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A STOCHASTIC CONTROL PROBLEM

WILLIAM MARGULIES, DEAN ZES

Abstract. In this paper, we study a specific stochastic differential equation
depending on a parameter and obtain a representation of its probability den-

sity function in terms of Jacobi Functions. The equation arose in a control

problem with a quadratic performance criteria. The quadratic performance
is used to eliminate the control in the standard Hamilton-Jacobi variational

technique. The resulting stochastic differential equation has a noise amplitude
which complicates the solution. We then solve Kolmogorov’s partial differen-
tial equation for the probability density function by using Jacobi Functions.

A particular value of the parameter makes the solution a Martingale and in
this case we prove that the solution goes to zero almost surely as time tends
to infinity.

1. Introduction

The purpose of this paper is to solve a certain family of stochastic optimal control
problems. Specifically, the stochastic optimal control is defined by the stochastic
differential equation with control

dxt = (ax + bu)dt +
√

cx2 + du2 + edβtx(0) = x0. (1.1)

where xt is the state variable, u the control, and βt represents a Brownian motion.
The control is determined by the quadratic cost index

I(x, t, u) =
1
2
Ex,t

[ ∫ tf

t

(qx2(s) + ru2(s))ds + pfx2
tf

]
,

which is to be minimized over the controls u.
We solve this problem by using the Halmilton-Jacobi-Bellman equation and solve

for the minimum control. Then we use the Kolmogorov equations to solve for the
probability distribution function of the state variable. We get an explicit form of
the solution in terms of Jacobi functions.

The equation arose from a linear control problem with a quadratic performance
criteria, see Zes [8] and the references there. Equations like this arise in filtering
theory, communications and finance. The original problem was discrete and was
analyzed by Jacobson [4], and this is a continuous version of that problem with
a more general noise term. The control enters the noise term and complicates
the solution. We solve the equation explicitly in terms of Jacobi functions which

2000 Mathematics Subject Classification. 60H05, 60H07.
Key words and phrases. Stochastic differential equations; control problems; Jacobi functions.
c©2004 Texas State University - San Marcos.

Submitted May 28, 2004. Published Nov. 23, 2004.

1



2 WILLIAM MARGULIES, DEAN ZES EJDE-2004/135

leads to a very complicated representation. To show how the representation works
we solve the equation for a special value of the parameter where one can obtain
the solution in a simple closed form. We can then analyze the representation and
see it gives the same result. For another value of the parameter the solution is a
Martingale and in this case the solution is stable and tends to zero almost surely
(a.s.) as time tends to infinity. We also use MATLAB to generate some sample
traces of the state variable.

In section two, we develop the partial differential equation that the probability
density function of the state variable satisfies. In section three we use separation of
variables to get an ordinary differential equation and eigenvalue problem that we
can use to represent our solution to the partial differential equation of section two.
In section four, we incorporate, using Koornwinder [5], all the necessary properties
of the Jacobi Functions that we need to represent our solution. In section five,
we actually represent the solution in terms of the Jacobi Functions. In section
six, we solve the equation for a value of the parameter for which we can obtain a
closed form solution. In this case we then can see our formula gives the correct
result. In section seven, we show the long term behavior for a particular value
of the parameter and show the solution tends to 0 a.s. as t tends to infinity. In
section eight, we give some numerical results for certain parameter values. We use
the simulation algorithms as in the article by Higham, see [3].

2. The Optimal Control Problem

We begin with the stochastic differential equation (s.d.e), defined in the Ito sense,

dxt = (ax + bu)dt +
√

cx2 + du2 + e dβt,

x(o) = xo

(2.1)

where the beta process β(t) is Brownian motion defined in the usual way, E[β] =
0, E[(dβ)2] = dt, and the noise amplification constants (c, d, e) must all be non-
negative, for the process to be real. Next, we stipulate the familiar quadratic cost
index to be minimized,

I(x, t, u(·)) =
1
2
Ex,t

[ ∫ tf

t

(qx(s)2 + ru(s)2)ds + pfx2
f

]
. (2.2)

Then we want to find
J(x, t) = inf

u
I(x, t, u)

and to find that control, u∗ such that

J(x, t) = I(x, t, u∗).

