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ELASTO-PLASTIC TORSION PROBLEM AS AN INFINITY
LAPLACE’S EQUATION

AHMED ADDOU, ABDELUAAB LIDOUH, BELKASSEM SEDDOUG

Abstract. In this paper, we study a perturbed infinity Laplace’s equation,
the perturbation corresponds to an Leray-Lions operator with no coercivity

assumption. We consider the case where data are distributions or L1 elements.

We show that this problem has an unique solution which is the solution to the
variational inequality arising in the elasto-plastic torsion problem, associated

with and operator A.

1. Introduction

Given a bounded open subset Ω of RN , N ≥ 1, we consider the Dirichlet Problem

Au−∆∞u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆∞u = uxi
uxj

uxixj
(see [3]), f in L1(Ω) or W−1,p′

(Ω) and A is a Leray-Lions
operator with no coercivity assumption, i.e.

Av = −div(a(x,∇v(x)))

where a : Ω × RN → RN is a Caratheodory function satisfying the following as-
sumptions:

For almost every x ∈ Ω and for all ξ, η ∈ RN , (ξ 6= η), one has:

a(x, ξ)ξ ≥ 0, (1.2)

|a(x, ξ)| ≤ β
[
h(x) + |ξ|p−1

]
, (1.3)[

a(x, ξ)− a(x, η)
]
(ξ − η) > 0 (1.4)

with 1 < p < +∞, β > 0, h ∈ Lp′
(Ω) (p′ denotes the conjugate exponent of p, i.e:

1
p + 1

p′ = 1).
By a solution to 1.1 we will mean a variational solution in the sense which extends

that given in ([3]) and ([9]), that is, a function u which is the limit of the sequence
(un) of solutions to the Dirichlet problems

Aun −∆nun = f in Ω,

un = 0 on ∂Ω,
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as n →∞, where ∆n is the n-Laplacian operator (∆nv = div(|∇v|n−2∇v).
We show that in the variational case (f ∈ W−1,p′

(Ω)), the sequence (un) con-
verges to the unique solution to the variational inequality

〈Au, v − u〉 ≥ 〈f, v − u〉, for all v ∈ K,

u ∈ K.

Where K is the bounded convex cone of W 1,p
0 (Ω) defined as:

K = {v ∈ W 1,p
0 (Ω) : |∇v(x)| ≤ 1 a.e. in Ω},

and in the case f ∈ L1(Ω), the sequence (un) converges to the unique solution to
the problem

〈Au, Tk(v − u)〉 ≥
∫

Ω

fTk(v − u)dx, for all v ∈ K,

u ∈ K, for all k > 0.

Where Tk : R → R is the cut function defined as

Tk(s) =

{
s if |s| ≤ k

k sign(s) if |s| > k.

here 〈., .〉 denotes the duality pairing between W−1,p′
(Ω) and W 1,p

0 (Ω).
Our approach is also inscribed among the techniques of “the increase of power”,

first introduced by Boccardo and Murat in [4], where they approached the problem

〈Au, v − u〉 ≥ 〈f, v − u〉, for all v ∈ K0,

u ∈ K0 = {v ∈ W 1,p
0 (Ω) : |v(x)| ≤ 1 a.e. in Ω},

by the sequence of the Dirichlet equations

Aun − |un|n−1un = f in D′(Ω),

un ∈ W 1,p
0 (Ω) ∩ Ln(Ω),

where f ∈ W−1,p′
(Ω) and A is modelled on the p-Laplacian.

Then in [5], Dall’Aglio and Orsina generalized this result by considering in-
creasing powers depending of a certain Caratheodory function satisfying the sign
condition and an integrability assumption.

Then finally in [2] the authors extended this result to the case where increas-
ing powers are multiplied by a quantity depending on the gradient and verifying
adequate conditions, they examine the two cases, f in L1(Ω) and in W−1,p′

(Ω).
In this paper we examine the case where the increasing powers carry on the

gradients and not on quantities independent of the gradient.

2. The variational case

Let f ∈ W−1,p′
(Ω), 1 < p < +∞. For all integer n ≥ p, we consider the Dirichlet

problem
Aun −∆nun = f in Ω,

un ∈ W 1,n
0 (Ω).

(2.1)
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It is known [7, 8] that, under assumptions (1.2)–(1.4), the problem (2.1) has an
unique solution un, in the following sense:

∀v ∈ W 1,n
0 (Ω) :

∫
Ω

[a(x,∇un)∇v + |∇un|n−2∇un∇v]dx = 〈f, v〉. (2.2)

In the sequel W 1,p
0 (Ω) is equipped with its usual norm

‖v‖W 1,p
0 (Ω) =

[ ∫
Ω

|∇v|pdx
]1/p

Let us now, state our first main result.

