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ASYMPTOTIC PROFILE OF A RADIALLY SYMMETRIC
SOLUTION WITH TRANSITION LAYERS FOR AN

UNBALANCED BISTABLE EQUATION

HIROSHI MATSUZAWA

Abstract. In this article, we consider the semilinear elliptic problem

−ε2∆u = h(|x|)2(u− a(|x|))(1− u2)

in B1(0) with the Neumann boundary condition. The function a is a C1

function satisfying |a(x)| < 1 for x ∈ [0, 1] and a′(0) = 0. In particular

we consider the case a(r) = 0 on some interval I ⊂ [0, 1]. The function h is a

positive C1 function satisfying h′(0) = 0. We investigate an asymptotic profile
of the global minimizer corresponding to the energy functional as ε → 0. We

use the variational procedure used in [4] with a few modifications prompted

by the presence of the function h.

1. Introduction and Statement of Main Results

In this article, we consider the boundary value problem

−ε2∆u = h(|x|)2(u− a(|x|))(1− u2) in B1(0)
∂u

∂ν
= 0 on ∂B1(0)

(1.1)

where ε is a small positive parameter, B1(0) is a unit ball in RN centered at the
origin, and the function a is a C1 function on [0, 1] satisfying −1 < a(|x|) < 1 and
a′(0) = 0. The function h is a positive C1 function on [0, 1] satisfying h′(0) = 0.
We set r = |x|.

Problem (1.1) appears in various models such as population genetics, chemical
reactor theory and phase transition phenomena. See [1] and the references therein.
If the function h satisfies h(r) ≡ 1 and the function a satisfies a(r) 6≡ 0, then
this problem (1.1) has been studied in [1], [4] and [7]. In this case, it is shown
that there exist radially symmetric solutions with transition layers near the set
{x ∈ B1(0)|a(|x|) = 0}. If the set {r ∈ R|a(r) = 0} contains an interval I, then the
problem to decide the configuration of transition layer on I is more delicate.

When N = 1, if the function h satisfies h(r) 6≡ 1 and the function a satisfies
a(r) ≡ 0, then problem (1.1) has been studied in [8] and [9]. In this case, it is
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shown that there exist stable solutions with transition layers near prescribed local
minimum points of h.

In this paper, we consider the case where the function a satisfies a(r) 6≡ 0 with
a(r) = 0 on some interval I ⊂ (0, 1). We show the minimum point of the function
rN−1h(r) on I has very important role to decide the configuration of transition
layer on I in this case.

We note that in [4], Dancer and Shusen Yan considered a problem similar to
ours. They assume that N ≥ 2, h ≡ 1 and the nonlinear term is u(u− a|x|)(1− u)
satisfying a(r) = 1/2 on I = [l1, l2] and a(r) < 1/2 for l1 − r > 0 small and
a(r) > 1/2 for r − l2 > 0 small, then a global minimizer of the corresponding
functional has a transition layer near the l1, that is, the minimum point of rN−1

on I (see [4, Theorem 1.3]). In this sense, we can say that our results are natural
extension of the results in [4]. We are going to follow throughout the variational
procedure used in [4] with a few modifications prompted by the presence of the
function h.

Here we state the energy functional, corresponding to (1.1),

Jε(u) =
∫

B1(0)

ε2

2
|∇u|2 − F (|x|, u)dx,

where F (|x|, u) =
∫ u

−1
f(|x|, s)ds and f(|x|, u) = h(|x|)2(u − a(|x|))(1 − u2). It is

easy to see that the following minimization problem has a minimizer

inf{Jε(u)|u ∈ H1(B1(0))}. (1.2)

Let A− = {x ∈ B1(0)|a(|x|) < 0} and A+ = {x ∈ B1(0)|a(|x|) > 0}.
In this paper, we will analyze the profile of the minimizer of (1.2), and prove the

following results.

