

j+1 +uj+1)−Kg( 1
j +uj) ≤ 0

in U and 1
j+1 + uj+1 ≤ 1

j + uj on ∂U , thus the comparison principle gives U = ∅.
Finally, −∆p(uj) = Kg( 1

j + uj) + F ≥ Kg(1 + u1), so the strong positivity of
(−∆p)−1 gives the last assertion of the lemma. �

Remark 2.4 (Tolksdorf’s estimates). Let Ω′ and Ω′′ be open subsets of Ω such
that Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω and suppose that u ∈ W 1,p

loc (Ω) ∩ C(Ω) satisfies −∆pu = v

on Ω for some v ∈ L∞(Ω). Then there exist α ∈ (0, 1) such that u ∈ C1,α(Ω′′).
Moreover, an upper bound of ‖u‖C1,α(Ω′′) can be found depending only on p, Ω, Ω′

Ω′′, ‖u‖L∞(Ω′) and ‖v‖L∞(Ω′) (cf. [14, Theorem 1]).

The Tolksdorf’s estimates imply the following result.

Remark 2.5. Assume that the sequences {Fj}j∈N and {uj}j∈N are in L∞loc(Ω) and
W 1,p

loc (Ω)∩C(Ω) respectively with 1 < p < ∞ and uj ≥ 0 such that −∆puj = Fj on
Ω for all j ∈ N. Assume also that for each open set Ω′′ ⊂⊂ Ω there exist positive
constants cΩ′′ , c̃Ω′′ such that ‖Fj‖L∞(Ω′′) ≤ cΩ′′ and ‖uj‖L∞(Ω′′) ≤ c̃Ω′′ for all
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j ∈ N and that limj→∞ Fj = F a.e. in Ω for some F : Ω → R. Then there exists a
subsequence {ujk

}k∈N and a nonnegative function v ∈ C1(Ω) satisfying −∆pv = F
on Ω and such that {ujk

}k∈N converges, in the C1 norm, to v on each compact
subset of Ω.

Indeed, if Ω′ ⊂⊂ Ω, let Ω′′ be a domain such that Ω′ ⊂⊂ Ω′′ ⊂ Ω. We have
‖Fj‖L∞(Ω′) ≤ cΩ′′ , ‖uj‖L∞(Ω′′) ≤ c̃Ω′′ . Taking into account the Tolksdorf’s esti-
mates in b), a Cantor diagonal process gives a subsequence {ujk

}k∈N that converges
to some function u ∈ C1(Ω) on each compact subset of Ω in the C1 norm. So, we
have, for all ϕ ∈ C∞

c (Ω)∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 = lim
j→∞

∫
Ω

|∇uj |p−2〈∇uj ,∇ϕ〉 = lim
j→0

∫
Ω

Fjϕ =
∫

Ω

Fϕ

and then u satisfies −∆pu = F on Ω.

Lemma 2.6. For a nonnegative function F ∈ L∞(Ω) the problem

−∆pu = Kg(u) + F in Ω,

u = 0 on ∂Ω,

u > 0 in Ω
(2.3)

has a unique positive solution in W 1,p
loc (Ω)∩C(Ω) and this solution belongs to C1(Ω)∩

C(Ω). Moreover, u ≥ cδ where c is the positive constant given by Lemma 2.3 and
u = limj→∞ uj (in the pointwise sense) with uj as there.

Proof. Let uj be as in Lemma 2.3 and let u = limj→∞ uj . Since 1
j + uj ≥ cδ (with

c as there, and so independent of j) we have, for each subdomain Ω′ ⊂⊂ Ω,

‖Kg(
1
j

+ uj) + F‖L∞(Ω′) ≤ ‖K‖L∞(Ω)g(cδ) + ‖F‖L∞(Ω).

Also,

‖uj‖L∞(Ω′) ≤ ‖1
j

+ uj‖L∞(Ω′) ≤ 1 + ‖u1‖L∞(Ω) < ∞.

After passing to a subsequence, from Remark 2.5 we can assume that {uj}j∈N
converges, in the C1 norm, on each compact subset of Ω, to a solution u ∈ C1(Ω)
of the problem −∆pu = Kg(u) + F in Ω.

