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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR A SINGULAR PROBLEM ASSOCIATED TO THE
P-LAPLACIAN OPERATOR

CARLOS ARANDA, TOMAS GODOY

ABSTRACT. Consider the problem
—Apu=g(u) + Ar(u) inQ

with u = 0 on the boundary, where A € (0,00), Q is a strictly convex bounded
and C? domain in RV with N > 2, and 1 < p < 2. Under suitable assumptions
on g and h that allow a singularity of g at the origin, we show that for A positive
and small enough the above problem has at least two positive solutions in
C(Q)NCY(Q) and that A = 0 is a bifurcation point from infinity. The existence
of positive solutions for problems of the form —Apu = K(x)g(u)+Ah(u)+ f(z)
in Q, u =0 on 99 is also studied.

1. INTRODUCTION

This paper concerns problems of the form
—Apu = Kg(u) + Ah(u) + f in Q,
u=0 on 0N (1.1)
u>0 in Q.

Here ) is a nonnegative parameter, A, is the p-laplacian operator defined by A,u :=
div(|Vu|P~2Vu) with 1 < p < co. We assume that

(H1) Qis a C? and bounded domain in RY with N > 2

(H2) g: (0,00) — (0,00) is a continuous and non increasing function (that may
be singular at the origin)

(H3) h:[0,00) — [0,00) is a continuous and non decreasing function

(H4) K and f are nonnegative functions defined on Q which satisfy that K is
non identically zero, K € L>(2) and f € C(9Q).

As usual, g(u), h(u) denote the Nemitskii operators associated with g and h re-
spectively. The solutions of (|1.1)) will be understood in the following weak sense:

2000 Mathematics Subject Classification. 35J60, 35J65.

Key words and phrases. Singular problems; p-laplacian operator;
nonlinear eigenvalue problems.

(©2004 Texas State University - San Marcos.

Submitted June 18, 2004. Published November 16, 2004.

Research partialy supported by ANPCYT, CONICET, SECYT-UNC,
Fundacion Antorchas, and Agencia Cordoba Ciencia.

1



2 CARLOS ARANDA & TOMAS GODOY EJDE-2004/132

u € WEP(Q) N C(Q) satistying u = 0 on 9 and

/ Vul2(Vu, Vo) = / (K g(u) + M) + f)
Q Q

for all p € C°(Q).

Singular bifurcation problems of the form —Awu = g(z,u) + h(x, Au) in Q, u =10
on 09, u > 0 in 2 have been considered in [4] for the case where, for some « > 0 and
p > 0 g(z,u) and h(x, Au) behave like u=* and (Au)P respectively. There, existence
of positive solutions for A\ nonnegative and small enough is obtained via a sub and
supersolutions method and non existence of such solutions is also shown for large
values of A\. From these results it seems a natural question to ask for similar results
when the laplacian is replaced by the degenerated operator A,. Our aim in this
paper is to study existence and (at least for the case K = 1, f = 0) multiplicity of
positive solutions of . Our approach to this problem is somewhat different from
the followed in [4] and it is more in the line of fixed point theorems for nonlinear
eigenvalue problems. We first study in section 2, for a nonnegative F' € C(f2), the
problem —Apu = Kg(u) + F in Q, u =0 o0n 09, v > 0 in Q. Lemma states
that this problem has unique solution and Lemma [2.10] says that the corresponding
solution operator S for this problem, defined by S(F) := w is a compact, continuous
and non decreasing map from PU{0} into P, where P is the positive cone in C(£2).
These results (Lemmas and are suggested by the work of several authors
in [2, 4, 5] 10, [IT] where existence of positive solutions for this problem is obtained
under different assumptions on K and f.

In section 3 we consider problem (L.I). We write it as u = S(Ah(u) + f) with
S as above. The above stated properties of S allow us to apply a classical fixed
point theorem for nonlinear eigenvalue problems to obtain in Theorem that
for A nonnegative and small enough there exists at least a (positive) solution of
and that the solution set for this problem (i.e., the set of the pairs (\, u)
that solve it) contains an unbounded subcontinuum (i.e., an unbounded connected
subset) emanating from (0, u*), where u* is the (unique) solution of the problem
—Apu=Kg(u)+ fin Q, u=0o0n 90, v > 0in .

Concerning multiplicity of positive solutions of , in section 4, Theorem (4.6
we prove that, if in addition,

(H5) Q is a strictly convex domain in RV
(H6) g and h are locally Lipchitz on (0, 00) and [0, 00) respectively
(H7) 1 < p < 2, infesoh(s)/sP71 > 0 and lims_,o h(s)/s? < oo for some ¢ €

(p - 1a N]E[p:pl)]v

then the problem

—Apu = g(u) + Ah(u) in Q,
u=0 on 00 (1.2)
u>0 in Q)

has at least two positive solutions for A positive and small enough and that A =0
is a bifurcation point from infinity for this problem.
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To see this in section 4 we study, for j € N, the problem

1
—Apu=g(u+ 5) + A(u) in Q,

u=0 ondN (1.3)
u>0 in Q.