Theorem 1.1. Let uε be a global minimizer of (1.2). Then uε is radially symmetric
and

uε →

{
1, uniformly on each compact subset of A−,

−1, uniformly on each compact subset of A+,

as ε → 0. In particular uε converges uniformly near the boundary of B1(0), that
is, if a(r) < 0 on [r0, 1] for some r0 > 0, uε → 1 uniformly on B1(0)\Br0(0)
and if a(r) > 0 on [r0, 1] for some r0 > 0, uε → −1 uniformly on B1(0)\Br0(0).
Moreover, for any 0 < r1 ≤ r2 < 1 with a(ri) = 0, i = 1, 2, a(r) 6= 0 for r1 − r > 0
small and for r − r2 > 0 small, a(r) = 0 if r ∈ [r1, r2], we have:

(i) If a(r) < 0 for r1 − r > 0 small and a(r) > 0 for r − r2 > 0, then for
any small η > 0 and for any small θ > 0, there exists a positive number ε0

which has the following properties:
(a) For all ε ∈ (0, ε0], there exist tε,1 < tε,2 such that

uε(r) > 1− η for r ∈ [r1 − θ, tε,1),

uε(tε,1) = 1− η,

uε(tε,2) = −1 + η,

uε(r) < −1 + η, for r ∈ (tε,2, r2 + θ].

(b) The function uε(r) is decreasing on the interval (tε,1, tε,2)
(c) The inequality 0 < R1 ≤ tε,2−tε,1

ε ≤ R2 holds, where R1 and R2 are
two constants independent of ε > 0.
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(d) If tεj ,1, tεj ,2 → t for some positive sequence {εj} converging to zero as
j →∞, then t satisfies h(t)tN−1 = mins∈[r1,r2] h(s)sN−1.

(ii) If a(r) > 0 for r1 − r > 0 small and a(r) < 0 for r − r2 > 0, then for each
small η > 0 and for each small θ > 0, there exists a positive number ε0 which
has the following properties: For each ε ∈ (0, ε0], there exist tε,1 < tε,2 such
that
(a)

uε(r) < −1 + η for r ∈ [r1 − θ, tε,1),

uε(tε,1) = −1 + η,

uε(tε,2) = 1− η,

uε(r) > 1− η, for r ∈ (tε,2, r2 + θ].

(b) The function uε(r) is increasing in (tε,1, tε,2).
(c) The inequality 0 < R1 ≤ tε,2−tε,1

ε ≤ R2 holds, where R1 and R2 are
two constants independent of ε > 0.

(d) If tεj ,1, tεj ,2 → t for some positive sequence {εj} converging to zero as
j →∞, then t satisfies h(t)tN−1 = mins∈[r1,r2] h(s)sN−1.
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Figure 1. Profile of the global minimizer uε

Remarks.
• Note that results from (a) to (c) both in cases (i) and (ii) are not related to

the presence of the function h. The effect of presence of function h appears
in the result (d) in (i) and (ii).

• If mins∈[r1,r2] s
N−1h(s) is attained at a unique point t, we can show tε,1,

tε,2 → t as ε → 0 without taking subsequences.
• If the function rN−1h(r) is constant on [r1, r2], it is a very difficult problem

to know the location of the point t ∈ [r1, r2].
This paper is organized as follows: In section 2, we present some preliminary

results. In section 3, we prove the main theorem.

2. Preliminary Results

Let D is a bounded domain in RN . Let f(x, t) be a function defined on D × R
which is bounded on D× [−1, 1]. Suppose f is continuous on t ∈ R for each x ∈ D
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and is measurable in D for each t ∈ R. We also assume

f(x, t) > 0 for x ∈ D, t < −1;

f(x, t) < 0 for x ∈ D, t > 1.
(2.1)

Consider the minimization problem

inf
{

Jε(u, D) :=
∫

D

ε2

2
|∇u|2 − F (x, u)dx : u− η ∈ H1

0 (D)
}

, (2.2)

where η ∈ H1(D) with −1 ≤ η ≤ 1 on D and

F (x, t) =
∫ t

−1

f(x, s)ds.