Theorem 2.1. Let f ∈ W−1,p′
(Ω), 1 < p < +∞. Under assumptions (1.2)–(1.4),

if un designates the solution to the problem (2.1), then the sequence (un) converges
strongly in W 1,p

0 (Ω), to the unique solution u to the problem

〈Au, v − u〉 ≥ 〈f, v − u〉, for all v ∈ K,

u ∈ K.
(2.3)

Proof of Theorem 2.1.

A priori estimate. With un as a test function in (2.2), we get∫
Ω

a(x,∇un)∇undx +
∫

Ω

|∇un|ndx = 〈f, un〉 ≤ ‖f‖−1,p′‖un‖1,p

hence ∫
Ω

|∇un|ndx ≤ c‖un‖1,p for all n ≥ p . (2.4)

In the sequel c, c1, c2 . . . . designate arbitrary constants.
From (2.4), and by splitting

∫
Ω
|∇un|pdx as∫

Ω

|∇un|pdx =
∫

[|∇un|≤1]

|∇un|pdx +
∫

[|∇un|>1]

|∇un|pdx,

one deduces that∫
Ω

|∇un|pdx ≤ |Ω|+ c[
∫

Ω

|∇un|pdx]
1
p for all n ≥ p

and so ∫
Ω

|∇un|pdx ≤ c for all n ≥ p . (2.5)

Thereafter,∫
Ω

|∇un|ndx ≤ c ∀n and
∫

Ω

|∇un|qdx ≤ c ∀q, ∀n ≥ q. (2.6)

Therefore, one can construct a subsequence, still denoted by (un)n, such that

un ⇀ u weakly in W 1,q
0 (Ω) and uniformly in Ω̄, (2.7)

for some u ∈ W 1,q
0 (Ω) ∩ L∞(Ω), for all q > 1. More precisely, we have

u ∈ W 1,∞
0 (Ω) and ‖∇u‖∞ ≤ 1. (2.8)

Indeed, from (2.6) and (2.7), one has

‖∇u‖∞ = lim
q→∞

‖∇u‖q ≤ lim
q→∞

(
lim inf
n→∞

‖∇un‖q

)
≤ lim

q→∞
c

1
q = 1.
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Almost everywhere convergence of gradients. With v = un − u, as a test
function in (2.2), and using the fact that

∇un(∇un −∇u) ≥ 0

in the set {|∇un| ≥ |∇u|}, one has

〈Aun, un − u〉+
∫
{|∇un|<|∇u|}

|∇un|n−2∇un(∇un −∇u)dx ≤ εn, (2.9)

We will denote by εn any quantity which converges to zero as n tends to infinity.
Let ε > 0, for the second term on the left in (2.9), one puts

A1 = {|∇un| < |∇u| and |∇un| ≤ 1− ε}, A2 = {1− ε < |∇un| < |∇u|}
and so we have ∫

A1

|∇un|n−2∇un(∇un −∇u)dx = σn,ε, (2.10)

where σn,ε denotes a quantity depending on n and ε, such that, for any fixed ε > 0,
σn,ε → 0, as n →∞, and which may change from line to line. Also∫

A2

|∇un|n−2∇un(∇un −∇u)dx

=
∫

A2

|∇un|n−2(|∇un|2 − |∇u|2)dx +
∫

A2

|∇un|n−2∇u(∇u−∇un)dx

= qn + In,

(2.11)

where the quantity In is nonnegative, and qn ∈ [−2ε|Ω|, 0]. Combining (2.9), (2.10)
and (2.11), one gets

〈Aun, un − u〉 ≤ σn,ε + 2ε|Ω|,∀ε > 0

On the other hand, 〈Au, un − u〉 → 0, as n →∞, so that

0 ≤ 〈Aun −Au, un − u〉 ≤ σn,ε + 2ε|Ω|,∀ε > 0.

Passing to the limit as n →∞, for any fixed ε, one has

0 ≤ lim inf
n→∞

〈Aun −Au, un − u〉 ≤ lim sup
n→∞

〈Aun −Au, un − u〉 ≤ 2ε|Ω| ∀ε > 0.

By the arbitrariness of ε (and since 〈Aun − Au, un − u〉 does not depend on ε) it
follows that

〈Aun −Au, un − u〉 → 0 as n →∞. (2.12)
Which implies, thanks to (1.4), that (for a subsequence),

(a(x,∇un)− a(x,∇u))(∇un −∇u) → 0 a.e. in Ω.

For a fixed k > 1, we put

X =
⋂
q∈N

⋃
n≥q

{|∇un| ≥ k}, and its complement Y =
⋃
q∈N

⋂
n≥q

{|∇un| < k},

for all x ∈ Y , the sequence (∇un(x)) is bounded in RN , so

∇un(x) → ξ

for a subsequence and some ξ ∈ RN , while (1.4) and the continuity of a(x, .), implies
that ξ = ∇u(x), we can then conclude that

∇un(x) → ∇u(x) for all x ∈ Y.
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To show the almost everywhere convergence of (∇un), it suffices to prove that
meas(X) = 0. In deed, from (2.6), one has

meas{|∇un| ≥ k} =
∫
{|∇un|≥k}

1dx ≤ c

kn
. (2.13)

Since X ⊂
⋃

n≥q{|∇un| ≥ k}, for all q, one deduces that

meas(X) ≤
∑
n≥q

meas{|∇un| ≥ k} → 0 as q →∞.