The problem which we pose can be solved in a standard way as seen in Fleming
and Rishel [2, Theorem 4.1], or Oksendal [7, Theorem 11.2.1]. The infinitesimal
generator, A of the process, xt, is

A =
1
2
(cx2 + du2 + e)

∂2

∂x2
+ (ax + bu)

∂

∂x
.

Thus we have the following Hamilton-Jacobi-Bellman equation

− ∂

∂t
J(x, t) = inf

u
AJ(x, t) + (qx2 + ru2)/2.
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The infimum on the right is attained at u = − b ∂J
∂x

d ∂2J
∂x2 +r

. This gives

− ∂

∂t
J(x, t) =

1
2
(cx2 + e)

∂2J

∂x2
+ ax

∂J

∂x
+

1
2
qx2 − 1

2
b2(∂J

∂x )2

d∂2J
∂x2 + r

.

Now put J = 1
2 (p(t)x2 + l(t)) and obtain the following equations for p and l.

p′ =
b2p2

(dp + r)
− cp− 2ap− q , p(tf ) = pf

l′ = −ep

If p(t) is constant or r = 0, the optimum control takes the form u = −kx. Whence
the stochastic differential equation becomes

dxt = (ax− bkx)dt +
√

cx2 + dk2x2 + e dβt = Axdt +
√

Cx2 + e dβt

Thus we have the above equation for the stochastic process xt.
We want to solve for the probability density function ρ(x, t) of the process (we

put C = e = 1 for simplicity). We put ρ(x, 0) = f(x) the probability density
function of the initial random variable x0. To solve this stochastic equation we
solve the Kolmogorov partial differential equation with initial value f(x), i.e. we
solve

ρt = L(ρ) =
1
2
((x2 + 1)ρ)xx − ((Ax)ρ)x

=
1
2
(x2 + 1)ρxx + (2−A)xρx + (1−A)ρ −∞ < x < ∞, 0 ≤ t

ρ(x, 0) = f(x).

(2.3)

3. Separation of Variables

In this section we use separation of variables to show the form of the represen-
tation of our solution. To this end we first consider a solution of the form

ρ(x, t) = exp(−p(y)t)V (x, y)

We substitute into (2.3) to get

−p(y) exp(−p(y)t)V (x, y) = exp(−p(y)t)
[1
2
(x2 + 1)V ′′(x, y)

+ (2−A)xV ′(x, y) + (1−A)V (x, y)
]
.

Thus if V satisfies

L(V ) =
1
2
(x2 + 1)V ′′(x) + (2−A)xV ′(x) + (1−A)V (x) = −p(y)V, (3.1)

then ρ satisfies (2.3). Hence for certain H(y),

ρ(x, t) =
∫ ∞

0

H(y)V (x, y) exp(−p(y)t)dy

satisfies the partial differential equation (2.3), but not necessarily the initial condi-
tion.
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4. Jacobi Functions

In this section we present the properties of the Jacobi Functions we will need.
We follow Koornwinder [5] for the presentation.

Definition 4.1. Jacobi Functions. For 0 < τ < ∞, α, β parameters we put

φ(α,β)
y (τ) = 2F1(

1
2
(α + β + 1− iy),

1
2
(α + β + 1 + iy);α + 1;− sinh2 τ)

where 2F1(a, b; c; z) is the standard hypergeometric function.

Definition 4.2. Jacobi transform. Let g be a smooth even function. Then the
Jacobi transform is

ĝ(y) =
∫ ∞

0

g(τ)φ(α,β)
y (τ)∆(α,β)(τ)dτ

where ∆(α,β)(τ) = (2 sinh τ)2α+1(2 cosh τ)2β+1.

To state the inversion formula we need the following function and sets.

c(α,β)(y) =
2α+β+1−iyΓ(α + 1)Γ(iy)

Γ( 1
2 (α + β + 1 + iy))Γ( 1

2 (α− β + 1 + iy))
.

We also define the set

D(α,β) = {i(|β| − α− 1− 2m)|m = 0, 1, 2, . . . ; |β| − α− 1− 2m > 0}.
Note that D(α,β) is a finite set. Also note that the set D(α,β) contains the poles of
(c(α,β)(−y))−1 with positive real part.