We can prove next two lemmas by methods similar to [4]. For the readers conve-
nience, we prove these lemmas in this section.

Lemma 2.1. Suppose that f(x, t) satisfies (2.1). Let uε be a minimizer of (2.2).
Then −1 ≤ uε ≤ 1 on D.

Proof. We prove −1 ≤ uε on D. Let M = {x : uε(x) < −1}. Define ũε by

ũε(x) =

{
uε(x) if x ∈ D\M
−1 if x ∈ M.

Since uε(x) = η ≥ −1 on ∂D, we see that M is compactly contained in D. Thus
ũ − η ∈ H1

0 (D). If the measure m(M) of M is positive, we have Jε(ũε, D) <
Jε(uε, D). Because uε is a minimizer, we see m(M) = 0, where m(A) denotes
the Lebesgue measure of the set A. Thus uε ≥ −1. Similarly we can prove that
uε ≤ 1. �

Lemma 2.2. Suppose that f1(x, t) and f2(x, t) both satisfy (2.1) and the same
regularity assumption on f . Assume that ηi ∈ H1(D) satisfy −1 ≤ ηi ≤ 1 on D
for i = 1, 2. Let uε,i be a corresponding minimizer of (2.2), where f = f i and
η = ηi, i = 1, 2. Suppose that f1(x, t) ≥ f2(x, t) for all (x, t) ∈ D × [−1, 1] and
1 ≥ η1 ≥ η2 ≥ −1. Then uε,1 ≥ uε,2.

Proof. Let M = {x ∈ D : uε,2 > uε,1}. Define ϕε = (uε,2 − uε,1)+. Since η1 ≥ η2,
we have ϕε ∈ H1

0 (D). Set F i(x, u) =
∫ u

−1
f i(x, s)ds. Since uε,i is a minimizer of

Jε,i(u) :=
∫

D

ε2

2
|∇u|2 − F i(x, u)dx

and ϕε = 0 for x ∈ D\M , we have

0 ≤ Jε,1(uε,1 + ϕε)− Jε,1(uε,1)

=
∫

M

ε2

2
(|∇(uε,1 + ϕε)|2 − |∇uε,1|2)dx−

∫
M

∫ uε,1+ϕε

uε,1

f1(x, s)ds

≤
∫

M

ε2

2
(|∇(uε,1 + ϕε)|2 − |∇uε,1|2)dx−

∫
M

∫ uε,1+ϕε

uε,1

f2(x, s)ds

= Jε,2(uε,2)− Jε,2(uε,2 − ϕε) ≤ 0.
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This implies that uε,1 +ϕε is also a minimizer of Jε,1(u). Let L > 0 be large enough
such that f1(x, t) + Lt is strictly increasing for x ∈ D, t ∈ [−1, 1]. From

−ε2∆(uε,1 + ϕε) = f1(uε,1 + ϕε),

we obtain
−ε2∆ϕε = f1(uε,1 + ϕε)− f1(uε,1).

Thus

−ε2∆ϕε + Lϕε = f1(uε,1 + ϕε) + L(uε,1 + ϕε)− (f1(uε,1) + Luε,1) > 0

in D. Fix z0 ∈ M . Let x0 ∈ ∂M such that |x0 − z0| = dist(z0, ∂M). Using the
Strong maximum principle and Hopf’s lemma in Bdist(z0,∂M)(z0), we obtain that
∂ϕε

∂ν (x0) < 0, where ν = (x0 − z0)/|x0 − z0|. But ϕε(x) = 0 for x /∈ M . Thus,
∂ϕε

∂ν (x0) = 0. This is a contradiction. Thus we obtain M = ∅. �

3. Proof of Main Theorem

To prove Theorem 1.1, the following proposition is used as the first step.

Propositon 3.1. Let uε be a global minimizer of the problem (1.2). Then uε

satisfies

uε →

{
1 uniformly on each compact subset of A−

−1 uniformly on each compact subset of A+

as ε → 0.