Since (as shown in Lemma 2.3) 1
j +uj is decreasing in j, we have 0 ≤ u ≤ 1

j +uj

for all j. Also, uj ∈ C(Ω), uj = 0 on ∂Ω and so u = 0 on ∂Ω and u is continuous
up to the boundary. Moreover, 1

j + uj ≥ cδ gives, going to the limit, that u ≥ cδ.
If z ∈ W 1,p

loc (Ω) ∩ C(Ω) is another solution of (2.3), consider the open set U :=
{x ∈ Ω : z(x) > u(x)}. From (2.3) we have −∆pz ≤ −∆p(u) in U and z = u in
∂U , the comparison principle leads to U = ∅. Then z ≤ u in Ω. Similarly we see
that u ≤ z. �

Remark 2.7. It is known [9, section 4] that if m ∈ L∞(Ω) and |{x ∈ Ω : m(x) >
0}| > 0 then there exists a unique λ = λ1(−∆p,m, Ω) ∈ (0,∞) such that the
problem −∆pΦ = λm|Φ|p−2Φ in Ω, Φ = 0 in ∂Ω, Φ > 0 in Ω has a solution
Φ ∈ W 1,p(Ω) ∩ C(Ω). This solution is unique up to a multiplicative constant,
belongs to C1,α(Ω) for some α ∈ (0, 1), satisfies that ∇Φ(x) 6= 0 for all x ∈ ∂Ω and
there exists positive constants c1 and c2 such that c1δ(x) ≤ Φ(x) ≤ c2δ(x) for all
x ∈ Ω (so Φ(x) > 0 for all x ∈ Ω). For the case m = 1 we will write λ1(−∆p,Ω)
instead of λ1(−∆p,m, Ω).
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We recall also that if 0 ≤ h ∈ L∞(Ω), λ > 0 and if there exists a nonnegative and
non identically zero solution w ∈ W 1,p

0 (Ω) of the problem −∆pw = λmwp−1 + h in
Ω then λ ≥ λ1(−∆p,m) [9, Proposition 4.1]. This implies the following result.

Remark 2.8. Let m ∈ L∞(Ω) and let, as usual, m+ = max(m, 0). Assume m+ 6= 0
and let λ ≥ 0 such that there exists a nonnegative and non identically zero function
w ∈ W 1,p

loc (Ω) ∩ C(Ω) such that −∆pw ≥ λmwp−1 in Ω. Then λ ≤ λ1(−∆p,m, Ω).
Indeed, Let v ∈ W 1,p

0 (Ω) be the (positive) solution of the problem −∆pv = λmwp−1

in Ω. Then v ∈ C1(Ω) and −∆pw ≥ −∆pv in Ω, w = v on ∂Ω, Thus the comparison
principle gives w ≥ v in Ω. Since −∆pv = λmvp−1 + h with h = λm(wp−1− vp−1),
we have 0 ≤ h ∈ L∞(Ω) and so Remark 2.7 applies to give that λ ≤ λ1(−∆p,m, Ω).

Remark 2.9. This remark concerns to the behavior near the boundary of the
solution of problem (2.3). We will say that two functions v1, v2 : Ω → (0,∞)
are comparable if there exist positive constants c1, c2 such that c1v1 ≤ v2 ≤ c2v1.
Consider in Lemma 2.6 the case F = 0 and assume that K is comparable with
Φγ for some γ ≥ 0 and that 0 < lim infs→0+ sαg(s) ≤ lim sups→0+ sαg(s) < ∞
for some α > γ + 1. Then the solution u given there is comparable with Φ

γ+p
α+p−1

(and so with δ
γ+p

α+p−1 ) where Φ is a positive principal eigenfunction for −∆p in Ω
with homogeneous Dirichlet boundary condition associated to the weight m ≡ 1.
Indeed, let β = (γ + p)/(α + p− 1) and let v = Φβ . Since 0 < β < 1 it follows that
v ∈ C1(Ω) ∩ C(Ω). A computation shows that −∆pv = K̃v−α on Ω, where

K̃ = βp−1((1− β)(p− 1)|∇Φ|p + λ1Φp).

Taking into account that 0 < β < 1, the properties of Φ stated in Remark 2.7
imply that K̃ is comparable with 1 and so, from our assumptions on g, we can
choose positive constants c and c′ such that −∆p(cv) = cp−1K̃v−α ≤ g(v) and
−∆p(c′v) = (c′)p−1K̃v−α ≥ g(v). Let U = {x ∈ Ω : u(x) < cv(x)}. Thus U is
open. Since g is non increasing we have −∆pu ≥ −∆p(cv) on U on Ω. Also u = cv
on ∂U and so the comparison principle implies U = ∅. Then u ≥ cv = cΦβ in Ω.
Similarly, we obtain also that u ≤ c′Φβ in Ω.

Let P be the positive cone in C(Ω). For j ∈ N, let Sj : P ∪ {0} → P be the
solution operator for problem (2.1) gives by Sj(f) = u and let S : P ∪ {0} → P be
the analogous solution map of (2.3).

Lemma 2.10. (i) S : P ∪ {0} → P is a continuous, non decreasing and com-
pact map and the same is true for each Sj.

(ii) 0 < j ≤ k implies Sk(u) ≤ Sj(u) for u ∈ P ∪ {0}.
(iii) S(u) ≤ Sj(u) for u ∈ P ∪ {0}, j ∈ N.