For y ∈ D(α,β) we put

d(y) = −iResµ=y(c(α,β)(µ)c(α,β)(−µ))−1

Now we can state the theorem for the inversion formula, see [5, Theorem 2.3].
Let De be the even C∞ functions with compact support on R. We will drop the
superscripts on φ and the subscripts on c.

Theorem 4.3. If α > −1, β ∈ R, g ∈ De then

g(τ) =
1
2π

∫ ∞

0

ĝ(y)φy(τ)|c(y)|−2dy +
∑

y∈D(α,β)

ĝ(y)φy(τ)d(y).

Note that we need these formulas only for α = ± 1
2 and β = 1−A. Since our A

can be negative, D may be nonempty. Also note that the smoothness of g can be
relaxed but the evenness is crucial and we will deal with that when we represent
the solution.

5. Representation of the Solution

In this section we show how to use the results of Sections 3-4 to solve the initial-
value problem. We show that the solution can be written as an integral of the
Jacobi Transform of the initial data. As in section three put

ρ(x, t) = V (x, y) exp(−p(y)t)

where we now put

V (x, y) = φ
(− 1

2 ,1−A)
y (τ(x)) =2 F1(

1
2
(
3
2
−A− iy),

1
2
(
3
2
−A + iy);

1
2
;−x2)
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where τ(x) = sinh−1(x) and the polynimial p(y) will be defined below. Use the
substitutions

z = −x2, F = 2F1, Vx = −2xF ′,

Vxx = (4x2F ′′ − 2F ′)

and compute L(V ) to obtain (prime denotes differention with respect to z)

L(V ) = −2[z(1− z)F ′′ + (
1
2
− (

5
2
−A)z)F ′ − 1

2
(1−A)F ].

Since the function F is a hypergeometric function with parameters

a =
1
2
(
3
2
−A− iy), b =

1
2
(
3
2
−A + iy), c =

1
2

(5.1)

we have, with p(y) = 1
2 ((A− 1

2 )2 + y2),

L(V ) = −p(y)V.

Therefore, ρ satisfies ρt = L(ρ).
We now derive a second solution so that we can solve (2.3) for all initial data.

We have F is a hypergeometric function with parameters as in (5.1). We then have,
see Andrews [1], that z1−c

2F1(1 + a− c, 1 + b− c; 2− c; z) is a second independent
solution to the same equation. We use this to determine a solution as follows. We
put

W (x, y) = xφ
( 1
2 ,1−A)

y (τ(x)) = x 2F1(
1
2
(
5
2
−A− iy),

1
2
(
5
2
−A + iy);

3
2
;−x2)

and with the substitutions z = −x2, F =2 F1, Wx = F − 2x2F ′, Wxx = 4x3F ′′ −
6xF ′, we have

L(W ) = −2x[(1− z)zF ′′ + (
3
2
− (

7
2
−A)z)F ′ − (

3
2
−A)F ].

The corresponding hypergeometric parameters for F are

a =
1
2
(
5
2
−A− iy), b =

1
2
(
5
2
−A + iy), c =

3
2

(5.2)

Now F with its parameters satisfy

(1− z)zF ′′ + (
3
2
− (

7
2
−A)z)F ′ − 1

4
((

5
2
−A)2 + y2)F = 0.

Thus we have

L(W ) = −2x[
1
4
((

5
2
−A)2 + y2)F − (

3
2
−A)F ] exp(−p(y)t)

= −1
2
((A− 1

2
)2 + y2)W

= −p(y)W.

