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CONDITIONS FOR THE LOCAL REGULARITY OF WEAK
SOLUTIONS OF THE NAVIER-STOKES EQUATIONS NEAR

THE BOUNDARY

PETR KUČERA, ZDENĚK SKALÁK

Abstract. In this paper we present conditions for the local regularity of weak
solutions of the Navier-Stokes equations near the smooth boundary.

1. Introduction

Let Ω be a bounded domain in R3 with a smooth boundary ∂Ω, let T > 0 and
QT = Ω × (0, T ). We consider the Navier-Stokes initial-boundary value problem
describing the evolution of the velocity u = (u1, u2, u3) and the pressure φ in QT :

∂u

∂t
− ν∆u+ u · ∇u+∇φ = 0 in QT , (1.1)

∇ · u = 0 in QT , (1.2)

u = 0 on ∂Ω× (0, T ), (1.3)

u|t=0 = u0, (1.4)

where ν > 0 is the viscosity coefficient. The initial data u0 satisfy the compatibility
conditions u0|∂Ω = 0 and ∇ · u0 = 0 and for our purposes we can suppose without
loss of generality that u0 is sufficiently smooth. The existence of a weak solution
u ∈ L2(0, T ;W 1,2

0 (Ω)3) ∩ L∞(0, T ;L2
σ(Ω)) of (1.1)–(1.4) is well known (see [4] or

[14]). The associated pressure φ is a scalar function such that u and φ satisfy the
equation (1.1) in QT in the sense of distributions.

Let q > 1. Let us set

Lq
σ(Ω) = closure of {ϕ ∈ (C∞0 (Ω))3;∇ · ϕ = 0 in Ω} in (Lq(Ω))3,

Gq(Ω) = {∇p; p ∈W 1,q(Ω)}.

We then have the Helmholtz decomposition

(Lq(Ω))3 = Lq
σ(Ω)⊕Gq(Ω) (direct sum). (1.5)
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Let P q
σ be the continuous projection from (Lq(Ω))3 onto Lq

σ(Ω) associated with
Helmholtz decomposition. If ∆ denotes the Laplace operator with zero bound-
ary condition, then the Stokes operator is defined as Aq = −P q

σ∆ with D(Aq) =
W 2,q(Ω)3 ∩W 1,q

0 (Ω)3 ∩ Lq
σ(Ω).

In this paper we use both scalar and vector functions and for the sake of simplicity
we denote by S any space S3 of vector functions with the exception of the notation in
Lemma 2.1. We use the standard notation for the Lebesgue spaces Lp(Ω) and their
norms ‖ · ‖p,Ω. The Sobolev spaces are denoted by W k,p(Ω). Sometimes we drop Ω
and write only Lp, ‖ ·‖p and W k,p. Further, if A = B× (t1, t2) then Lp,q or Lp,q(A)
denote the space Lq(t1, t2;Lp(B)) with the norm ‖ ·‖p,q,A or simply ‖ ·‖p,q. Lp,p(A)
is also denoted as Lp(A) or Lp. Cβ(Ω) is the space of Hölder continuous functions
on Ω with the norm ‖f‖Cβ(Ω) = supx∈Ω |f(x)|+supx,y∈Ω,x 6=y |f(x)−f(y)|/|x−y|β .
Lp

w(Ω) denote the weak Lebesgue space on Ω with the quasi-norm ‖ · ‖p,w,Ω

defined by ‖φ‖p,w,Ω = supR>0Rµ{x ∈ Ω; |φ(x, t)| > R}1/p, where µ is the Lebesgue
measure. There exists an equivalent norm to ‖·‖p,w,Ω, so we may understand Lp

w(Ω)
as a Banach space. Let us note that Lp(Ω) ⊂ Lp

w(Ω) and ‖φ‖p,w,Ω ≤ ‖φ‖p for every
φ ∈ Lp(Ω). Sometimes we write Lp

w and ‖φ‖p,w instead of Lp
w(Ω) and ‖φ‖p,w,Ω,

respectively.
For (x0, t0) ∈ Ω × (0, T ) and r > 0 we will denote Br = Br(x0) the open ball

centered at x0 with radius r, Dr = Dr(x0) = Br(x0) ∩ Ω, Qr = Qr(x0, t0) =
Dr(x0) × (t0 − r2, t0 + r2). A point (x0, t0) ∈ Ω × (0, T ) is called a regular point
of a weak solution u if u ∈ L∞(Qr) for some r > 0. Otherwise, (x0, t0) is called a
singular point of u.

