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INTEGRABILITY OF BLOW-UP SOLUTIONS TO SOME
NON-LINEAR DIFFERENTIAL EQUATIONS

MICHAEL KARLS & AHMED MOHAMMED

ABSTRACT. We investigate the integrability of solutions to the boundary blow-
up problem

riA(r/\(u')pfl)/ = H(r,u), u'(0)>0, u(R)=o0

under some appropriate conditions on the non-linearity H.

1. INTRODUCTION

Let A\>0,p>1, R>0. For 0 < r < R we consider solutions u € C1([0, R)) of
the problem

r A A PTP) = H (),

u(0) >0, '(0) >0, (1.1)

li = 00.
() =
Here H satisfies the conditions

(H1) H:[0,R) x [0,00) — [0,00) is continuous,

(H2) H(-,s) is non-decreasing,

(H3) H(0,s) > 0 for all s > 0.
Further assumptions on H will be given as needed. In the literature, solutions of
(1.1) are known as blow-up solutions, explosive solutions or large solutions.

These type of equations arise as radial solutions of the p-Laplace equation, as
well as the Monge Ampére equation on balls. Radial solutions u of the p-Laplace
equation

div(|VulP~2Vu) = J(|z|,u),

in the ball B := B(0, R) C R¥ satisfy the first equation of (1.1)) with A = N — 1,
H(r,u) = J(r,u). Likewise radial solutions of the Monge Ampére equation

det(D?u) = J(|al, u),

in the ball B also satisfy the first equation of (L.1)) with A =0, p = N + 1 and
H(r,u) = NrN=1J(r,u).
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Noting that ' is non-negative for any solution w of (|1.1]), we will find it convenient
to rewrite equation (|1.1)) as

()1 +
w(0) >0, «(0)>0, wu(R)=o0.

A NnNp—1 __
S W) = Hr,u), (1.2)

A necessary and sufficient condition for the existence of a solution to problem (1.1
with v/(0) = 0, H(r,u) = f(u), and f(0) = 0, is the (generalized) Keller-Osserman
condition (see [5] [, [§]).

/100 F(‘j;/p <oo, F(s)= /0 F(t)dt. (1.3)

If a nonnegative, non-decreasing continuous function F' defined on [0, 00) satisfies
the Keller-Osserman condition for some p > 1, we will indicate this by writing
F € KO(p).

When H(r,s) = f(s), and A = N —1, problem has been studied extensively
by several authors, (see [II 2 [l [6] [7, 8, [9] and the references therein). The questions
of existence, uniqueness and asymptotic boundary estimates have received partic-
ular attention. The case when p = 2 and H(r,s) = g(r)f(s) with g € C([0, R]),
possibly vanishing on a set of positive measure, has been considered in [6]. In all
these cases, the Keller-Osserman condition on f remains the key condition for the
existence of solutions. However, if g is allowed to be unbounded the situation is
completely different and existence and boundary behavior of a blow-up solution
depends on how fast g is allowed to grow near R. For such cases we refer the reader
to [10] or [12]. For a discussion on solutions of for general non-linearity H, we
refer the reader to the paper [13].

In this paper we are interested in studying the integrability property of blow-up
solutions to for F € KO(p). A blow-up solution may not have any integrability
property at all, as the following example, taken from [I1], shows.

Example 1.1. Let u(r) = —1 4 e(1=")"". Then
u'(r) = f(u), 0<r<l,
u'(0) >0, u(l)= oo,
where f(s) = (s + 1)[log*(s + 1) + 2log®(s + 1)], s > 0. Notice that u ¢ L7(0,1
for any v > 0. The antiderivative F' of f that vanishes at zero is given by F'(s) =

((s 4+ 1)%log*(s + 1))/2, and observe that F € KO(2), but F ¢ KO(a) for any
o> 2.

On the other extreme any positive power of a blow-up solution could be inte-
grable. This can be seen from the following example.