Proof. To see that S is non decreasing, suppose F1, F2 ∈ P with F1 ≥ F2 ≥ 0. Let
v1 = S(F1), v2 = S(F2). If v1 < v2 somewhere in Ω, let U := {x ∈ Ω : v2(x) >
v1(x)}. Thus U is a non empty open set and, from our assumptions on g and K,

−∆pv1 = Kg(v1) + F1 ≥ Kg(v2) + F2 = −∆pv2 in U,

v1 = v2 on ∂U.

Then the comparison principle gives v1 ≥ v2 on U which is a contradiction. Then
S is non decreasing.
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To see that S is continuous, consider F ∈ P ∪ {0} and a sequence {Fj}j∈N in
P ∪{0} that converges to F in C(Ω). Let M be an upper bound of {Fj}j∈N. Then

0 < S(0) ≤ S(Fj) ≤ S(M). (2.4)

Let uj = S(Fj), thus −∆puj = Kg(uj) + Fj in Ω, uj = 0 on ∂Ω. Taking into
account that by Lemma 2.6) S(0) ≥ cδ and that S is non decreasing, we have

0 ≤ g(uj) = g(S(Fj)) ≤ g(S(0)) ≤ g(cδ) ∈ L∞loc(Ω).

Also 0 ≤ uj ≤ S(M) ∈ C(Ω). Then Remark 2.5 gives a subsequence {Fjk
}k∈N such

that S(Fjk
) converges, in the C1 norm, on each compact subset of Ω to a positive

solution z ∈ C1(Ω) of the problem

−∆pz = Kg(z) + F in Ω.

Since ujk
= S(Fjk

) ≥ S(0) ≥ S(cδ), we have z ≥ cδ. Also, z ≤ S(M) ∈ C(Ω).
Since S(M) = 0 on ∂Ω it follows that z is continuous up to the boundary and z = 0
on ∂Ω. Thus z = S(F ).

Let ε > 0 and let η = η(ε) > 0 such that S(M) ≤ ε on Ω− Ωη where

Ωη := {x ∈ Ω : dist(x, ∂Ω) > η}. (2.5)

We have S(Fjk
) ≤ S(M) ≤ ε on Ω − Ωη for all k. Also S(F ) ≤ ε on Ω − Ωη,

thus ‖S(Fjk
) − S(F )‖L∞(Ω−Ωη) ≤ 2ε for all k. On the other hand, since {S(Fjk

)}
converges in C1(Ωη) to S(F ), for k large enough we have ‖S(Fjk

)−S(F )‖L∞(Ωη) ≤
ε. Then {S(Fjk

)} converges in C(Ω) to S(F ). Then S is continuous.
To prove that S is a compact map, consider a bounded sequence {Fj} in P ∪{0}

and let M ∈ (0,∞) be an upper bound of {Fj}. For ε > 0 let η = η(ε) be chosen
as above. As before, Remark 2.5 gives a subsequence {Fjk

} that converges, in the
C1 norm, on each compact subset of Ω. Thus, for k and s large enough,

‖S(Fjk
)− S(Fjs

)‖C(Ωη) ≤ ε

and

‖S(Fjk
)− S(Fjs

)‖C(Ω−Ωη) ≤ ‖S(Fjk
)‖C(Ω−Ωη) + ‖S(Fjs

)‖C(Ω−Ωη)

≤ 2‖S(Fjs)‖C(Ω−Ωη) ≤ 2ε

Then {S(Fjk
)}k∈N is a Cauchy’s sequence in C(Ω) and the compactness of S follows.

Since for each j, g(. + 1
j ) satisfies the assumptions made for on g, (i) holds for each

Sj . Finally, (ii) is a direct consequence of the comparison principle and, since
S(u) = limj→∈ Sj(u) (by Lemma 2.6), (iii) follows from (ii). �

3. An existence result

Our assumptions for this section are those stated at the beginning of the Section
2. Let us introduce some additional notations. Consider, for j ∈ N and λ ≥ 0 the
problem

−∆pu = Kg(u +
1
j
) + λh(u) + f in Ω, u ∈ W 1,p

loc (Ω) ∩ C(Ω),

u = 0 on ∂Ω,

u > 0 in Ω

(3.1)
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Let π : [0,∞)× P → [0,∞) be defined by π(λ, u) = λ and for j as above, let

Σj = {(λ, u) ∈ [0,∞)× P : u ∈ W 1,p
loc (Ω) ∩ C(Ω) and u solves (3.1)},

Λj = π(Σj), u∗j = Sj(f)

and let Σ∞, Λ∞ and u∗∞ be the sets and the function analogously defined replacing
(3.1) by (1.1). Finally, let Cj (respectively C∞) be the connected component of Σj

containing u∗j (respectively of Σ∞ containing u∗∞).
With this notation, we have the following theorem.