Let us now present some recent results concerning the regularity of weak solutions
near the boundary. S.Takahashi showed in [12] and [13] that if u ∈ Lp,q(Qr), where
(x0, t0) ∈ ∂Ω× (0, T ), r > 0, p, q ∈ (1,∞) and 3/p+ 2/q ≤ 1, then u ∈ L∞(Qr̃) for
any r̃ ∈ (0, r) provided that Br ∩ ∂Ω is a part of a plane.

Takahashi’s result was improved in [11], where the following theorem was proved.

Theorem 1.1. Let u be an arbitrary weak solution of (1.1) - (1.4), (x0, t0) ∈
∂Ω × (0, T ), r > 0. We suppose that u ∈ Lp,q(Qr), where 2/q + 3/p = 1 and
p, q ∈ (1,∞). Then

u ∈ L∞(t0 − r̃2, t0 + r̃2;Cβ(Dr̃)) (1.6)
for every β ∈ (0, 1) and r̃ ∈ (0, r).

Neustupa [9] proved a similar result. He supposed that u ∈ Lq(t1, t2;Lp(U∗r ))
for some r > 0, 0 < t1 < t2 < T , p, q ∈ (1,∞) with 3/p + 2/q = 1, where
U∗r = {x ∈ Ω; dist(x, ∂Ω) < r}. He proved under this assumption that if u is
a weak solution of (1.1)–(1.4) satisfying the strong energy inequality then u ∈
L∞(t1 + ζ, t2 − ζ;W 2+δ,2(U∗ρ )) and ∂u/∂t,∇φ ∈ L∞(t1 + ζ, t2 − ζ;W δ,2(U∗ρ )) for
each δ ∈ [0, 1/2), ρ ∈ (0, r) and such ζ > 0 that t1 + ζ < t2 − ζ.

The local boundary regularity of u was also studied in [2], [10] and [6]. It was
proved in [2] that a suitable weak solution u is bounded locally near the boundary if
u ∈ Lp,q, 3/p+2/q = 1, p, q ∈ (1,∞) and the pressure φ is bounded at the boundary.
Moreover, better regularity of φ gives better local regularity of u. Seregin presented
in [10] a condition for local Hölder continuity for suitable weak solutions near the
plane boundary which has the form of the famous Caffarelli-Kohn-Nirenberg con-
dition for boundedness of suitable weak solutions in a neighborhood of an interior
point of QT . Also Kang [6] studied boundary regularity of weak solutions in the
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half-space. He proved that a weak solution u which is locally in the class Lp,q with
3/p+ 2/q = 1 and p, q ∈ (1,∞) near the boundary is Hölder continuous up to the
boundary. The main tool in the proof of this result is a pointwise estimate for the
fundamental solution of the Stokes system.

In this paper we present some conditions ensuring the local regularity of weak
solutions near the boundary. The following theorem is our main result.

Theorem 1.2. Let u = (u1, u2, u3) be an arbitrary weak solution of (1.1)-(1.4).
There exists ε > 0 such that if (x0, t0) ∈ ∂Ω× (0, T ), r > 0 and at least one of the
following conditions is fulfilled:

(A1) ‖u‖L∞(t0−r2,t0+r2;L3
ω(Dr)) < ε,

(A2) ∇u ∈ L3,2(Qr),
(A3) ∇u1,∇u2 ∈ Lp,q(Qr), p ∈ (3/2,∞], q ∈ (2,∞], 3/p+ 2/q ≤ 2,
(A4) ∇u1,∇u2 ∈ Lp,q(Qr), p ∈ (3,∞], q = 2.