Proof. Let x0 ∈ A−. Choose δ > 0 small so that Bδ(x0) ⊂⊂ A. Take b ∈
(max

z∈Bδ(x0)
a(z), 1/2). Define fx0,δ,b(t) = (minz∈Bδ(x0) h(|z|)2)(t − b)(1 − t2).

Then for x ∈ Bδ(x0), t ∈ [−1, 1], we have f(|x|, t) ≥ fx0,δ,b(t). Let uε,x0,δ,b be
the minimizer of

inf
{∫

Bδ(x0)

ε2

2
|∇u|2 − Fx0,δ,b(u)dx : u + 1 ∈ H1

0 (Bδ(x0))
}

,

where Fx0,δ,b(t) =
∫ t

−1
fx0,δ,b(s)ds. It follows from Lemmas 2.1 and 2.2 that

uε,x0,δ,b(x) ≤ uε(x) ≤ 1, for x ∈ Bδ(x0).

Since
∫ 1

−1
fx0,δ,b(s)ds > 0, it follows from [2, 3] that uε,x0,δ,b(x) → 1 as ε → 0

uniformly in Bδ/2(x0), thus uε(x) → 1 as ε → 0 uniformly in Bδ/2(x0). �

To prove the rest of Theorem 1.1, we need the following proposition and lemma.

Propositon 3.2. Let u be a local minimizer of the problem

inf
{∫

B1(0)

1
2
|∇u|2 −G(|x|, u)dx : u ∈ H1(B1(0))

}
.

Here G(r, t) =
∫ t

−1
g(r, s)ds, g(r, t) is C1 in t ∈ R for each r ≥ 0, g(r, t) and gt(r, t)

are measurable on [0,+∞) for each t ∈ R, g(r, t) < 0 if t < −1 or t > 1 and
|g(r, t)| + |gt(r, t)| is bounded on [0, k] × [−2, 2] for any k > 0. Then u is radial,
i.e., u(x) = u(|x|).

The proof of the above proposition can be found in [4, Proposition 2.6].
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Lemma 3.3. Let 0 < η < 1 be any fixed constant and w satisfies

−wzz = w(1− w2) on R,

w(0) = −1 + η (resp. w(0) = 1− η),

w(z) ≤ −1 + η (resp. w(z) ≥ 1− η) for z ≤ 0,

w is bounded on R.

Then w is a unique solution of

−wzz = w(1− w2) on R,

w(0) = −1 + η (resp. w(0) = 1− η),

w′(z) > 0 (resp. w′(z) < 0) z ∈ R,

w(z) → ±1 (resp. w(z) → ∓1) as z → ±∞.

The proof of the above lemma can be found in [6]. Now we prove the rest of
Theorem 1.1.

Proof of Theorem 1.1. For the sake of simplicity, we prove for the case where a(r) <
0 on [0, r1), a(r) = 0 on [r1, r2] and a(r) > 0 on (r2, 1] for some 0 < r1 < r2 < 1
(see Figure 1 in Section 1).

Part 1. First we show that uε converges uniformly near the boundary of B1(0),
that is, uε → −1 uniformly on B1(0)\Br2+τ (0) for any small τ > 0. We note that
we have uε → −1 uniformly on B1−τ (0)\Br2+τ (0) as ε → 0. Now we claim that
uε(r) ≤ uε(1− τ) =: Tε for r ∈ [1− τ, 1]. We define the function ũε by

ũε(r) =


uε(r) if r ∈ [0, 1− τ ]
uε(r) if uε(r) < Tε and r ∈ [1− τ, 1],
Tε if uε(r) ≥ Tε and r ∈ [1− τ, 1].

