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EXISTENCE AND UNIQUENESS OF MILD AND CLASSICAL
SOLUTIONS OF IMPULSIVE EVOLUTION EQUATIONS

ANNAMALAI ANGURAJ, MANI MALLIKA ARJUNAN

Abstract. We consider the non-linear impulsive evolution equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 < t < T0, t 6= ti,

u(0) = u0,

∆u(ti) = Ii(u(ti)), i = 1, 2, 3, . . . , p.

in a Banach space X, where A is the infinitesimal generator of a C0 semigroup.

We study the existence and uniqueness of the mild solutions of the evolution
equation by using semigroup theory and then show that the mild solutions

give rise to a classical solutions.

1. Introduction

The theory of impulsive differential equations is an important branch of differen-
tial equations, which has an extensive physical background. Impulsive differential
equations arise frequently in the modelling many physical systems whose states are
subjects to sudden change at certain moments, for example, in population biology,
the diffusion of chemicals, the spread of heat, the radiation of electromagnetic waves
and etc.,(see [1, 4, 11]).

Existence of solutions of impulsive differential equation of the form

u′(t) = f(t, u(t), Tu(t), Su(t)), 0 < t < T0, t 6= ti, (1.1)

u(0) = u0, (1.2)

∆u(ti) = Ii(u(ti)), i = 1, 2, 3, . . . , p. (1.3)

has been studied by many authors [2, 3, 12]. In the special case where f is uniformly
continuous, Guo and Liu [2] established existence theorems of maximal and minimal
solutions for (1.1)–(1.3) with strong conditions. Guo and Liu [7], Liu [8] obtained
the same conclusion applying the monotone iterative technique when f does not
contain integral operator S in (1.1). But they did not obtain a unique solution for
(1.1)–(1.3). Recently, in the special case where (1.1)–(1.3) has no impulses, Liu
[8] obtained a unique solution by the monotone iterative technique with coupled
upper and lower quasi-solutions when f = f(t, u, u, Tu, Su). A similar conclusion
was obtained by Liu [6]. However, one of the require assumptions in [2, 7, 8] is that
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f satisfies some compactness-type conditions, which as we know is difficult and
inconvenient to verify in abstract spaces. Rogovchenko [10], studied the existence
and uniqueness of the classical solutions by the successive approximations for the
evolution equation with an unbounded operator A; i.e, equations of the form

u′(t) = Au(t) + f(t, u(t)), t > 0, t 6= ti,

with impulsive condition in (1.2)-(1.3), where A is sectorial operator with some
conditions given on the fractional operators Aα, α ≥ 0 .

Liu [5] studied the existence of mild solutions of the impulsive evolution equation

u′(t) = Au(t) + f(t, u(t)), 0 < t < T0, t 6= ti,

where A is the infinitesimal generator of C0 semigroup with the impulsive condition
in (1.2)-(1.3) by using semigroup theory.

In this paper we study the existence and uniqueness of mild solutions for the
nonlinear impulsive evolution equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 < t < T0, t 6= ti,

u(0) = u0,

∆u(ti) = Ii(u(ti)), i = 1, 2, 3, . . . , p.

in a Banach space X, where A is the infinitesimal generator of C0 semigroup
{G(t)|t ≥ 0}. Then we prove that the existence and uniqueness of mild solu-
tions give rise to the existence and uniqueness of classical solutions if f which is
continuously differentiable.

2. Preliminaries and Hypotheses

Let X be a Banach space. Let PC([0, T0], X) consist of functions u that are a
map from [0, T0] into X, such that u(t) is continuous at t 6= ti and left continuous at
t = ti, and the right limit u(t+i ) exists for i = 1, 2, 3, . . . p. Evidently PC([0, T0], X)
is a Banach space with the norm

‖u‖PC = sup
t∈[0,T0]

‖u(t)‖ . (2.1)

Consider the impulsive evolution equation of the form

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 < t < T0, t 6= ti, (2.2)

u(0) = u0, (2.3)

∆u(ti) = Ii(u(ti)), i = 1, 2, 3, . . . , p. (2.4)

in a Banach space X, where f ∈ C([0, T0]×X ×X ×X, X),

Tu(t) =
∫ t

0

K(t, s)u(s)ds, K ∈ C[D,R+], (2.5)

Su(t) =
∫ T0

0

H(t, s)u(s)ds, H ∈ C[D0, R
+], (2.6)

where D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T0}, D0 = {(t, s) ∈ R2 : 0 ≤ t, s ≤ T0} and
0 < t1 < t2 < t3 < · · · < ti < · · · < tp < T0, ∆u(ti) = u(t+i )− u(t−i ).