Lemma provides, for a given g > 0, an a priori bound for the L norm
of the solutions u of corresponding to some A > Ag. On the other hand,
from Theorem we have an unbounded subcontinuum C'; of the solution set for
emanating now from (0,u}) where u} is the (unique) solution of the problem
—Apv = g(v + %) + Mi(v) in Q, v =0on 02, v > 0in Q. Also (cf. Remark
part ii)) C; C [0,¢) x P for some positive constant c¢. Since Cj is connected
and unbounded, from these facts we obtain, for A positive and small enough, two
positive solutions of and then, going to the limit as j tends to infinity (perhaps
after passing to a subsequence) we obtain two positive solutions for (1.3]). Lemmas
[4.5|and Remark [£.4] provide the necessary intermediate statements on order
to do it.

2. PRELIMINARIES

For this section, we assume that the conditions (H1), (H2), (H3) and (H4) stated
at the introduction hold. Let us start with some preliminary remarks collecting
some known facts about the p-Laplacian operator.

Remark 2.1. Let us recall [12] [6] [15] that for v € L>®(Q2) and 1 < p < oo the
problem —A,u = v in Q, u = 0 on JQ has a unique (weak) solution w which
belongs to C1*(Q) for some o € (0,1) and that the associated solution operator
(—Ap) 7t L(Q) — CH(Q) is a positive, continuous and compact map. Moreover,
if v > 0 and v # 0 then u belongs to the interior of the positive cone in C1(Q) So
g—g < 0 on 09 and u is bounded from above and from below by positive multiples
of the distance function

§(z) = dist(x, 09).

So (—A,) 1 is a strongly positive operator on C(f2), i.e., v € P implies (—A,)~!
Int(P) where P denotes the positive cone in C/(€2).

In addition, for the p-laplacian operator the following comparison principle holds:
If U is a bounded domain (non necessarily regular) in RY and if u,v € V[/lif u)yn

C(U) with 1 < p < oo satisfy (in weak sense) —A,u < —Ayv on U, u < v on 9U,
then u < wv.

v E

Remark 2.2. If U is a bounded domain (i.e an open and connected set, non
necessarily regular) in RV and if u,v € I/Vlif (U) N C(U) satisfy (in weak sense)
—Apu— Kg(u) < —=Apv —g(v) in U with v < v on 9U, then v < v on U. Indeed,
suppose u > v somewhere and consider the non empty open set V.= {z € U :
u(z) > v(z)}. Since —Apu—+ Apv < K(g(u) —g(v)) <0in V and u = v on 9V the
comparison principle gives a contradiction.
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Lemma 2.3. For a nonnegative F € L*>(Q) and for j € N, the problem
1 _
—Ayuj = Kg(u+ 3) +FinQ, u; € WEP(Q) N C(Q),

u; =0 on 09, (2.1)
u; >0 inQ

has a unique positive (weak) solution satisfying u; € C*(Q) and j — % +u; is non
increasing. Moreover, u; > cd for some positive constant ¢ independent of j.

Proof. Let g; : R — R be defined by g;(s) = g(s) for s > % and g;(s) = g(%) for
s < %, let T : C(Q2) — C(Q) be given by T;(v) = (—Ap)fl(Kg(% +v)+ F). Since

for v € C(2) we have

1 1
||K9(3 +v) + F||L°°(Q)HKHL°C(Q)9(3) + | F |l Lo ()5
it follows that T} is a compact operator. Moreover,

_ 1
0 < T(0) < (=80) 7 (UK =@ + | Flli(@) on 2,
and so the existence assertion of the lemma follows from the Schauder fixed point
theorem (as stated in [8, Corollary 11.2]) applied to T; on a closed ball (in C(f2))
around 0 with radius large enough.
If v and w are two different solutions of (2.1) in W,27(Q) N C(Q), consider the

loc

open set ' :={z € Q:v(z) > w(x)}. If O #0 then
1 1
—Apv + Apw = K(gj(g +v) — gj(; +w)) in QY (2.2)

and also v = w on 9, but, from our assumptions on K and g, the comparison
principle gives v < w on €’ which is a contradiction. A similar contradiction is
obtained if v < w somewhere. thus the uniqueness assertion of the lemma holds.
From the facts in Remark the solution of belongs to C*(Q) and it is
positive because (—A,)~! is a positive operator Again by the comparison principle
j% +ujp < % + u;. Indeed, consider the set U = {z € Q2 : J% + w1 > % +uj}
and observe that —Ap(j% +uj+1)+Ap(%+uj) = Kg(j% +ujt1) —Kg(%—f—uj) <0
in U and ]% +ujpr < % + u; on AU, thus the comparison principle gives U = ().
Finally, —Ap(uj) = Kg(} +u;) + F > Kg(1 + u1), so the strong positivity of

(—A,)~! gives the last assertion of the lemma. O

Remark 2.4 (Tolksdorf’s estimates). Let ' and Q" be open subsets of Q such
that Q7 CC Q' CC Q and suppose that u € W,.P(Q) N C(Q) satisfies —Ayu = v
on Q for some v € L>®(Q2). Then there exist a € (0,1) such that u € CH*(Q7).
Moreover, an upper bound of ||u[[1.. @7y can be found depending only on p, €2, €/
Q7 |Jul| oo (o) and [|v]|peo oy (cf. [14, Theorem 1J).