We note that ũε ∈ H1(B1(0)) and −F (r, Tε) ≤ −F (r, t) for ε > 0 and |r− 1| small
and t ≥ Tε. Hence we obtain Jε(ũε) < Jε(uε) and we have a contradiction if we
assume that the measure of the set {r ∈ [0, 1]|uε(r) > Tε and r ∈ [1 − τ, 1]} is
positive. Hence −1 < uε(r) ≤ Tε and uε → −1 uniformly on B1(0)\Br2+τ (0).

Part 2. We remark that, by Proposition 3.1, uε is radially symmetric and we note
that for any t2 > t1, uε is a minimizer of the following problem

inf{Jε(u, Bt2(0)\Bt1(0)) : u− uε ∈ H1
0 (Bt2(0)\Bt1(0))},

where

Jε(u, M) =
∫

M

ε2

2
|∇u|2 − F (|x|, u)dx

for any open set M . Let mε,t1,t2 be the minimum value of this minimization prob-
lem.

In this part we show that uε has exactly one layer near the interval [r1, r2].
Step 2.1. First we estimate the energy of transition layer. Let η > 0 and θ > 0
be small numbers. Since uε → 1 uniformly on [0, r1 − θ] and uε → −1 uniformly
on [r2 + θ, 1 − θ], we can find rε ∈ (r1 − θ, r2 + θ) such that uε(r) ≥ 1 − η if
r ∈ [0, rε], uε(r) < 1− η for r− rε > 0 small. Let r̃ε > rε be such that uε(r) ≤ η if
r ∈ [r̃ε, 1− θ], uε(r) > η for r̃ε− r > 0 small. We may assume that rε → r ∈ [r1, r2]
and r̃ε → r̃ ∈ [r1, r2]
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We employ the so-called blow-up argument. Let vε(t) = uε(εt + rε). Then

−v′′ε − ε
N − 1
εt + rε

v′ε = f(εt + rε, vε),

−1 ≤ vε ≤ 1 and vε(0) = 1−η. Since rε → r ∈ [r1, r2], it is easy to see that vε → v
in C1

loc(R) and
−v′′ = h(r)2(v − v3), t ∈ R.

and v(t) ≥ 1− η for t ≤ 0. If we set v(t) = V (h(r)t), the function V (t) satisfies

−V ′′ = V − V 3 on R,

V (0) = 1− η,

V ′(t) ≥ 1− η t ≤ 0.

(3.1)

Hence by Lemma 3.3, the function V is a unique solution for

−V ′′ = V − V 3 on R,

V (0) = 1− η,

V ′(t) < 0 t ≤ 0.

V (t) → ±1 as t → ∓∞.

(3.2)

Thus, we can find an R > 0 large, such that v(R) = η. Since vε → v in C1
loc(R), we

can find an Rε ∈ (R−1, R+1), such that v′ε(r) < 0 if r ∈ [0, Rε] and vε(Rε) = −1+η.
Hence u′ε(r) < 0 if r ∈ [rε, rε + εRε] and uε(rε + εRε) = −1 + η. Then we have

Jε(uε, Brε+εRε(0)\Brε(0))

= ωN−1(rN−1
ε + oε(1))

∫ rε+εRε

rε

(
ε2

2
|u′ε|2 − F (t, uε)

)
dt

= ωN−1(rN−1
ε + oε(1))ε

∫ Rε

0

(
1
2
|v′ε|2 − F (εt + rε, vε)

)
dt

= ωN−1(rN−1
ε + oε(1))(βh(r) + O(η) + oε(1))ε,

(3.3)

where ωN−1 is the area of the unit sphere in RN , oε(1) → 0 as ε → 0, βh(s) is the
positive value defined by

βh(s) =
∫ +∞

−∞

(1
2
|w′

h(s)(t)|
2 + h(s)2

(w2
h(s) − 1)2

4

)
dt

= h(s)
∫ +∞

−∞

1
2
|V ′(t)|2 +

(V (t)2 − 1)2

4
dt

= h(s)β1

and wh(s)(t) = V (h(s)t) for s ∈ [0, 1]. We note that although the function V
depends on η, the value