We assume the following hypotheses:
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(H1) f : [0, T0]×X×X×X → X, and Ii : X → X, i = 1, 2, . . . , p. are continuous
and there exists constants L1, L2, L3 > 0, hi > 0, i = 1, 2, 3, . . . , p. such
that

‖f(t, u1, u2, u3)− f(t, v1, v2, v3)‖
≤ L1‖u1 − v1‖+ L2‖u2 − v2‖+ L3‖u3 − v3‖, t ∈ [0, T0], u, v ∈ X;

(2.7)

‖Ii(u)− Ii(v)‖ ≤ hi‖u− v‖, u, v ∈ X. (2.8)

Let G(·) be the C0 semigroup generated by the unbounded operator A. Let B(X)
be the Banach space of all linear and bounded operators on X. Let

M = max
t∈[0,T0]

‖G(t)‖B(X), L = max{L1, L2, L3} .

K∗ = sup
t∈[0,T0]

∫ t

0

|K(s, t)|dt < ∞, H∗ = sup
t∈[0,T0]

∫ T0

0

|H(s, t)|dt < ∞

(H2) The constants L, L1, L2, L3,K
∗,H∗ satisfy the inequality

M
[
LT0(1 + K∗ + H∗) +

p∑
i=1

hi

]
< 1

3. Existence Theorems

3.1. Mild solution. A function u(·) ∈ PC([0, T0], X) is a mild solution of equa-
tions (2.2)–(2.4) if it satisfies

u(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

G(t− ti)Ii(u(ti)), 0 ≤ t ≤ T0.
(3.1)

Theorem 3.1. Assume that (H1)-(H2) are satisfied. Then for every u0 ∈ X, for
t ∈ [0, T0] the equation

u(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds +
∑

0<ti<t

G(t− ti)Ii(u(ti)),

(3.2)
has a unique solution.

Proof. Let u0 ∈ X be fixed. Define an operator F on PC([0, T0], X) by

(Fu)(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

G(t− ti)Ii(u(ti)), 0 ≤ t ≤ T0

(3.3)

Then it is clear that F : PC([0, T0], X) → PC([0, T0], X). Now we show that F is
contraction. For any u, v ∈ PC([0, T0], X),

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

0

‖G(t− s)‖B(X)‖f(s, u(s), Tu(s), Su(s))

− f(s, v(s), T v(s), Sv(s))‖ds

+
∑

0<ti<t

‖G(t− ti)‖B(X)‖Ii(u(ti))− Ii(v(ti))‖

(3.4)
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Using Assumption (H1) and definition of M , we have

‖(Fu)(t)− (Fv)(t)‖

≤ M

∫ t

0

‖f(s, u(s), Tu(s), Su(s)− f(s, v(s), T v(s), Sv(s)‖ds

+ M
∑

0<ti<t

‖Ii(u(ti))− Ii(v(ti))‖

≤ M
[ ∫ t

0

L1‖u− v‖+ L2‖Tu− Tv‖+ L3‖Su− Sv‖
]
ds

+ M‖u− v‖PC

p∑
i=1

hi

(3.5)

Now, ∫ t

0

L2‖Tu− Tv‖ds ≤ L2

∫ t

0

∫ s

0

‖K(s, τ)‖‖u(τ)− v(τ)‖dτds

≤ L2

∫ t

0

‖u(s)− v(s)‖
∫ s

0

‖K(s, τ)‖dτds

≤ L2‖u(t)− v(t)‖
∫ t

0

K∗ds

≤ L2‖u− v‖PCK∗T0

(3.6)

Similarly, ∫ t

0

L3‖Su− Sv‖ds ≤ L3‖u− v‖PCH∗T0 (3.7)

Substitute (3.6), (3.7) in (3.5), we have

‖(Fu)(t)− (Fv)(t)‖

≤ M
[
L1T0‖u− v‖PC + L2T0‖u− v‖PCK∗ + L3T0‖u− v‖PCH∗

+ M‖u− v‖PC

p∑
i=1

hi

]
≤ M

[
L1T0 + L2T0K

∗ + L3T0H
∗ +

p∑
i=1

hi

]
‖u− v‖PC .