Example 1.2. We fix 0 < R < 1/2 and let
1

f)=e' =1, sell), and () = T pE

r€[0,R)

Then u(r) = —log(R — r) is a solution of

u"(r)=g(r)f(u), 0<r<R,
>0,

u'(0) u(r) — oo asr— R.
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Note that v € L7(0, R) for all v > 0. In this example the primitive F of f with
F(0) = 0 satisfies F' € KO(«) for all a > 0.

The outline of the paper is as follows. In Section 2 we compare solutions u of
(1.2) with solutions of

(W) + 2Pt = H(O,w),
w(0) >0, w'(0)=0, w(R)=o0,

(1.4)

for 0 <r < R.
The main result of Section 2, Theorem [2.4] is used in Section 3 to prove the
following integrability result for solutions of (1.2)).

Theorem 1.3. Suppose in addition to (H1)-(H3), H(r,-) is non-decreasing on
[0,R) and for f(s) = H(0,s), f(0) =0 and F € KO(«) for some o > p. Then
u € L@=P)/P(0, R) for any solution u of .

In Section 3, we also show that for H(r,s) = g(r) f(s), the following result holds.

Theorem 1.4. Let H(r,s) = g(r)f(s) satisfy (H1)-(H3), with ¢g(0) > 0 and g
positive, non-decreasing near R. Suppose has a blow-up solution u such that
u € L@P)/P(0, R) for some o > p. If g € LY7(0,R) with 0 < ¢ < pla — p)/a,
then F € KO(v) for somep <y < a.

Remark 1.5. When H(r,s) = g(r)f(s), (H3) and the requirement that g(0) > 0
imply that f(s) > 0 for s > 0. Since f(s) > 0, it follows from (H1) that g is
non-negative on [0, R).

Finally, we give some corollaries to Theorem (1.4

2. A COMPARISON RESULT

We will need the following comparison lemma (see [I3] for a proof). For nota-
tional convenience in stating the lemma and in this section, we let L denote the
differential operator on the left hand side of equation (|1.1)) above. In this lemma,
we use the following notation: u(a+) < w(a+) means there exists € > 0 such that
u<win (a,a+ ¢).

Lemma 2.1. Let 0 < a < b, and suppose u,w € C1([a,b]) with (u')P~L, (w')P~1 €
C1((a,b]) satisfy
Lu—G(r,u) < Lw— G(r,w) in (a,b
u(at) <w(a+), u'(a) <w'(a)
for some function G(r,s) which is non-decreasing in the second variable s. Then
u <w' in [a,b], which implies u < w in (a,b].
Another result we will need is the following, which is a consequence of Lemma
2.1 in [] via L'Hépital’s Rule.
Lemma 2.2. If F € KO(«) for some a > 1, then
t()t
lim —
A% F )

We need the following lemma, which shows that solutions of (1.2)) with initial

slope zero have non-decreasing slope for r € [0, R).

=0.
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Lemma 2.3. Suppose in addition to (H1)-(H3), H(r,-) is non-decreasing on [0, R).
If for 0 <r < R, w is a solution of

(W) +2

then w' is non-decreasing on [0, R).

(wP~t = H(r,w), w(0) >0, w'(0)=0, w(R)=o00, (2.1)

Proof. Let w be a solution of (2.1). Integrating the equation (r*(w’)P~1!) =
r H (r,w) over the interval (0,7) for any r € (0, R) and recalling that w’ is non-
negative, we obtain

wHP~t =2 Ts’\ s,w(s))ds
() | St

< r*)‘H(r,w(r))/ s*ds
0
T
CA+1
Using this inequality back in the equation (2.1)) we obtain

H(r,w)

H(rw) = () + 2 (!