Strong convergence in W 1,p
0 (Ω). Thanks to Vitali’s theorem, it suffices to show

the equi-integrability of (|∇un|p) in L1(Ω), what follows from (2.6) with q = p + 1.
Indeed for a measurable subset E of Ω, one has∫

E

|∇un|pdx ≤
( ∫

E

|∇un|p+1dx
) p

p+1
( ∫

E

1 dx
) 1

p+1 ≤ c
(
meas(E)

) 1
p+1 .

The function u is solution to problem (2.3). Let v ∈ K and 0 < θ < 1, taking
z = un − θTk(v) as a test function in (2.2), one gets

〈Aun, z〉+
∫

Ω

|∇un|n−2∇un∇zdx = 〈f, z〉

While noticing that∫
{|∇un|≥θ|∇Tk(v)|}

|∇un|n−2∇un(∇un − θ∇Tk(v))dx ≥ 0

one has

〈Aun, z〉+
∫
{|∇un|<θ|∇Tk(v)|}

|∇un|n−2∇un∇zdx ≤ 〈f, z〉

Passing to the limit as n → ∞, and using standard result about Caratheodory
functions satisfying (1.3), one gets

〈Au, u− θTk(v)〉 ≤ 〈f, u− θTk(v)〉

The result is then obtained while passing to the limit as θ → 1 and k →∞.

3. The case f ∈ L1(Ω)

In this section, we suppose that f ∈ L1(Ω), as in the previous section. Now we
prove our second main result.

Theorem 3.1. Let f ∈ L1(Ω), 1 < p < +∞. Under assumptions (1.2)–(1.4), if
un (n > N) designates the solution to the problem (2.1), then the sequence (un)
converges strongly in W 1,p

0 (Ω), to the unique solution u to the problem

〈Au, Tk(v − u)〉 ≥
∫

Ω

fTk(v − u)dx for all v ∈ K,

u ∈ K, for all k > 0.
(3.1)

Proof of Theorem 3.1. According to the previous section, it is clear that the
estimate (2.6) permits to show that the sequence (un) converges in W 1,p

0 (Ω) and
uniformly in Ω̄ (for a subsequence) to u satisfying (2.8).

We are going to prove (2.6) and the fact that u is the solution to (3.1).
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A priori estimate. With un (n > N) as a test function in (2.2), we get∫
Ω

a(x,∇un)∇undx +
∫

Ω

|∇un|ndx =
∫

Ω

fundx ≤ ‖f‖1‖un‖∞

Let q > N (fixed), by splitting
∫
Ω
|∇un|qdx as∫

Ω

|∇un|qdx =
∫
{|∇un|<1}

|∇un|qdx +
∫
{|∇un|≥1}

|∇un|qdx

and using Sobolev’s inequality [1], one has∫
Ω

|∇un|qdx ≤ c ∀n ≥ q; (3.2)

therefore, ∫
Ω

|∇un|ndx ≤ c ∀n > N .

It follows that the estimate (3.2) holds for all q > 1, what leads to the estimate
(2.6).

The function u is solution to problem (3.1). Let v ∈ K and 0 < θ < 1, taking
z = Tk(un − θv) as a test function in (2.2), one gets

〈Aun, z〉+
∫

Ω

|∇un|n−2∇un∇zdx =
∫

Ω

fzdx

While noticing that∫
{|∇un|≥θ|∇v|}

|∇un|n−2∇un∇Tk(un − θv)dx ≥ 0

one has

〈Aun, z〉+
∫
{|∇un|<θ|∇v|}

|∇un|n−2∇un∇zdx ≤
∫

Ω

fz dx

Passing to the limit as n →∞, one gets

〈Au, Tk(u− θv)〉 ≤
∫

Ω

fTk(u− θv) dx

The result is obtained when passing to the limit as θ → 1.

Remark 3.2. Since u ∈ W 1,∞
0 (Ω), the problem can be formulated in this space by

choosing K = {v ∈ W 1,∞
0 (Ω) : ‖∇v(x)‖∞ ≤ 1}, what permits to write the problem

(3.1) without truncation operator, and simplify the proof of the step The function u
is solution to the problem (3.1). But traditionally (see for example [6]), the elasto-
plastic torsion problem is written with K = {v ∈ W 1,p

0 (Ω) : |∇v(x)| ≤ 1 a.e. in Ω},
it’s why we have done this choice.
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