(3.8)

Using the definition of L, we have

‖Fu− Fv‖PC = max
t∈[0,T0]

‖Fu(t)− Fv(t)‖

≤ M
[
LT0(1 + K∗ + H∗) +

p∑
i=1

hi

]
‖u− v‖PC .

(3.9)

Now from Assumption (H2), we have

‖(Fu)(t)− (Fv)(t)‖ ≤ ‖u− v‖PC , u, v ∈ PC([0, T0], X). (3.10)

Therefore, F is a contraction operator on PC([0, T0], X). This completes the proof.
�

Next we study the classical solutions. First we give the definition.
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3.2. Classical solutions. A classical solution of Equations (2.2)–(2.4) is a func-
tion u(·) in PC([0, T0], X) ∩ C1((0, T0)\{t1, t2, . . . , tp}, X), u(t) ∈ D(A) for t ∈
(0, T0)\{t1, t2, . . . , tp}, which satisfies equations (2.2)–(2.4) on [0, T0].

To prove the main theorem we need the following two Lemmas.

Lemma 3.2. Consider the evolution equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), t0 < t < T0, (3.11)

u(0) = u0, (3.12)

If u0 ∈ D(A), and f ∈ C1((0, T0)×X ×X ×X, X), then it has a unique classical
solution, which satisfies

u(t) = G(t− t0)u0 +
∫ t

t0

G(t− s)f(s, u(s), Tu(s), Su(s)ds, t ∈ [t0, T0). (3.13)

The above lemma can be proved easily using the [9, Theorem 6.1.5].

Lemma 3.3. Assume hypotheses (H1)-(H2) are satisfied. Then for the unique clas-
sical solution u(·) = u(·, u0) on [0, t1) of equations (2.2)-(2.3) without the impulsive
conditions (guaranteed by Lemma 3.2), one can define u(t1) in such a way that u(·)
is left continuous at t1 and u(t1) ∈ D(A).

Proof. Consider the following evolution equation without the impulsive condition
on (0, T0),

w′(t) = Aw(t) + f(t, w(t), Tw(t), Sw(t)), 0 < t < T0,

w(0) = w0,

From Lemma 3.2, there is a classical solution given by

w(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, w(s), Tw(s), Sw(s))ds, t ∈ [0, T0). (3.14)

and w(t) ∈ D(A) for t ∈ [0, T0). Next, applying Lemma 3.2 to the function u(·),
one has, for t ∈ [0, t1) ⊂ [0, T0),

u(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds, t ∈ [0, t1), (3.15)

Now, we can define

u(t1) = G(t1)u0 +
∫ t1

0

G(t1 − s)f(s, u(s), Tu(s), Su(s))ds, (3.16)

So that u(·) is left continuous at t1. Then apply Lemma 3.2 on [0, t1] to get

u(t) = w(t), t ∈ [0, t1]. (3.17)

Thus we have, u(t1) = w(t1) ∈ D(A) which completes the proof. �

Before proving the main theorem, we prove the following theorem.

Theorem 3.4. Assume that u0 ∈ D(A), qi ∈ D(A), i = 1, 2, . . . , p. and that
f ∈ C1((0, T0)×X ×X ×X, X). Then the impulsive equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 < t < T0, t 6= ti, (3.18)

u(0) = u0, (3.19)

∆u(ti) = qi, i = 1, 2, 3, . . . , p. (3.20)
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has a unique classical solution u(·) which, for t ∈ [0, T0), satisfies

u(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds +
∑

0<ti<t

G(t− ti)qi. (3.21)

Proof. Consider the interval on J1 = [0, t1), apply Lemma 3.2 to the equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 < t < t1, (3.22)

u(0) = u0, (3.23)

has a unique classical solution u1(·) which satisfies

u1(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds, t ∈ [0, t1), (3.24)

Now, define

u1(t1) = G(t1)u0 +
∫ t1

0

G(t1 − s)f(s, u(s), Tu(s), Su(s))ds, (3.25)