The Tolksdorf’s estimates imply the following result.
Remark 2.5. Assume that the sequences {F}};jen and {u;} en are in LS (©2) and

c loc
W.LP(Q)NC(Q) respectively with 1 < p < oo and u; > 0 such that —A,u; = Fj on
Q for all j € N. Assume also that for each open set Q" CC € there exist positive

constants cqr, o such that [|Fj||pe~qr) < cor and |luj||pe~ory < cqr for all
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j € N and that lim;_,o F; = F' a.e. in Q) for some F': ) — R. Then there exists a
subsequence {uj, }ren and a nonnegative function v € C1(2) satisfying —A,v = F
on  and such that {u;, }ren converges, in the C' norm, to v on each compact
subset of €.

Indeed, if Q' cc Q, let Q" be a domain such that Q' cc Q" C Q. We have
| FillLee @y < car, llujllpery < ¢or. Taking into account the Tolksdorf’s esti-
mates in b), a Cantor diagonal process gives a subsequence {u;, }xen that converges
to some function u € C*(£2) on each compact subset of Q in the C* norm. So, we
have, for all ¢ € C°(£2)

/ VulP~2(Vu, V) = lim / VP2 (Vg Vo) = lim [ Fyp = / Fe
Q = Jo i=0Jq Q

and then u satisfies —A,u = F on Q.

Lemma 2.6. For a nonnegative function F € L>(Q) the problem
—Apyu=Kg(u)+ F inQ,
u=0 on 0Q, (2.3)
u>0 nf)

has a unique positive solution in WP (Q)NC(Q) and this solution belongs to C* ()N
C(Q)). Moreover, u > cd where c is the positive constant given by Lemma and
w=lim; .o u; (in the pointwise sense) with u; as there.

Proof. Let u; be as in Lemmaand let v = lim;_, o u;. Since % +u; > ¢d (with
¢ as there, and so independent of j) we have, for each subdomain ' CC ,

1
HKQ(E +uj) + Loy < K ||L=@)9(cd) + [[F e (0)-

Also,
1
;]| ooy < ||; +ujllpe @y < 1+ [Jurllpe () < oo

After passing to a subsequence, from Remark we can assume that {u;}jen
converges, in the C' norm, on each compact subset of €2, to a solution u € C(£2)
of the problem —A,u = Kg(u) + F in Q.

Since (as shown in L(inma ) % +wuy; is decreasing in j, we have 0 < u < %—i—uj

for all j. Also, u; € C(R2), u; = 0 on 9 and so v = 0 on 9 and u is continuous
up to the boundary. Moreover, % +u; > cd gives, going to the limit, that u > cd.

If z € WLP() N C(Q) is another solution of 7 consider the open set U :=
{z € Q: z(x) > u(z)}. From we have —A,z < —A,(u) in U and z = u in
OU, the comparison principle leads to U = (). Then z < u in Q. Similarly we see
that u < z. O

Remark 2.7. It is known [9, section 4] that if m € L>®°(Q2) and [{z € Q : m(z) >
0} > O then there exists a unique A = A;(—=A,,m,Q) € (0,00) such that the
problem —A,® = Am|®P72® in Q, & = 0 in 9Q, ® > 0 in Q has a solution
® € WhP(Q) N C(Q). This solution is unique up to a multiplicative constant,
belongs to C1:*(Q) for some a € (0, 1), satisfies that V®(x) # 0 for all x € 9 and
there exists positive constants ¢; and cg such that ¢;5(z) < @(z) < ead(x) for all
z € (so ®(z) > 0 for all z € Q). For the case m = 1 we will write A\ (—A4,, )
instead of A1 (—Ap, m, Q).
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We recall also that if 0 < h € L*°(2), A > 0 and if there exists a nonnegative and
non identically zero solution w € Wy (Q) of the problem —A,w = Amw?~! + h in
Q then A > A1 (—A,,m) [9, Proposition 4.1]. This implies the following result.

Remark 2.8. Let m € L°°(Q) and let, as usual, m* = max(m, 0). Assume m™* # 0
and let A > 0 such that there exists a nonnegative and non identically zero function
w € WEP(Q) N C(Q) such that —Ayw > MmwP~" in Q. Then X < A\ (—A,, m, Q).
Indeed, Let v € W, ?(Q) be the (positive) solution of the problem —A,v = Amw?~*
in Q. Thenv € C1(Q2) and —A,w > —A,v in Q, w = v on 9, Thus the comparison
principle gives w > v in Q. Since —Apv = AmvP~ 4+ h with h = Am(wP~! —ovP~1),
we have 0 < h € L>(Q2) and so Remark [2.7 applies to give that A < Ay (=4, m, Q).