Theorem 3.1. (i) (λ, u) ∈ Σ∞ implies that u ∈ C1(Ω).
(ii) For f ∈ P ∪ {0} it holds that C∞ is unbounded in [0,∞)× P .
(iii) Λ∞ is an interval containing 0.
(iv) For j ∈ N , (i), (ii) and (iii) hold with Σ∞, Λ∞ and u∗∞ replaced by Σj, Λj

and u∗j respectively and with (3.1) replaced by (1.1).
(v) There exists λ̃ > 0 such that [0, λ̃] ⊂ Λ∞ and [0, λ̃] ⊂ Λj for each j.

Proof. (i) is given by Lemma 2.3. To see (ii) and (iii), observe that (1.1) is equivalent
to S(λh(u) + f) = u. Let T : [0,∞) × (P ∪ {0}) → C(Ω) be defined by T (λ, v) =
S(λh(v + u∗∞) + f)− u∗∞ (since S is non decreasing we have T (λ, v) ≥ 0 for v ≥ 0).
Lemma 2.10 implies that T is a continuous, non decreasing and compact map.
Moreover, T (0, 0) = 0 and, since T (0, v) = 0 for all v ∈ P ∪{0}, v = 0 is the unique
fixed point of T (0, .). For each σ ≥ 1 and ρ > 0, we have also that T (0, u) 6= σu
for u ∈ P ∩ ρ∂B, where B denotes the open unit ball centered at 0 in C(Ω). Since
u solves (1.1) if and only if u = v + u∗∞ with v a fixed point for T , in [1, Theorem
17.1], applied to T , gives that C∞ is unbounded in [0,∞) × P and that Λ∞ is an
interval. Thus (i), (ii) and (iii) hold for S and, replacing in the above argument g
by g(. + 1

j ), we see that the same is true for each Sj .
To prove (v) one observes that, by Lemma 2.3 the problem

−∆pu = Kg(1 + u) + f in Ω, u ∈ W 1,p
loc (Ω) ∩ C(Ω)

u = 0 on ∂Ω

has a unique solution u = u1 that belongs to C1(Ω). Thus 0 ∈ Λ1. Since, by ii),
C1 is unbounded, it follows that there exists λ̃ > 0 such that λ̃ ∈ Λ1 − {0}. Thus,
by (iii), for 0 < λ < λ̃ there exists a positive solution uλ,1 of

−∆puλ,1 = Kg(1 + uλ,1) + λh(uλ,1) + f in Ω, uλ,1 ∈ W 1,p
loc (Ω) ∩ C(Ω)

uλ,1 = 0 on ∂Ω

Now, by Lemma 2.10, S(λh(uλ,1)+f) ≤ S1(λh(1+uλ,1)+f) and since the operator
u → U(u) := S(λh(u) + f) is a positive, non decreasing, continuous and compact
map. [1, Theorem 17.1] implies that the sequence {U j(0)}j∈N converges to a fixed
point of U . Then λ ∈ Σ∞. Similarly, by considering Sj instead of S we get that
λ ∈ Λj for all j. �

Remark 3.2. (i) If for some λ0 > 0 and j ∈ N we know that an a priori estimate
‖u‖L∞(Ω) ≤ c holds for each positive solution of (3.1) associated to each λ ≥ λ0

then an upper bound for Λj can be given. Indeed, in this case we have

−∆pu = g(
1
j

+ u) + λh(u) + f ≥ λc1−ph(u)up−1 in Ω.
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Also, u = Sj(λh(u)+f) ≥ S(0) ≥ cδ for some positive constant c (cf. Lemmas 2.10
and 2.6), then h(u) ≥ h(cδ) and so, by Remark 2.8, λ does not exceed the principal
eigenvalue for −∆p associated to the weight function c1−ph(cδ).

(ii) On the other hand if infs>0
h(s)
sp−1 > 0 a similar result holds. Indeed, in this

case from (3.1) we have −∆pu ≥ λ infs>0
h(s)
sp−1 up−1 in Ω, u = 0 on ∂Ω and so, again

by Remark 2.8, λ infs>0
h(s)
sp−1 ≤ λ1(−∆p,Ω).

The following proposition gives some additional information about the regularity
of the solutions of (1.1).

Proposition 3.3. Assume that sups>0 sαg(s) < ∞ for some α ∈ [0, 2p−1
p−1 ). Then

u ∈ W 1,p
0 (Ω) for all positive weak solution u ∈ W 1,p

loc (Ω)∩C(Ω) of (1.1) with λ > 0.