β1 =
∫ +∞

−∞

1
2
|V ′(t)|2 +

(V (t)2 − 1)2

4
dt

is independent of η.
Step 2.2. We claim uε has exactly one layer near the interval [r1, r2]. To show uε

has exactly one layer near the interval [r1, r2], it sufficient to prove the following
claim
Claim. r̃ε = rε + εRε.
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Suppose that the claim is not true. Then we can find a tε > rε + Rεε such that
uε(r) < −1 + η if r ∈ (rε + Rεε, tε), uε(tε) = −1 + η. Thus we can use the blow-up
argument again at tε to deduce that there is a t̃ε = tε + εR̃ε with u′ε(r) > 0 if
r ∈ (tε, t̃ε), uε(t̃ε) = 1 − η. We may assume that tε, t̃ε → t as ε → 0 for some
t ∈ [r2, r3]. Moreover

Jε(uε, Bt̃ε
(0)\Btε

(0)) = ωN−1(tN−1
ε + oε(1))(βh(t) + O(η))ε + oε(1) (3.4)

Now we claim t̃ε ≥ r1. Suppose t̃ε < r1. Let Fa(t) =
∫ t

−1
(v − a)(1 − v2)dv. Then

for any t > 0 small and s ∈ [−1 + t, 1− t],

Fa(1− t)− Fa(s)

= F0(1− t)− F0(s) + Fa(1− t)− F0(1− t)− Fa(s) + F0(s)

=
[ (v2 − 1)2

4
]1−t

s
− a

∫ 1−t

s

(1− v2)dv

(3.5)

Thus it follows from (3.5) that if a < 0, then

Fa(1− t)− Fa(s) > 0 (3.6)

for s ∈ [−1 + t, 1− t]. Define

uε(r) :=

{
1− η r ∈ [rε, rε + Rεε] ∪ [tε, t̃ε],
−uε(r) r ∈ [rε + Rεε, tε].

By the assumption that t̃ε < r1 and using (3.6), we see F (r, uε) < F (r, uε) if
r ∈ [rε, t̃ε]. Hence, we obtain

Jε(uε, Bt̃ε
(0)\Brε

(0)) < Jε(uε, Bt̃ε
(0)\Brε

(0)).

Thus we obtain a contradiction. Therefore we have that t̃ε ≥ r1.
Since a(r) ≥ 0 for r ∈ [r1, 1], we see F (r, t) ≤ F (r,−1) = 0 if r ∈ [r1, 1]. Since

uε(r) ∈ (−1,−1 + η) for r ∈ [rε + Rεε, tε], we have

mε,rε,r̃ε = Jε(uε, Brε+εRε(0)\Brε(0)) + Jε(uε, Bt̃ε
(0)\Btε(0))

+ Jε(uε, Btε(0)\Brε+εRε(0)) + Jε(uε, Br̃ε(0)\Bt̃ε
(0))

≥ ωN−1(rN−1
ε βh(r)ε + tN−1

ε βh(t)ε) + O(ηε) + o(ε)

+ inf
{
−

∫
Btε (0)\Brε+εRε (0)

F (r, w) : −1 ≤ w ≤ 1 + η
}

+ inf
{
−

∫
Br̃ε (0)\Bt̃ε

(0)

F (r, w) : −1 ≤ w ≤ 1
}

≥ ωN−1(rN−1
ε βh(r)ε + tN−1

ε βh(t)ε) + O(ηε) + o(ε)

(3.7)

Now we give an upper bound for mε,rε,r̃ε
. Let R > 0 be such that V (h(r)R) = η,

where V is a unique solution to (3.2). Define uε by

uε(r) :=


V (h(r) r−rε

ε ) r ∈ [rε, rε + εR]
−1 + η − η

ε (r − rε − εR) r ∈ [rε + εR, rε + εR + ε]
−1 r ∈ [rε + εR + ε, r̃ε − ε]
−1 + η

ε (r − r̃ε + ε) r ∈ [r̃ε − ε, r̃ε]