Remark 2.9. This remark concerns to the behavior near the boundary of the
solution of problem . We will say that two functions vy, va : @ — (0,00)
are comparable if there exist positive constants c¢i, co such that c;v1 < v9 < covy.
Consider in Lemma [2.0] the case F' = 0 and assume that K is comparable with
®7 for some v > 0 and that 0 < liminf, g+ s%g(s) < limsup, o+ s%g(s) < o©
for some o > v+ 1. Then the solution u given there is comparable with PatiT
(and so with § %) where ® is a positive principal eigenfunction for —A, in Q
with homogeneous Dirichlet boundary condition associated to the weight m = 1.
Indeed, let 8= (y+p)/(a+p—1) and let v = ®7. Since 0 < ﬂ < 1 it follows that
v e CHQ)NC(Q). A computation shows that —Ayv = Kv™® on , where

K ="M ((1=B)(p— 1)IVEP + 1, 97).

Taking into account that 0 < § < 1, the properties of ® stated in Remark [2.7]
imply that K is comparable with 1 and so, from our assumptions on g, we can
choose positive constants ¢ and ¢ such that —A,(cv) = "' Kv=* < g(v) and
—Ap(dv) = ()P LKv=™ > g(v). Let U = {z € Q : u(z) < cv(z)}. Thus U is
open. Since g is non increasing we have —A,u > —A,(cv) on U on . Also u = cv
on QU and so the comparison principle implies U = . Then u > cv = ¢®” in Q.
Similarly, we obtain also that v < ¢/®7 in .

Let P be the positive cone in C(Q). For j € N, let S; : PU {0} — P be the

solution operator for problem (2.1)) gives by S;(f) = and let S: PU{0} — P be
the analogous solution map of (2.3))

Lemma 2.10. (i) S: PU{0} — P is a continuous, non decreasing and com-
pact map and the same is true for each S;.
(i) 0 < j <k implies Sk(u) < S;(u) for u e PU{0}.
(iil) S(u) < Sj(u) forue PU{0}, j € N.

Proof. To see that S is non decreasing, suppose Fi, F» € P with F} > F5 > 0. Let
vy = S(F1), vg = S(Fy). If v1 < vy somewhere in Q, let U := {ax € Q : vy(z) >
v1(z)}. Thus U is a non empty open set and, from our assumptions on g and K,
—Apv1 = Kg(v1) + F1 > Kg(ve) + Fo = —Apve in U,
v =vg on OU.

Then the comparison principle gives v; > vy on U which is a contradiction. Then
S is non decreasing.
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To see that S is continuous, consider F' € P U {0} and a sequence {Fj}jen in
P U{0} that converges to F in C(Q). Let M be an upper bound of {F;},en. Then

0< S(0) < S(F)) < S(M). (2.4)
Let u; = S(Fj), thus —Ayu; = Kg(u;) + F; in Q, u; = 0 on 092. Taking into
account that by Lemma S(0) > ¢d and that S is non decreasing, we have
0 < g(u;) = g(S(Fy)) < 9(5(0)) < g(cd) € Lig ().

Also 0 < uj < S(M) € C(R2). Then Remarkgives a subsequence {Fj, }ren such
that S(Fj,) converges, in the C' norm, on each compact subset of 2 to a positive
solution z € C1(Q) of the problem

—Apz=Kg(z)+F in Q.

Since u;, = S(Fj,) > S(0) > S(cd), we have z > ¢d. Also, 2 < S(M) € C(Q).
Since S(M) = 0 on 0 it follows that z is continuous up to the boundary and z = 0
on 0. Thus z = S(F).

Let € > 0 and let n = n(e) > 0 such that S(M) < e on Q — Q,, where

Q= {z € Q: dist(x,00) > n}. (2.5)

We have S(Fj;,) < S(M) < e on Q—Q, for all k. Also S(F) < e on Q —Q,,

thus [|[S(F},) — S(F)||L>~@-q,) < 2¢ for all k. On the other hand, since {S(Fj,)}

converges in C'(€,)) to S(F), for k large enough we have ||S(Fj, ) — S(F)||p~(q,) <
e. Then {S(Fj,)} converges in C(Q2) to S(F). Then S is continuous.

To prove that S is a compact map, consider a bounded sequence {F;} in PU{0}

and let M € (0,00) be an upper bound of {F;}. For ¢ > 0 let n = n(e) be chosen

as above. As before, Remark gives a subsequence {F}, } that converges, in the
C' norm, on each compact subset of 2. Thus, for k and s large enough,

1S (F) = S(E3,)

c@,) S¢€
and
IS(Fj,) = S(Fi)llc@-a,) < 19(F)lc@-a,) + 1S(F;)c@-a,)
<2S(F)llc@-a,) <26
Then {S(F},)}ren is a Cauchy’s sequence in C(€) and the compactness of S follows.