Proof. We have ∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 =
∫

Ω

(Kg(u) + λh(u) + f)ϕ (3.2)

for all ϕ ∈ C∞
c (Ω) and so, since u ∈ W 1,p

loc (Ω) this equality holds also for all
ϕ ∈ W 1,p

0 (Ω) such that supp ϕ ⊂ Ω. For ε > 0, let uε := max(u, ε) − ε. Since
u ∈ C(Ω) and u = 0 on ∂Ω, we have supp uε ⊂ Ω. So we can take ϕ = uε as test
function in (1.1) to obtain∫

Ω

χ{u>ε}|∇u|p =
∫

Ω

(λh(u) + Kg(u) + f)uε

≤
∫

u>ε

(λh(u) + Kg(u) + f)u

≤
∫

Ω

(λh(u) + Kg(u) + f)u

(3.3)

We claim that the last integral is finite. Indeed, it is enough to show that ug(u) ∈
L1(Ω) and clearly this holds if α ≤ 1. Suppose now α > 1. We have

−∆pu = λh(u) + Kg(u) + f

≤
((

λh(‖u‖L∞(Ω)) + ‖f‖L∞(Ω)

)
‖u‖α

L∞(Ω) + c1‖K‖L∞(Ω)

)
u−α

= cu−α

(3.4)

where c = cλ,u = (λh(‖u‖L∞(Ω) + ‖f‖L∞(Ω)))‖u‖L∞(Ω) + c1‖K‖L∞(Ω).
Let w ∈ W 1,p

loc (Ω)∩C(Ω) be the solution (provided by Lemma 2.6) of the problem
−∆pw = cw−α in Ω, w = 0 on ∂Ω. Then, from (3.4), −∆pu−cu−α ≤ −∆pw−cw−α

in Ω, also u = w = 0 on ∂Ω and so Remark 2.1 gives u ≤ w in Ω. On the other
hand, Remark 2.8 gives w ≤ c′Φ

p
α+p−1 for some constant c′ where Φ is a positive

principal eigenfuntion for −∆p on Ω. Then

0 ≤ ug(u) ≤ c′′Φ
p

α+p−1 Φ−
αp

α+p−1 = c′′Φ−
p(α−1)
α+p−1 .

Since 0 ≤ α < 2p−1
p−1 implies p(α−1)

α+p−1 < 1 our claim holds. By Lemma 2.6, u(x) > 0
for all x ∈ Ω and so, from (3.4) and from the monotone convergence Theorem, we
get |∇u|p ∈ L1(Ω). �
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4. A multiplicity result

In this section we assume that in addition to the conditions (H1) (H2) and (H3)
stated at the introduction, the conditions (H5), (H6) and (H7) also hold.

In [3, Proposition 4.1] it is proved that if Ω is a strictly convex and bounded
domain with C2 boundary and if G : R → R is a locally Lipchitz function, then
there exists ρ > 0, with ρ depending only on Ω and N , such that if 1 < p ≤ 2 and
u ∈ C1(Ω) is a positive weak solution of the problem −∆pu = G(u) in Ω, u = 0
on ∂Ω then the global maximum of u in Ω is achieved at least at some point y ∈ Ω
satisfying dist(y, ∂Ω) ≥ ρ. From this fact and using the Gidas Spruck blow up
technique [7], in [3, Lemmas 3.1 and 3.2] is obtained an a priori estimate for the
solutions of the above problem. Following a similar approach, Lemma 4.1 below
adapts to our actual setting, with a similar purpose, the arguments in [3].

Lemma 4.1. Let Ω be a strictly convex, C2 and bounded domain in RN , N ≥ 2.
Assume that 1 < p ≤ 2 and that, in addition to the hypothesis stated at the introduc-
tion, g and h are locally Lipchitz on their domains and that infs>0 s−p+1h(s) > 0
and 0 < lims→∞ s−qh(s) < ∞ for some q ∈ (p− 1, N(p−1)

N−p ]. Then for each λ0 > 0
there exists a positive constant cλ0 such that for all j and for all positive solution
u of the problem

−∆pu = g(u +
1
j
) + λh(u) in Ω, u ∈ W 1.p

loc (Ω) ∩ C(Ω),

u = 0 on ∂Ω,

u > 0 in Ω,

(4.1)

with λ ≥ λ0 it holds that ‖u‖L∞(Ω) < cλ0

Proof. Let c = infs>0(h(s)/sp−1) and let u be a positive solution of (4.1) cor-
responding to some λ > 0. We have −∆pu = cλup−1 + H in Ω with H :=
g(u + ε) + λ(h(u) − cup−1). Since H ∈ L∞(Ω) and H > 0 in Ω, Remark 2.7
gives that λ ≤ c−1λ1(−∆p,Ω).

To prove the Lemma we proceed by contradiction. Assume that there exists a
sequence {un, λn, εn}n∈N such that jn ∈ N, λn ≥ λn, with un satisfying (4.1) for
λ = λn and such that ‖un‖L∞(Ω) ≥ n and let Gn : R → R be defined by

Gn(s) =

{
g(s + 1

jn
) + λnh(s) for s > 0,

g( 1
jn

) + λnh(0) for s ≤ 0.