(3.8)
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Now we note that |F (r, t)| = O(η) for r ∈ [rε, r̃ε] and −1 ≤ t ≤ −1 + η . Then we
have

mε,rε,r̃ε
≤ Jε(uε, Br̃ε

(0)\Brε
(0))

≤ Jε(uε, Brε+Rε(0)\Brε
(0)) + Jε(uε, Br̃ε

(0)\Br̃ε−ε(0))

+ Jε(uε, Br̃ε−ε(0)\Brε+εR(0))

≤ ωN−1r
N−1
ε (βh(r) + O(η))ε + o(ε) + O(εη) + o(ε)

= ωN−1r
N−1
ε βh(r) + O(ηε) + o(ε)

(3.9)

By (3.7) and (3.9), we have

ωN−1(rN−1
ε βh(r) + tN−1

ε βh(t))ε ≤ ωN−1r
N−1
ε βh(r)ε + O(εη) + o(ε)

This is a contradiction. So we can conclude r̃ε = rε + εRε.

Part 3. It remains to prove that if rεj
→ r for some positive sequence {εj} con-

verging to zero as j →∞ then r satisfies

rN−1h(r) = min
s∈[r1,r2]

sN−1h(s).

Step 3.1. First we note that from Part 1, the function uε satisfies −1 ≤ uε ≤ −1+η
for r ∈ [rε + εRε, 1] in this case.
Step 3.2. Set H(s) = sN−1h(s). Assume that the result is not true. Then
there exists a subsequence of {rε} (denoted by rε) such that rε → r′ ∈ [r1, r2]
and H(r′) > mins∈[r1,r2] H(s). Then we can find a point t ∈ (r1, r2) such that
H(r′) > H(t).

Now we give a lower estimate for Jε(uε). We have

Jε(uε) = Jε(uε, Brε
(0)) + Jε(uε, Brε+εRε

(0)\Brε
(0)) + Jε(uε, B1(0)\Brε+Rεε(0)).

(3.10)
First we note that 1 − η ≤ uε(r) ≤ 1 for r ≤ rε and for sufficiently small η > 0,
−F (r, u) ≥ −F (r, 1) (u ∈ [1− η, 1]). We also remark that since a(r) < 0 for r < r1

and a(r) = 0 for r1 ≤ r ≤ r2 and a(r) > 0 for r > r2, we have −F (r, 1) < 0 for
r < r1 and −F (r, 1) = 0 for r1 ≤ r ≤ r2 and −F (r, 1) > 0 for r > r2. Hence we
have −

∫ rε

r1
rN−1F (r, 1)dr ≥ 0 and we obtain the estimate

Jε(uε, Brε
(0)) ≥ −

∫ rε

0

rN−1F (r, uε)dr

≥ −
∫ rε

0

rN−1F (r, 1)dr

= −
∫ r1

0

rN−1F (r, 1)dr −
∫ rε

r1

rN−1F (r, 1)dr

≥ −
∫ r1

0

rN−1F (r, 1)dr =: A.

(3.11)

Using methods similar to those in the proof of (3.3), we obtain

Jε(uε, Brε+Rεε(0)\Brε
(0)) ≥ ωN−1H(r′)β1ε + O(ηε) + o(ε). (3.12)
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Since −1 ≤ uε(r) ≤ −1 + η for r ≥ rε + εRε and for sufficiently small η > 0,
−F (r, u) ≥ −F (r,−1) = 0 (u ∈ [−1,−1 + η]), we obtain the estimate

Jε(uε, B1(0)\Brε+Rεε(0)) ≥ −
∫ 1

rε+εRε

rN−1F (r, uε)dr

≥ −
∫ 1

rε+εRε

rN−1F (r,−1)dr = 0.