Since for each j, g(. + %) satisfies the assumptions made for on g, (i) holds for each
S;. Finally, (ii) is a direct consequence of the comparison principle and, since

S(u) = lim;j_¢ S;(u) (by Lemma [2.6)), (iii) follows from (ii). O
3. AN EXISTENCE RESULT

Our assumptions for this section are those stated at the beginning of the Section
2. Let us introduce some additional notations. Consider, for j € N and A > 0 the
problem

1 _
—Ayu=Kg(u+ 3) +AR(u) + f inQ, ue WLP(Q)NC(Q),

u=0 on 01, (3.1)
u>0 inQ
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Let 7 : [0,00) x P — [0,00) be defined by 7(A,u) = A and for j as above, let
¥ ={(\u) €[0,00) x P:uec W-P(Q)NC(Q) and u solves (B-1)},

loc

Aj=m(%)), wuj=5(f)

and let ¥, Ao and u’ be the sets and the function analogously defined replacing
by . Finally, let C; (respectively C ) be the connected component of ¥;
containing u (respectively of Yo containing uZ,).

With this notation, we have the following theorem.

Theorem 3.1. (i) (\,u) € S implies that u € CH(Q).
(ii) For f € PU{0} it holds that Cs is unbounded in [0,00) x P.
(i) Awo 48 an interval containing 0.
(iv) Forj € N, (i), (ii) and (%ii) hold with X, Ao and u’, replaced by X, A,
and uj respectively and with replaced by .
(v) There exists X > 0 such that [0, \] C Ay and [0, N] C A; for each j.

Proof. (i) is given by Lemmal[2.3] To see (ii) and (iii), observe that is equivalent
to S(A\h(u) + f) = u. Let T : [0,00) x (P U{0}) — C(Q) be defined by T'(\,v) =
S(Ah(v+ub,)+ f) —u’, (since S is non decreasing we have T'(A,v) > 0 for v > 0).
Lemma [2.10] implies that T is a continuous, non decreasing and compact map.
Moreover, T'(0,0) = 0 and, since T'(0,v) = 0 for all v € PU{0}, v = 0 is the unique
fixed point of T'(0,.). For each o > 1 and p > 0, we have also that T'(0,u) # ou
for u € PN pdB, where B denotes the open unit ball centered at 0 in C(2). Since
u solves if and only if u = v + u¥, with v a fixed point for T, in [I, Theorem
17.1], applied to T, gives that C is unbounded in [0,00) x P and that A, is an
interval. Thus (i), (ii) and (iii) hold for S and, replacing in the above argument g
by g(. + %), we see that the same is true for each §;.

To prove (v) one observes that, by Lemma the problem

~Apu=Kg(l+u)+f inQ, ucWrL’(QnCQ)
u=0 on 09

has a unique solution u = u; that belongs to C1(2). Thus 0 € A;. Since, by ii),
C1 is unbounded, it follows that there exists A > 0 such that A € Ay — {0}. Thus,
by (iii), for 0 < A < X there exists a positive solution uy 1 of

—Apurg = Kg(1+uy1) + Mo(ury) + f in Q, uyy € WhP(Q) N O(Q)
uy1 =0 on 0Q
Now, by Lemma S(Ah(ux1)+f) < S1(A(14uy,1)+ f) and since the operator
u — U(u) :== S(Ah(u) + f) is a positive, non decreasing, continuous and compact
map. [I, Theorem 17.1] implies that the sequence {U7(0)};en converges to a fixed

point of U. Then A € X,. Similarly, by considering S; instead of S we get that
A€ A for all j. O

Remark 3.2. (i) If for some A9 > 0 and j € N we know that an a priori estimate
lul L= () < ¢ holds for each positive solution of (3.1) associated to each A > Ag
then an upper bound for A; can be given. Indeed, in this case we have

—Apu = g(1 +u) + Aa(u) + f > A Ph(u)uP~! in Q.
J
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Also, u = S;(Ah(u)+ f) > S(0) > ¢é for some positive constant ¢ (cf. Lemmas [2.10]
and, then h(u) > h(cd) and so, by Remark A does not exceed the principal
eigenvalue for —A,, associated to the weight function ¢!~Ph(cs).

(ii) On the other hand if infs-¢ "(%) > 0 a similar result holds. Indeed, in this

sp—1
case from l} we have —A,u > Ainf,s¢ shp(—f)lup’l in Q, u = 0 on 0 and so, again

by Remark [2.8) Ainfyso 25 < A\ (=4, Q).

The following proposition gives some additional information about the regularity

of the solutions of (|1.1)).

Proposition 3.3. Assume that sup,.,s*g(s) < oo for some o € [0, 2}3”__11). Then

u € WyP(Q) for all positive weak solution u € W P(Q)NC(Q) of (1) with A > 0.