Thus each Gn is locally Lipchitz and so, by [3, Proposition 4.1], there exists xn ∈ Ω
such that ‖un‖L∞(Ω) = un(xn) and dist(xn, ∂Ω) ≥ ρ with ρ as described at the
beginning of the section.

Let αn = ‖un‖L∞(Ω) and let Ωn = αk
n(Ω − xn) where Ωn := {x − xn : x ∈ Ω}

and k = q−p+1
p . Observe that, since q > p− 1, we have k > 0.

Let wn : Ωn → R be defined by

wn(y) =
1

αn
un

( 1
αk

n

y + xn

)
.
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Lemma 2.3 applied to F := λnh(un) ∈ C(Ω) gives un ∈ C1(Ω) and so wnC1(Ωn).
Let v ∈ C1(Ω) be the solution of the problem

−∆pv = λ0h(v) in Ω,

v = 0 on ∂Ω.

We have, for some positive constant c1 that v ≥ c1δ in Ω. Since −∆pun ≥
λ0h(un) = −∆pv in Ω and un = v on ∂Ω we get that un ≥ c1δ and so wn(y) 6= 0
for y ∈ Ωn. A computation gives that

−∆pwn(y) =
1

αq
n
g(αnwn +

1
jn

) + λnwq
n

h(αnwn)
(αnwn)q

in Ωn

wn = 0 on ∂Ωn.

(4.2)

For r > 0, let Br(0) be the closed ball in Rn centered at 0 with radius r. Since
(by our contradiction hypothesis) limn→∞ αk

n = ∞, by our choice of xn there exists
n0 = n0(r) such that Br(0) ⊂ Ωn for all n ≥ n0.

For c1 as above and for n large enough we have

un(
1

αk
n

y + xn) ≥ c1δ(
1

αk
n

y + xn) ≥ c1δ(
ρ

2
)

for all y ∈ Ωn. Then (recalling that, by Remark 3.2, λn ≤ c−1
2 λ1(−∆p,Ω) with

c2 = infs>0(h(s)/sp−1)) we get that, for y ∈ Br(0),

0 ≤ α−q
n 1g(αnwn(y) +

1
jn

) + λnh(αnwn(y))

≤ α−q
n g(c1

ρ

2
) +

1
c2

λ1(−∆p,Ω)αq
nuq

n(α−k
n 1y + xn)

h(un(α−k
n y + xn))

uq
n(α−k

n y + xn)

≤ α−q
n g(c1

ρ

2
) +

1
c2

λ1(−∆p,Ω) sup
s>c1

ρ
2

h(s)
sq

Thus, from (4.2) and Remark 2.4, there exist positive constants c2 and α ∈ (0, 1)
such that ‖wn‖C1,α(Br/2(0))

≤ c2 for all n large enough. Then we can find a

subsequence {wnj}j∈N that converges in C1(Br/2(0)) to some nonnegative w ∈
C1(Br(0)) with ‖w‖L∞(Br(0)) = 1. After passing to a furthermore subsequence
we can assume that λnj converges to some λ∗ ∈ [λ0, λ1(−∆p,Ω)]. We take test
functions in C∞

c (Br/2(0)) in (4.2) and taking the limit as n tends to ∞ we get
−∆pw ≥ λ∗Bwq on Br/2(0), where B = lims→∞(s−qh(s)). Since w 6≡ 0, Re-
mark 2.4 gives w(x) > 0 for all x ∈ Br/2(0) and so, again taking test functions in
C∞

c (Br/2(0)) in (4.2) and going to the limit as n tends to ∞, we obtain now

−∆pw = Bλ∗wq on Br/2(0). (4.3)

Taking a sequence of balls Bri
(0) with radius increasing to ∞ and repeating the

above argument on the subsequence wnj
obtained in the previous step, we can

obtain a Cantor diagonal subsequence, still denoted by wnj
, which converges in

the C1 norm on each compact set in RN to a function w̃ ∈ C1(RN ) satisfying
−∆pw̃ = Bλ∗w̃q on RN . Since, under our assumptions on p and q, this problem
has no solution [13] we obtain a contradiction. �

Lemma 4.2. For σ > ‖S(0)‖L∞(Ω) there exists λσ and jσ ∈ N such that for j > jσ

and 0 ≤ λ < λσ, problem (4.1) has no positive solution u satisfying ‖u‖L∞(Ω) = σ.
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Proof. We proceed by contradiction. Suppose that there exists a sequence
{jn, un, λn}∞n=1 with limn→∞ jn = ∞, λn > 0, limn→∞ λn = 0, and where un

is a positive solution of (4.1) for λ = λn and j = jn satisfying ‖un‖L∞(Ω) = σ. Let
M > 0 be an upper bound of {λn}. By Lemma 2.10 we have

0 < S(0) ≤ S(λnh(un)) = un ≤ S1(λnh(un)) ≤ S1(Mh(σ)).