(3.13)

Thus we obtain

J(uε) ≥ A + ωN−1H(r′)β1ε + O(ηε) + o(ε). (3.14)

Next we give an upper bound for Jε(uε). Consider the function

wε(r) :=



1 r ∈ [0, t− ε]
1− η

ε (r − t + ε) r ∈ [t− ε, t]
V

(
h(t) r−t

ε

)
r ∈ [t, t + εR′]

−1− η
ε (r − t− εR′ − ε) r ∈ [t + εR′, t + εR′ + ε]

−1 r ∈ [t + εR′ + ε, 1],

where R′ > 0 is the number satisfying V (h(t)R′) = −1 + η. Then

Jε(uε) ≤ Jε(wε) ≤ A + ωN−1H(t)β1ε + O(ηε) + o(ε). (3.15)

By (3.14) and (3.15) we have a contradiction. The proof of Theorem 1.1 is complete.
The more complicate case, can be shown by a similar method (see Remark below).

�

Remark. We briefly show the more complicate case, that is, when a is the function
as in Figure 2. More precisely we set I1 := [r1, r2] and I2 := [r3, r4] and we assume
a > 0 on [0, r1) ∪ (r4, 1] and a < 0 on (r3, r4).

r1 r2 r3 r4

a(r)

u

I1 I2

1

-1

rO

Figure 2. Special case of coefficient a(t)

Let η > 0 and θ > 0 be small numbers. As in Part 1, we can find pairs of numbers
(r1,ε, r2,ε) and (R1,ε, Rε,2) satisfying r1,ε ∈ (r1 − θ, r2 + θ), r2,ε ∈ (r3 − θ, r4 + θ),
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supε |R1,ε| < ∞, supε |R2,ε| < ∞ and

uε(r) < −1 + η for 0 < r < r1,ε

uε(r1,ε) = −1 + η

uε(r1,ε + εR1,ε) = 1− η

uε(r) > 1− η for r1,ε + εR1,ε < r < r2,ε

uε(r2,ε) = 1− η

uε(r2,ε + εR2,ε) = −1 + η

uε(r) < −1 + η for r2,ε + εR2,ε < r < 1

We assume that r1,εj
→ r1 ∈ I1 and that r2,εj

→ r2 ∈ I2 for some sequence {εj}
which converges to 0 as j → ∞. In this case it is easy to show that the energy of
global minimizer J(uε) is estimated as follows

Jεj
(uεj

) ≥ Jεj
(uεj

, Br2−ε(0)) + εjωN−1H(r2)β1 + B + O(εjη) + o(εj), (3.16)

where B = −
∫ r3

r2
rN−1F (r, 1)dr.

Let us assume the result does not hold. Then H(r1) > mins∈I1 H(s) or H(r2) >
mins∈I2 hold. We assume H(r1) = mins∈I1 and H(r2) > mins∈I2 H(s). We also
assume r1 = r1. We note that if H(r1) > mins∈I1 H(s) or r1 ∈ intI1, the proof is
more easy.

Let we take r̃2 ∈ intI2 such that H(r2) > H(r̃2) > mins∈I2 H(s) and consider
the function

ũε(r) :=



uε(r) on [0, r2 − ε)
1 + η

ε (r − r2) on [r2 − ε, r2]
1 on [r2, r̃2 − ε]
1− η

ε (r − r̃2 + ε) on [r̃2 − ε, r̃2]
V

(
h(r̃2) r−r̃2

ε

)
on [r̃2, r̃2 + εR′′]

−1− η
ε (r − r̃2 − εR′′ − ε) on [r̃2 + εR′′, r̃2 + εR′′ + ε]

−1 on [r̃2 + εR′′ + ε, 1],

where V is the unique solution of (3.2) and R′′ is the unique value such that
V (h(r1)R′′) = −1 + η.

Since uε is global minimizer, we can estimate the energy of Jε(ũε) as follows

Jε(uε) ≤ Jε(ũε) ≤ Jε(uε, Br2−ε(0)) + εωN−1H(r̃2)β1 + B + O(εη) + o(ε). (3.17)

Then we have a contradiction from (3.16) and (3.17) by taking ε = εj and suffi-
ciently large j.
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