Proof. We have
[Vl 29 V) = [ (gw + Auta) + 1) (3.2)
Q Q

for all ¢ € C(2) and so, since u € Wﬁ)f(Q) this equality holds also for all

@ € WyP(Q) such that suppp C Q. For € > 0, let u. := max(u,e) —e. Since

u € C(Q) and v = 0 on 99, we have suppu. C Q. So we can take ¢ = u. as test
function in (1.1)) to obtain

/ Ntusey | Vul? = / (Ah(u) + Kg(u) + fus
Q Q
< / ) + Ko(u) + (33)

< / (Ah(w) + Kg(u) + fu

We claim that the last integral is finite. Indeed, it is enough to show that ug(u) €
L'(Q) and clearly this holds if a < 1. Suppose now a > 1. We have

—Apu = Mh(u) + Kg(u) + f

< (Wl e ) + 1l @)l + 1K ey S (3.4)

=cu ®
where ¢ = cx 0 = (A([[ull Lo @) + [|fl= @) lull = @) + 1| KL= @)-

Let w € V[/lif (2)NC(Q) be the solution (provided by Lemma of the problem
—A,w =cw *inQ, w=0o0n0dN. Then, from (3.4), —Apu—cu™* < —A,w—cw™*
in Q, also v = w = 0 on JN and so Remark gives u < w in . On the other
hand, Remark gives w < ¢ =751 for some constant ¢’ where ® is a positive
principal eigenfuntion for —A, on Q. Then

pla—1)

0 < ug(u) < "@aFoT P~ ats—T = '® vt

Since 0 < a < 2;’:11 implies I;(fip—ji < 1 our claim holds. By Lemma u(z) >0

for all € 2 and so, from (3.4) and from the monotone convergence Theorem, we
get |VulP € L1(Q). O
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4. A MULTIPLICITY RESULT

In this section we assume that in addition to the conditions (H1) (H2) and (H3)
stated at the introduction, the conditions (H5), (H6) and (HT) also hold.

In [3, Proposition 4.1] it is proved that if Q is a strictly convex and bounded
domain with C? boundary and if G : R — R is a locally Lipchitz function, then
there exists p > 0, with p depending only on 2 and N, such that if 1 < p < 2 and
u € CH(Q) is a positive weak solution of the problem —A,u = G(u) in Q, u =0
on 0 then the global maximum of v in € is achieved at least at some point y €
satisfying dist(y,0Q) > p. From this fact and using the Gidas Spruck blow up
technique [7], in [3, Lemmas 3.1 and 3.2] is obtained an a priori estimate for the
solutions of the above problem. Following a similar approach, Lemma [{.1] below
adapts to our actual setting, with a similar purpose, the arguments in [3].

Lemma 4.1. Let Q be a strictly convex, C? and bounded domain in RN, N > 2.
Assume that 1 < p < 2 and that, in addition to the hypothesis stated at the introduc-
tion, g and h are locally Lipchitz on their domains and that infs~o s PT1h(s) > 0
and 0 < limg_,00 s77h(s) < 00 for some q € (p — 1, lefp:pl)]. Then for each Ao > 0
there exists a positive constant cy, such that for all j and for all positive solution
u of the problem

1 _
—Apu=g(u+ }) +Ah(u) i Q, uw e WEP(Q)NC(Q),

u=0 on 0N, (4.1)
u>0 in§,

with X > Xo it holds that ||ul| ) < cx,

Proof. Let ¢ = infssq(h(s)/sP~1) and let u be a positive solution of cor-
responding to some A > 0. We have —A,u = chuP~! + H in Q with H :=
g(u +¢) + Mh(u) — cuP™1). Since H € L>®(Q) and H > 0 in €, Remark
gives that A < ¢ 1A1(—A,, Q).

To prove the Lemma we proceed by contradiction. Assume that there exists a
sequence {Un, An,€ntnen such that j, € N, A\, > A\, with w, satisfying for
A = A, and such that |[uy||z~@) > n and let G, : R — R be defined by

Go(s) = 4 90+ 50+ Anhls) for s >0,
YT\ + Ah(0)  for s <.

Thus each G,, is locally Lipchitz and so, by [3, Proposition 4.1], there exists x,, €
such that ||un||ze~@) = un(2n) and dist(z,,0Q) > p with p as described at the
beginning of the section.

Let oy, = [Jun||p (o) and let Q, = af (Q — z,,) where Q, := {z —z,, : z € Q}

and k = q*;%l. Observe that, since ¢ > p — 1, we have k > 0.
Let wy, : Q, — R be defined by

1

1
wy(y) = a—un(Jy + xn)
n n
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Lemma [2.3 applied to F := A, h(u,) € C(Q) gives u, € C(Q) and so w,C'(Qy,).
Let v € C1(Q) be the solution of the problem
—Apv = Xh(v) inQ,
v=0 on .
We have, for some positive constant c¢; that v > ¢i6 in Q. Since —Apu, >

Aoh(uy,) = —Apv in Q and w,, = v on 9N we get that u,, > ¢1d and so wy,(y) # 0
for y € Q,,. A computation gives that

~Bpuns) = sgalenin + )+ Al e,
wy, =0 on 99,.
For r > 0, let B,(0) be the closed ball in R” centered at 0 with radius r. Since
(by our contradiction hypothesis) lim,, o, @ = oo, by our choice of x,, there exists
no = no(r) such that B,.(0) C Q, for all n > ny.
For ¢; as above and for n large enough we have