Thus we have L(W ) = −p(y)W . Again if ρ = W exp(−p(y)t) then ρt = L(ρ). We
now have two solutions to the partial differential equation (2.3):

ρ1(x, t) = φ
(− 1

2 ,1−A)
y (τ(x)) exp(−p(y)t) and ρ2(x, t) = xφ

( 1
2 ,1−A)

y (τ(x)) exp(−p(y)t)

thus (ρi)t = L(ρi) for i = 1, 2.
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Let f(x) be an arbitrary smooth probability density function. Then f(x) =
fe(x) + fo(x) where these are the even and odd parts of f . We put

ge(x) =

{
fo(x)

x for x 6= 0
f ′(0) for x = 0

The function ge(x) is an even function and is C∞ if f is. We have f(x) = fe(x) +
xge(x). We can now write the solution as (recall x = sinh τ , τ(x) = sinh−1 x):

ρ(x, t) =
1
2π

∫ ∞

0

f̂e(y)φ(− 1
2 ,1−A)

y (τ(x))|c(− 1
2 ,1−A)(y)|−2 exp(−p(y)t)dy

+
∑

y∈D(− 1
2 ,1−A)

f̂e(y)φ(− 1
2 ,1−A)

y (τ(x))d(y) exp(−p(y)t)

+
1
2π

∫ ∞

0

ĝe(y)xφ
( 1
2 ,1−A)

y (τ(x))|c( 1
2 ,1−A)(y)|−2 exp(−p(y)t)dy

+
∑

y∈D( 1
2 ,1−A)

ĝe(y)xφ
( 1
2 ,1−A)

y (τ(x))d(y) exp(−p(y)t).

(5.3)

This function satisfies the partial differential equation and for the initial condition
we have, using Theorem 4.6.

ρ(x, 0) = fe(x) + xge(x) = f(x).

6. The case A = 1/2

For our initial data we take the delta function, δx0 , based at x0. Put A = 1/2
to get the equation

dxt =
1
2
xtdt +

√
(x2

t + 1) dβt,

Put V (x) = sinh−1 x and use Ito’s formula to obtain

dV (xt) =
1√

1 + x2
t

dxt −
1
2
(1 + x2

t )
− 3

2 xtdx2
t

=
1√

1 + x2
t

dxt −
1
2
xt(1 + x2

t )
− 3

2 (1 + x2
t )dt

= −1
2

xt√
1 + x2

t

dt +
1
2

xt√
1 + x2

t

dt + dβt

= dβt.

We can integrate it directly to obtain

sinh−1(x(t))− sinh−1(x0) = [β(t)− β(0)] (6.1)

and taking β(0) = 0, we have

sinh−1(x(t))− sinh−1(x0) = β(t).

Now we also have

ρ(x, t) =
1√
2πt

[exp(−β2

2t
)]

dβ

dx
.
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Thus the probability density function takes the form

ρ(x, t) =
1√

2πt(x2 + 1)
exp[− (sinh−1 x− sinh−1 xo)2

2t
].

Now we compute the solution given by the representation (5.3). We first note that
the set D is empty. See Koornwinder [5] for the following identities.

φ
(− 1

2 , 1
2 )

y (τ) = (cosh)−2( 1
2 )(τ)φ(− 1

2 ,− 1
2 )

y (τ)

φ
(− 1

2 ,− 1
2 )

y (τ) = cos(yτ), φ
1
2

1
2

y (τ) =
2 sin(yτ)
y sinh 2τ)

c(− 1
2 , 1

2 )(y)c(− 1
2 , 1

2 )(y) = 1

c( 1
2 , 1

2 )(y)c( 1
2 , 1

2 )(y) =
4
y2

For the initial data, we have the following:

fe(x) =
1
2
(δx0(x) + δx0(−x))

ge(x) =
1
2x

(δx0(x)− δx0(−x))

Then for the Jacobi transforms we have

f̂e(y) =
∫ ∞

0

1
2
(δx0(x(τ))+δx0(−x(τ)))(cosh(τ))−1 cos(yτ)(2 sinh(τ))0(2 cosh(τ))2dτ

and after a change of variables to the x variable, f̂e(y) = 2 cos(yτ0). Also changing
to the x variable

ĝe(y) =
∫ ∞

0

1
2x

(δx0(x(τ))− δx0(−x(τ)))
2 sin(yτ))
y sin(2τ)

(2 sinh(τ))2(2 cosh(τ))2dτ

= 16
∫ ∞

0

(δx0(x)− δx0(−x))
x(
√

1 + x2)2 sin(yτ(x))
2y sinh(τ(x)) cosh(τ(x))

dx√
1 + x2

=
8
y

sin(yτ(x0)).
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We now substitute these into the representation (5.3) and obtain