< (@)Y S )
so that
(w")P=1y >7H(r w), 0<r<R. (2.2)

A+
The fact that w’ is non-decreasing on (0, R) is a consequence of (2.2) as follows.
Let 0 < r; < 79 < R. Integrating (2.2) on (r1,r2) leads to

(w'(r2))P =t = (w'(ry))P~ > m/ H(s,w(s))ds > 0.

We are now ready to state and prove the main result of this section.

Theorem 2.4. Suppose in addition to (H1)-(H3), H(r,-) is non-decreasing on
[0,R) and for f(s) = H(0,s), f(0) =0 and F € KO(p). Then there is a solution
w of such that for any solution u of ,

u(r) <w(r), 0<r<R.

Proof. For each positive integer k, with 1/k < R, let wy, be a solution, in (0, R —
1/k), of the problem

(W) + 2Pt = H(O,w),
w(0) >0, w'(0)=0, w(R-1/k)=o00

(2.3)

This is possible, since f(s) = H(0, s) satisfies the Keller-Osserman condition.
Since H(0,u) < H(r,u) for all 0 < r < R, we first note that

)
Lwy — H(O,wy) < Lu— H(0,u) on (0,R—1/k).
u(0

Suppose that wy(0) < ). Then, since 0 = w;,(0) < «/(0), by Lemma we
conclude that wy < w on (0, R — 1/k). But this is obviously not possible since wy,
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blows up at R — 1/k and u does not. Thus we must have u(0) < wy(0). Actually,
we claim that

1
u(r) <wg(r), forallr with 0 <r<R-— T
Suppose to the contrary that w(r) > wy(r) for some 0 < r < R — 1/k. Since
1(0) < wg(0) the function u — wy, takes on a positive maximum inside [0, r1] where
r1 is taken sufficiently close to R — 1/k. If r* is such a maximum point, then we
have
wi(r*) <wu(r*), and w(r*)=7d'(r").
By the comparison Lemma [2.1] we conclude that wy < u on (r*, R — 1/k), which is
impossible. Thus we must have u(r) < wy(r), r € (0,R — 1/k) as clalmed.
By a similar argument as above, and using w1 instead of u, we also conclude
that

1
w1 (r) <we(r), 0<r<R-— =

Using this and the fact that wy and wy41 satisfy equation (2.3]) we obtain
(W ()7 =17 [P0 w00 (5)) ds
0

ST_A/ s H(0,wy(s)) ds
0
= (wp(r)P™, 0<r<R-1/k.
This shows that wj_ ,(r) < wj(r), 0 <r < R —1/k. Therefore, we have
wh(r) <wl (r), 0<r<R-—1/m, (2.4)

n

whenever n > m > 1/R.
For t,r € (0, R — 1/k), and n > k we have

(1) — wa(8)] = \/ $)ds| < wl ()l — ) < whpy (R — L/B)r — ],

where ¢ = max{r,t}. The fact that wj_, is non-decreasing, by Lemma has
been exploited in the last inequality.

Thus {wy, }52;, 1 is a bounded equicontinuous family in C([0, R—1/k]), and hence
has a uniformly convergent subsequence. Let w be the limit. For r € [0, R — 1/k]
and n > k the solution w,, satisfies the integral equation

wn (1) wn(0)+/or (/Ot (%)/\H(O,wn(s))ds)l/(p_l)dt

Letting n — oo we see that w satisfies the same integral equation. Since k is
arbitrary we conclude that w satisfies equation (1.4). Since u < w,, on (0, R —1/k)
for each n > k we conclude that v < w on (0, R). O

3. PROOFS OF MAIN RESULTS AND SOME COROLLARIES

Proof of Theorem[I.3. By Theorem we take a solution w of (1.4) such that
u(r) <w(r) for 0 <r < R. Using f(w) := H(0,w) in place of H(r, w) in inequality
(2.2), we note that w satisfies

(W)Y > %Hf(wx 0<r<R.
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Multiplying both sides of the above inequality by w’ and integrating on (0,7r), we
find that for r close to R,
p—1 1
w