Then {un}n∈N is bounded in C(Ω). Also, for Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω we have

‖g(un +
1
jn

) + λnh(un)‖L∞(Ω′′) ≤ ‖g(S(0))‖L∞(Ω′′) + Mh(σ)

thus Remark 2.5 gives a subsequence {ujk
} that converges, in the C1 norm, to some

function u ∈ C1(Ω) on each compact subset of Ω.
Since 0 < S(0) < un < S1(Mh(σ)) and also S1(Mh(σ)) ∈ C(Ω), S1(Mh(σ)) = 0

on ∂Ω, we get that u ∈ C(Ω) ∩ C1(Ω) and u = 0 on ∂Ω Going to the limit in the
weak form of

−∆punk
= g(unk

+
1

jnk

) + λh(unk
)

we find that −∆pu = g(u) + λh(u) in Ω. So u = S(0).
Observe that {unk

} converges to u in C(Ω). Indeed, given ε > 0, let η = η(ε) > 0
such that S1(Mh(σ)) < ε on Ω− Ωη (with Ωη defined by (2.5)). Proceeding as in
the proof of the continuity of S in Lemma 2.10, we get that ‖unk

− u‖L∞(Ωη) < ε
for k large enough and that ‖unk

− u‖L∞(Ω−Ωη) < 2ε for all k. Then {unk
}k∈N

converges to u in C(Ω).
Since ‖S(0)‖L∞(Ω) < σ = ‖un‖L∞(Ω) for all n, we get a contradiction. �

Lemma 4.3. Let λ̃ be as in Theorem 3.1 and let ũ be a positive solution of (3.1)
corresponding to j = 1 and λ = λ̃ (taking there K = 1 and f = 0). Then for
σ > ‖ũ‖L∞(Ω), 0 ≤ λ ≤ λ̃ and j ∈ N there exists a positive solution u of (4.1)
satisfying u ∈ C1(Ω) ∩ C(Ω), u ≥ S(0) and ‖u‖L∞(Ω) ≤ σ.

Proof. For 0 < λ ≤ λ̃, j ∈ N, Lemma 2.10 gives

0 < S(0) < Sj(λh(ũ)) ≤ S1(λ̃h(ũ)) = ũ ≤ σ. (4.4)

Let T : P ∪ {0} → P be defined by T (v) = Sj(λh(v)). Then T is a non decreasing
continuous and compact map and (4.4) says that T (ũ) ≤ ũ and [1, Theorem 17.1]
applies to see that {T k(0)}k∈N is a non decreasing sequence that converges in C(Ω)
to a fixed point u ∈ P for T , which solves (4.1) and since T k(0) ≤ T k(ũ) ≤ ũ ≤ σ
we get ‖u‖L∞(Ω) ≤ σ. Also u ≥ T k(0) = Sj(λT k−1(0)) ≥ Sj(0) ≥ S(0) (the last
inequality by Lemma 2.10 applied with F := λh(u)) and since λh(u) ∈ C(Ω), from
(4.1) Lemma 2.3 gives u ∈ C1(Ω) �

Remark 4.4. The following analogous of the Lemmas 4.2 and 4.3 hold:

(i) For σ > ‖ũ‖L∞(Ω) there exists λσ > 0 such that for 0 ≤ λ ≤ λ̃ (1.2) has a
positive solution u satisfying u ∈ C1(Ω) ∩ C(Ω) and ‖u‖L∞(Ω) = σ.

(ii) For σ > ‖ũ‖L∞(Ω) and for 0 ≤ λ ≤ λ̃ there exists a positive solution u of
(1.2) satisfying u ∈ C1(Ω) ∩ C(Ω), u ≥ S(0) and ‖u‖L∞(Ω) ≤ σ.

Indeed, the proofs are the same, replacing there Sj by S and g( 1
j + .) by g whenever

they appear and using Lemma 2.6 instead of Lemma 2.3.
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Lemma 4.5. For σ ≥ ‖ũ‖L∞(Ω) + ‖S(0)‖L∞(Ω) we have
(i) There exist η > 0 and jσ ∈ N such that for 0 < λ < η and j ≥ jσ, problem

(4.1) has a positive solution uj satisfying ‖uj‖L∞(Ω) ≥ σ.
(ii) There exist η > 0 such that for 0 < λ < η problem (1.2) has a positive

solution u satisfying ‖u‖L∞(Ω) ≥ σ.

Proof. Let Σj , Cj , u∗j , and λ̃ be as in Theorem 3.1 and let ũ be as in Lemma 4.3.
Let σ, jσ, λσ be as in Lemma 4.2 and let η = min(λσ,λ̃). For 0 < λ < η and j ≥ jσ

let λ0 ∈ (0, λ) and let cλ0 be the constant provided by Lemma 4.1. Clearly we can
assume that cλ0 ≥ σ. Let O1 = O11 ∪O12 ∪O13 with

O11 = {(λ, u) ∈ Σj : 0 ≤ λ < λ and ‖u‖L∞(Ω) < σ},
O12 = {(λ, u) ∈ Σj : λ < λ < λ1(−∆p,Ω) and ‖u‖L∞(Ω) < cλ0},

O13 = {(λ, u) ∈ Σj : λ = λ and ‖u‖L∞(Ω) < cλ0},
and let

O2 = {(λ, u) ∈ Σj : 0 ≤ λ < λ and ‖u‖L∞(Ω) > σ} .