1 1 p
n\~_ . n > 57 n Z 67
un( oy ) 2 10y + ) 2 @13(5)

for all y € Q,. Then (recalling that, by Remark An < cz_lAl(pr,Q) with
c2 = infsso(h(s)/sP71)) we get that, for y € B,.(0),

0 < a;, "1g(anwn(y) + i) + Anh(anw,(y))

n

- P 1 -k h(un(a;ky—kl‘n))
<a,9(c1z) + — (=4, Valul(a, "1y +
g( 12) s 1( D ) ( Y n) u%(aﬁky—&-xn)
_ p 1 h(s)
< anqg(cl§) + aAl(_Apa Q) sup e

s>c1§

Thus, from (4.2) and Remark there exist positive constants ¢o and « € (0,1)
such that HwnHCl«a(ET/Q(o)) < ¢ for all n large enough. Then we can find a

subsequence {wy, }jen that converges in C*(B,/2(0)) to some nonnegative w €
C1(B,(0)) with [wll g5,y = 1. After passing to a furthermore subsequence
we can assume that A, converges to some A* € [Ag, A\1(—A,,Q)]. We take test
functions in Cg° (ET/Q(O)) in and taking the limit as n tends to co we get
—Apw > XN Bw? on B, 5(0), where B = lim,_,o(s7%h(s)). Since w # 0, Re-
mark [2.4] gives w(z) > 0 for all x € B, /»(0) and so, again taking test functions in
C2°(B,2(0)) in and going to the limit as n tends to oo, we obtain now

—Apw = BX*w? on B, /5(0). (4.3)

Taking a sequence of balls B,.(0) with radius increasing to co and repeating the
above argument on the subsequence wy,; obtained in the previous step, we can
obtain a Cantor diagonal subsequence, still denoted by w,,, which converges in
the C' norm on each compact set in RY to a function w € C'(RY) satisfying
—A,w = BX*w? on RY. Since, under our assumptions on p and ¢, this problem
has no solution [I3] we obtain a contradiction. O

Lemma 4.2. For o > ||S(0)||L~(q) there exists A, and j, € N such that for j > j,
and 0 < X < A, problem (4.1) has no positive solution u satisfying ||u| ) = 0.
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Proof. We proceed by contradiction. Suppose that there exists a sequence
{ns Uny An }22; with limy, oo jn = 00, Ay > 0, lim, 00 Ay = 0, and where u,
is a positive solution of (4.1) for A = A, and j = j, satisfying ||u,| o) = 0. Let
M > 0 be an upper bound of {\,}. By Lemma we have

0 < S5(0) < SAh(up)) =u, < S1(Anh(uy)) < S1(Mh(o)).

Then {u, }nen is bounded in C(Q). Also, for Q' cC Q" CC Q we have

1
oot + ) + Moo= @) < 19(SO)l =) + Mh(o)

n

thus Remark gives a subsequence {u;, } that converges, in the C'! norm, to some
function u € C*(€2) on each compact subset of (.

Since 0 < S(0) < u, < S1(Mh(c)) and also S;(Mh(c)) € C(Q), Sy(Mh(c)) =0
on 9, we get that u € C(2) N CY(Q) and u = 0 on 9N Going to the limit in the
weak form of

1
_Apunk = g(unk + 7) + )\h(unk)

ng
we find that —A,u = g(u) + Ah(u) in Q. So u = 5(0).

Observe that {u,, } converges to u in C(Q). Indeed, given e > 0, let n = n(g) > 0
such that Sy(Mh(c)) < e on Q — Q, (with €, defined by (2.5))). Proceeding as in
the proof of the continuity of S in Lemma we get that [[un, —ullp~(q,) <€
for k large enough and that |u,, — ulp~@-q,) < 2¢ for all k. Then {un, }ren
converges to u in C(Q).

Since [|S(0)||z(q) < 0 = [[un||L~(q) for all n, we get a contradiction. O

Lemma 4.3. Let \ be as in Theorem and let u be a positive solution of
corresponding to 7 = 1 and A = Py (taking there K = 1 and f = 0). Then for
o > [[ullpe(a), 0 < A < X and j € N there exists a positive solution u of
satisfying u € C*(Q) N C(Q), u > S(0) and |ul| =) < 0.

Proof. For 0 < A < X, 7 € N, Lemma gives
0 < S(0) < S;(Ak(7) < S1(AR(W) =T < 0. (4.4)

Let T': PU{0} — P be defined by T'(v) = S;(Ah(v)). Then T is a non decreasing
continuous and compact map and says that T'(u) < w and [1l, Theorem 17.1]
applies to see that {T%(0)}xen is a non decreasing sequence that converges in C(Q)
to a fixed point w € P for T, which solves and since T#(0) < T*(u) <u <o
we get [|ul| L) < 0. Also u > T#(0) = S;(AT*71(0)) > S;(0) > S(0) (the last
inequality by Lemma applied with F := Ah(u)) and since A\h(u) € C(£2), from