ρ(x, t) =
1
2π

∫ ∞

0

2 cos(yτ0)(cosh(τ(x))−1 cos(yτ(x)) exp(−y2t/2)dy

+
1
2π

∫ ∞

0

8
y

sin(yτ(x0))x
2 sin(yτ(x))
y sinh(2τ(x))

y2

4
exp(−y2t/2)dy

=
1

π
√

1 + x2

∫ ∞

0

cos(yτ0) cos(yτ(x)) exp(−y2t/2)dy

+
2
2π

∫ ∞

0

8
sin(yτ(x0)) sin(yτ(x))

2 cosh(τ(x))
1
4

exp(−y2t/2)dy

=
1

π
√

1 + x2

∫ ∞

0

cos(yτ0) cos(yτ(x)) exp(−y2t/2)dy

+
1

π
√

1 + x2

∫ ∞

0

sin(yτ(x0)) sin(yτ(x)) exp(−y2t/2)dy

=
1

π
√

1 + x2

∫ ∞

0

cos y(τ(x)− τ(x0)) exp(−y2t/2)dy.

Now we have the identity∫ ∞

0

cos(yz) exp(−y2/2)dy =
√

π

2
exp(−z2/2).

This gives

ρ(x, t) =
1√

2πt(1 + x2)
exp(− (sinh−1(x)− sinh−1(x0))2

2t
)

and this checks with our explicit derivation.

7. Long Term Behavior

In this section we derive the long term behavior of the solution to the SDE

dxt =
√

1 + x2
t dβt.

This represents the situation with A = 0. We put yt = exp(γt)xt. Then

dyt = γ exp(γt)xtdt + exp(γt)dxt

= γytdt + exp(γt)
√

1 + exp(−2γt)y2
t dβt.

We use the Lyapunov function v(y) = y2/3. One can see Kushner[6] for a discussion
of such techniques. We apply the one dimensional Ito’s formula [7] to obtain

dv(yt) =
2
3
y
−1/3
t dyt +

1
2
(−1

3
)(

2
3
)y−

4
3

t dy2
t

= (
2
3
γy

2/3
t − 1

9
exp(2γt)y−

4
3

t − 1
9
y
2/3
t )dt

+
2
3
y
−1/3
t exp(γt)

√
1 + exp(−2γt)y2

t dβt.
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We have therefore the following integral equation for v(yt):

v(yt) = v0 +
∫ t

0

(
2
3
γ − 1

9
)y2/3

s ds−
∫ t

0

1
9

exp(2γt)y−4/3
s ds

+
∫ t

0

2
3

exp(γt)y−1/3
s

√
1 + exp(−2γs)y2

sdβs.

We take expectation of both sides(note E
∫ t

0
fdβs = 0) to obtain

E(v(yt)) = v0 +
∫ t

0

(
2
3
γ − 1

9
)E(v(ys))ds−

∫ t

0

1
9

exp(2γt)E(y−4/3
s )ds

≤ v0 +
∫ t

0

|2
3
γ − 1

9
|E(v(ys))ds.

It follows from the Gronwall-Bellman inequality that

E(v(yt)) ≤ v0 exp(|2
3
γ − 1

9
|t)

Put γ = 1 and use the relationship between y by x to obtain

E(x
2
3
t ) ≤ v0 exp(−1

9
t).

A standard Chebychev estimate, for any ε > 0, gives

P (|x| > ε) ≤ ε−2/3v0 exp(−1
9
t).

This shows that |xt| → 0 a.s. as t →∞.

8. Numerical Results

In this section, we use the algorithms as presented in Higham [3] to show the
behavior of the solutions to the equation when A = 0. In Figure 1, there are two
solutions graphed with different initial conditions.
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Pseudo−random−number generator:

seed: x0 = 1

x(next) = x*75 (mod 231 −1)
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Figure 1. Solutions with initial values 10 and −10.

Dean Zes
B&Z Engineering Consulting, 3134 Kallin Ave, Long Beach, CA 90808, USA

E-mail address: deanzes@charter.net