Suppose, by contradiction, that there not exists a positive solution uj of problem
(4.1) such that ‖uj‖L∞(Ω) ≥ σ. Clearly, this assumption implies that O1 and O2

are disjoint relative open sets in Σj . Moreover, Σj ⊂ O1 ∪ O2. Indeed, suppose
that (λ, u) ∈ Σj and consider the case λ < λ. Then λ < λσ and so, by Lemma
4.2, ‖u‖L∞(Ω) 6= σ. Thus (λ, u) ∈ O11 ∪ O2 In the case λ = λ, taking into account
that λ > λ0 and Lemma 4.1 we get that (λ, u) ∈ O13 and in the case λ > λ, again
by Lemma 4.1 we get that (λ, u) ∈ O12. Then Σj ⊂ O1 ∪ O2. Let Cj be the
unbounded connected component of Σj containing (0, u∗j ). Thus Cj ⊂ O1 ∪ O2.
Since, by Theorem 3.1, Cj is unbounded and since O1 is bounded, we get that
Cj ∩ O2 6= ∅. Since Cj is connected this implies that Cj ∩ O1 = ∅. But, since
(0, u∗j ) ∈ Cj and

‖u∗j‖L∞(Ω) = ‖Sj(0)‖L∞(Ω) ≤ ‖S1(0)‖L∞(Ω) ≤ ‖S1(λ̃h(ũ))‖L∞(Ω) = ‖ũ‖L∞(Ω) < σ

and so we get that u∗j ∈ O1. Then Cj ∩ O1 6= ∅ which is a contradiction. Thus i)
holds.

To prove (ii), consider for j ≥ jσ the solution uj given by the part (i) and observe
that

uj = Sj(λh(uj)) ≥ Sj(0) ≥ S(0) ≥ c̃δ

where the constant c̃ is independent of j (these inequalities follow from Lemma 2.10
part (i) and from Lemma 2.6 applied with K = 1 and f = 0). Also, by Lemma 4.1,
uj ≤ cλ

2
and so

−∆puj = g(
1
j

+ uj) + λh(uj) ≤ g(c̃δ) + λ1(−∆p,m, Ω)h(cλ
2
) in Ω

uj = 0 on ∂Ω
(4.5)

Since 0 ≤ uj ≤ cλ
2
, from Remark 2.5, after passing to some subsequence, we can

assume that {uj}j∈N converges, in the C1 norm, on each compact subset of Ω, to
some function u ∈ C1(Ω) satisfying u ≥ c̃δ (and so u(x) > 0 for x ∈ Ω) which is
a solution of the problem −∆pu = g(u) + λh(u) in Ω. Let w = (−∆p)−1(h(cλ

2
)).

From(4.5) we have 0 ≤ uj ≤ w. Since w ∈ C(Ω) and w = 0 on ∂Ω we obtain that
u is continuous up to the boundary and that u = 0 on ∂Ω.
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Finally, let ρ = ρ(Ω, N) be as at the beginning of this section. Thus ‖uj‖L∞(Ω) =
‖uj‖L∞(Ωρ) for all j and since {uj}j∈N converges in C1(Ωρ) to u we get that
‖u‖L∞(Ω) ≥ ‖u‖L∞(Ωρ) = limj→∞ ‖uj‖L∞(Ωρ) = limj→∞ ‖uj‖L∞(Ω) ≥ σ and the
proof of the lemma is complete. �

Theorem 4.6. Assume the conditions (H1), (H2), (H3), (H5), (H6) and (H7) are
satisfied. Then

(i) For λ positive and small enough there exist at least two positive solutions
of the problem (1.2).

(ii) λ = 0 is a bifurcation point from infinity.

Proof. To prove (i) observe that for λ positive and small enough, taking into ac-
count Lemma 4.5 (ii) we have a solution u ∈ C(Ω) ∩C1(Ω) of (1.2) which satisfies
‖u‖L∞(Ω) ≥ σ + 1 and, by Remark 4.4 (ii), a solution v ∈ C(Ω) ∩ C1(Ω) such
that ‖v‖L∞(Ω) ≤ σ. To prove (ii) note that, proceeding as in Remark 3.2, we have
Λ∞ ⊂ [0, c−1λ1(−∆p,Ω)] with c = 1/ infs>0(h(s)/sp−1). Since by Theorem 3.1 C∞
is unbounded, (ii) follows). �
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