Lemma [2.3| gives u € C(Q2) O
Remark 4.4. The following analogous of the Lemmas [£.2] and [£.3] hold:
(i) For o > [[ul| o (q) there exists A, > 0 such that for 0 < A < by has a
positive solution u satisfying v € C*(Q) N C(Q) and ||ul| =) = 0.
(ii) For o > |[u|pe(q) and for 0 < A < X there exists a positive solution u of
satisfying u € C1(Q) N C(Q), u > S(0) and ||u|| L= () < 0.
Indeed, the proofs are the same, replacing there S; by S and g(% +.) by g whenever
they appear and using Lemma [2.6] instead of Lemma [2.3
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Lemma 4.5. For o > |[ul| () + [|S(0)|| L~ () we have
(i) There existn > 0 and j, € N such that for 0 < A < n and j > j,, problem
has a positive solution u; satisfying ||u;| L) > 0.
(ii) There exist n > 0 such that for 0 < X\ < n problem has a positive
solution u satisfying ||ul| ) > 0.
Proof. Let X;, Cj, u}, and X be as in Theorem and let u be as in Lemma
Let 0, jo, Ao be as in Lemmaand let n = min()\o’X). For 0 < A <nandj>j,
let Ao € (0,A) and let ¢y, be the constant provided by Lemma[d.1] Clearly we can
assume that Cxo 2 o. Let 01 = 011 U 012 U 013 with

Oq1 = {(X7ﬂ) S Ej :0< A< Aand ||ﬂ||Loo(Q) < 0'}7
019 = {()\,ﬂ) € Ej AL Al(—AP,Q) and HﬂHLoo(Q) < C)\O},
O13 = {()\,ﬂ) S A=A and ||ﬂHLoo(Q) < C,\O},

and let

O, = {(X,H) € Zj :0 §X< A and HUHLoo(Q) > U}.
Suppose, by contradiction, that there not exists a positive solution u; of problem
(4.1) such that [luj]|z~q) > o. Clearly, this assumption implies that O; and O
are disjoint relative open sets in ;. Moreover, ¥; C O U Oz. Indeed, suppose
that (X, u) € ¥; and consider the case A < A Then A < )\, and so, by Lemma
@]l () # o. Thus (A, @) € O11 UO; In the case A = A, taking into account
that A > A\g and Lemma we get that (A, %) € O3 and in the case A > ), again
by Lemma we get that (A\,W) € O12. Then ¥; C O; U Oz. Let C; be the
unbounded connected component of X; containing (0,u}). Thus C; C O1 U Os.
Since, by Theorem @ C; is unbounded and since O; is bounded, we get that
C; N Oy # (. Since Cj is connected this implies that C; N O; = (. But, since
(0,u}) € C; and

145 | @) = 1S5 (0) | e () < 151(0)[| L= () < [1S1(AR(@)) || L () = [[ull L~ @) <o
and so we get that uj € O;. Then C; N Oy # () which is a contradiction. Thus i)
holds.

To prove (ii), consider for j > j, the solution u; given by the part (i) and observe
that

uj = Sj(Ah(u;)) > 5;(0) > S(0) > &5

where the constant ¢ is independent of j (these inequalities follow from Lemma
part (i) and from Lemma applied with K =1 and f = 0). Also, by Lemma
u; < ca and so

1 . .
—Apuj = g(; +u;) + Ah(uj) < g(€d) + M (—Ap, m, Q)h(c%) in Q (4.5)

u; =0 on 9N
Since 0 < u; < cy, from Remark @ after passing to some subsequence, we can
assume that {u;}jen converges, in the C' norm, on each compact subset of €2, to
some function u € C(Q) satisfying u > ¢ (and so u(z) > 0 for z € Q) which is
a solution of the problem —Apu = g(u) + Ahr(u) in Q. Let w = (pr)*l(h(c%)).
From(|4.5) we have 0 < u; < w. Since w € C(Q) and w = 0 on I we obtain that
u is continuous up to the boundary and that u = 0 on 0f).
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Finally, let p = p(£2, N) be as at the beginning of this section. Thus ||u;|| ze ) =
||uj||L<>o(sTp) for all j and since {u;}jen converges in C'(Q,) to u we get that
||U||Loo(Q) > HUHLOO(Qip) = llmjﬁoo ||'U,j||L(x,(pr) = llmjﬁoo ||UJ||LOO(Q) >0 and the
proof of the lemma is complete. O

Theorem 4.6. Assume the conditions (H1), (H2), (H3), (H5), (H6) and (H7) are
satisfied. Then

(i) For X\ positive and small enough there exist at least two positive solutions

of the problem (1.2)).

(ii) A =0 is a bifurcation point from infinity.

Proof. To prove (i) observe that for A positive and small enough, taking into ac-
count Lemma (ii) we have a solution u € C(Q) N C*(Q) of which satisfies
lull L) > o + 1 and, by Remark (ii), a solution v € C(2) N C1(Q) such
that [|v||p(q) < o. To prove (ii) note that, proceeding as in Remark we have
Ao C 0,7 (A, Q)] with ¢ = 1/infs-o(h(s)/sP~1). Since by TheoremC’oO
is unbounded, (ii) follows). O
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