Applying Lemma 3.3, we see that u1(·) is left continuous at t1, and u1(t1) ∈ D(A).
Next on J2 = [t1, t2), consider the equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), t1 < t < t2, (3.26)

u(t1) = u1(t1) + q1, (3.27)

Since u1(t1) + q1 ∈ D(A), once again we can use Lemma 3.2 again to get a unique
classical solution u2(·) which satisfies

u2(t) = G(t− t1)[u(t1)] +
∫ t

t1

G(t− s)f(s, u(s), Tu(s), Su(s))ds. (3.28)

Now, define

u2(t2) = G(t2 − t1)[u1(t1) + q1] +
∫ t2

t1

G(t2 − s)f(s, u(s), Tu(s), Su(s))ds. (3.29)

Therefore, u2(·) is left continuous at t2 and u2(t2) ∈ D(A) using Lemma 3.3.
Continuous in this process on Jk = [tk−1, tk), (k = 3, 4, 5, . . . , p + 1) to get the
classical solutions

uk(t) = G(t− tk−1)[uk−1(tk−1) + qk−1]

+
∫ t

tk−1

G(t− s)f(s, u(s), Tu(s), Su(s))ds.
(3.30)

for t ∈ [tk−1, tk), with ui(·) left continuous at ti and ui(ti) ∈ D(A), i = 1, 2, . . . , p.
Now, define

u(t) =


u1(t) 0 ≤ t ≤ t1,

uk(t) tk − 1 < t ≤ tk, k = 2, 3, . . . , p.

uk+1(t) tp < t < tp+1 = T0.

(3.31)

Therefore, u(·) is the unique classical solution of equations (3.18)–(3.20). Using
induction method we show that (3.21) is satisfied on [0, T0). First (3.21) is satisfied
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on [0, t1]. If (3.21) is satisfied on (tk−1, tk], then for t ∈ (tk, tk+1],

u(t)

= uk+1(t) = G(t− tk)[uk(tk) + qk]

+
∫ t

tk

G(t− s)f(s, uk+1(s), Tuk+1(s), Suk+1(s))ds

= G(t− tk)[G(tk)u0 +
∫ tk

0

G(tk − s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<tk

G(tk − ti)qi + qk]

+
∫ t

tk

G(t− s)f(s, uk+1(s), Tuk+1(s), Suk+1(s))ds

= G(t− tk)G(tk)u0 +
∫ tk

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<tk

G(t− ti)qi + G(t− tk)qk +
∫ t

tk

G(t− s)f(s, u(s), Tu(s), Su(s))ds

= G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s).Su(s))ds +
∑

0<ti<t

G(t− ti)qi.

Thus (3.21) is also true on (tk, tk+1]. Therefore, (3.21) is true on [0, T0), which
completes the proof. �

Next Theorem gives the proof of the main theorem.

Theorem 3.5. Assume the hypotheses (H1)-(H2) are satisfied. Let u(·) = u(·, u0)
be the unique mild solution of (2.2)–(2.4) obtained in Theorem 3.1. Assume that
u0 ∈ D(A), Ii(u(ti)) ∈ D(A), i = 1, 2, . . . , p, and that f ∈ C1((0, T0) × X × X ×
X, X). Then u(·) gives rise to a unique classical solution of (2.2)–(2.4).

Proof. . Let u(·) be the mild solution. Let qi = Ii(u(ti)), i = 1, 2, . . . , p. Then
from Theorem 3.4, equation (3.18)-(3.20) has a unique classical solution w(·) which
satisfies for t ∈ [0, T0)

w(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, w(s), Tw(s), Sw(s))ds

+
∑

0<ti<t

G(t− ti)Ii(w(ti))

Since u(·) is the mild solution of (2.2)–(2.4), for t ∈ [0, T0],

u(t) = G(t)u0 +
∫ t

0

G(t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

G(t− ti)Ii(u(ti))

Suppose u(t) and w(t) are two mild solutions, then

w(t)− u(t) =
∫ t

0

G(t− s)[f(s, w(s), Tw(s), Sw(s))− f(s, u(s), Tu(s), Su(s))]ds.
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Since by Theorem 3.1, the mild solutions is unique, it follows that w(t)− u(t) = 0.
This implies that w(·) = u(·). This shows that u(·) is also a classical solution. This
completes the proof. �
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