Thus, for some positive constants C' and 7, which may change in each line below,
but depend only on the constants A and the primitive F', we see that

Q%immﬂVECqu» r<r<R

or
Flw(r)Y? <cw'(r), 7<r<R. (3.1)
From Lemma it follows that

Q=

w(r) < F(w(r))=, 7<r<R. (3.2)
Using (3.1]) and (3.2]), we obtain

Thus, recalling that u < w on (0, R) we get

R a—p o0 1
/ u(r)TdrgC/ —— dt < oo,
T w(r) F(t)=

giving the desired result. O

Proof of Theorem[I]] Suppose that g is positive and non-decreasing on (r,, R) for
some 0 < r, < R. Observe that from (1.2]) we obtain

(@)™ < g(r) f(u),
and multiplying both sides of this by u’ and integrating on (r,,r) we find that

o w(r)? q1/p
o < (agr) VP[4
< WO I )

where ¢ is the Holder conjugate exponent of p. From this we conclude that, for

some positive constants C' and ro,

, Te<r<R,

< Cg(r)?, ro<r<R. (3.3)

IIORE
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Let v = a(1 — o /p). The hypothesis 0 < o < p(ar— p)/c implies that p < v < «a.
Using (3.3]) and Holder’s inequality, we obtain

e 1
dt
[mo) F(t)/

[ tla—p)/a 1 "
o w(ro) F(t)/~ " tla—p)/a

oo t[(a p)/al-[v/p] p/y 1 (v=p)/7v
= (/ RO at) (/ armre= )
u(ro) P u(r)t‘“’“””p

R y(e=p)/pl[v/0] /
< C’(— v — / u'( T)p bl
p a-—vy u(r))'/
a Y=p -/ Uy la—p) /ol r/al g\
<’ / g(r)/Pu dr
(&= 7) [ g 7u) )
R p. o=y R
a Y= DP\(v-p)/v 1/p-a/(a—) 5 Ta / (a—p)/p 1. \P'*
<Co(=.L1_£ P d d .
< (p oz—’y) (/0 g(r) r) ( ; u(r) r)

Recalling that 1/p - a/(a — ) = 1/0, by hypothesis the right hand side of the last
inequality is finite and this proves the claim. ([l

Note that if g is bounded on [0, R), but not necessarily non-decreasing near R,
the right hand side of (3.3) can be replaced by a constant. The proof of Theorem
shows that F' € KO(v) for any 0 < v < . We record this as follows.

Corollary 3.1. Let H(r,s) = g(r)f(s) satisfy (H1)-(H3), with g(0) > 0. Suppose
has a blow-up solution that belongs to L(®~P)/P(0, R) for some a > p. If g is
bounded, then F € KO(7) for any 0 < v < .

Remark 3.2. The conclusion of Corollary is false when ¢ is unbounded near
R as the following example shows.
The function u(r) = (1 —r)~! is a solution of

— g(r)f
u(0) > 0, '<o>zo u(l)zoo,

where

g(r):==2/(1—7), and f(s):= s>
Observe that u € L(®=2/2(0,1) for 2 < o < 4. However note that F ¢ KO(3).

Corollary 3.3. Suppose H(r,s) = g(r)f(s) satisfies (H1)-(HS3), with g(0) > 0, g
non-decreasing on [0, R), and f(0) = 0. Further, let g be bounded on [0, R), and let
F € KO(p). Then a blow up solution u of belongs to L1(0, R) for some ¢ > 0
if and only if F' € KO(v) for some vy > p.

Proof. Suppose F' € KO(~) for some v > p. Then by Theorem we see that
u € L0, R) for ¢ = (v — p)/p. For the converse, suppose that v € L?(0, R) for
some ¢ > 0. Then for o = p(q + 1) we see that ¢ = (o — p)/p so that by the above
corollary, F' € KO(~) for some p < v < p(q+ 1). O
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