Then, for every β ∈ (0, 1) and r̃ ∈ (0, r),

u ∈ L∞(t0 − r̃2, t0 + r̃2;Cβ(Dr̃)) . (1.7)

Remark 1.3. We can compare conditions (A3) and (A4) with Theorem 1.2 from
[1], where the regularity of u was proved under the assumption that ∇u1,∇u2 ∈
Lp,q, p ∈ [3,∞], q ∈ [2,∞] and 3/p + 2/q = 1. If this assumption holds than
either the condition (A3) or the condition (A4) is satisfied. Thus, in this sense,
Theorem 1.2 is a generalization of Theorem 1.2 from [1].

The proof of Theorem 1.2 will be based on Takahashi [12], and Theorem 1.1 will
be a corollay of Theorem 1.2. Firstly, we present some auxiliary results.

2. Auxiliary results

We will use the following lemma which was proved in [12] and in [3, Theorem
3.2, Chap.III.3].

Lemma 2.1. Let D be a bounded Lipschitz domain in R3, Γ be an open subset of
∂D, r ∈ (1,∞), j ∈ N ∪{0}. There exists a bounded linear operator K = Kj,r,D,Γ :
W j,r

0 (D) →W j+1,r
0 (D)3 such that

(i) ∇ ·Kg = g for all g ∈W j,r
0 (D) such that

∫
D
g dx = 0,

(ii) ‖∇j+1Kg‖r ≤ c‖∇jg‖r for all g ∈W j,r
0 (D), c = c(j, r,D)

(iii) suppKg ⊂ D ∪ Γ if supp g ⊂ D ∪ Γ.

In Lemma 2.1, W j,r
0 (D) is the completion of C∞0 (D) with respect to the standard

norm of the space W j,r(D). It is possible to show that Kj,r,D,Γ(g) = Kl,s,G,Γ(g) if
g ∈ W j,r

0 (D) ∩W l,s
0 (D), where r, s ∈ (1,∞) and j, l ∈ N ∪ {0} and in the rest of

the paper the operator Kj,r,D,Γ is denoted by K.
For l, l′ ∈ (1,∞) we define the Banach space

X l,l′ = {v ∈ Ll′(0, T,D(Al));
∂v

∂t
∈ Ll′(0, T, Ll

σ(Ω)), v(0) = 0}

with the norm

‖v‖Xl,l′ = ‖Alv‖l,l′ +
∥∥∥∂v
∂t

∥∥∥
l,l′
.
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We consider the Stokes problem
∂u

∂t
− ν∆u+∇φ = f in QT , (2.1)

∇ · u = 0 in QT , (2.2)

u = 0 on ∂Ω× (0, T ), (2.3)

u|t=0 = 0. (2.4)

It was proved in [5, Theorem 2.8] that if f ∈ Lβ,β′ , where β, β′ ∈ (1,∞), then there
exists a unique weak solution (u,∇φ) of (2.1) - (2.4) such that∥∥∂u

∂t

∥∥
β,β′

+ ‖Aβu‖β,β′ + ‖∇φ‖β,β′ ≤ c‖f‖β,β′ , c = c(β, β′). (2.5)

The following lemma was proved in [12] and [11]. It further improves the regularity
of the velocity u.

Lemma 2.2. Let β, β′ ∈ (1,∞), γ ∈ [β,∞), γ′ ∈ [β′,∞) and
2
β′

+
3
β

=
2
γ′

+
3
γ

+ 1. (2.6)

Let f ∈ Lβ,β′ . If (u,∇φ) is a weak solution of (2.1)–(2.4) then ∇u ∈ Lγ,γ′ and

‖∇u‖γ,γ′ ≤ c‖f‖β,β′ , c = c(β, β′, γ, γ′). (2.7)

Lemma 2.3. Let u ∈ L∞(0, T, L3
ω(Ω)), v ∈ Ls(0, T ;W 2,r(Ω)∩W 1,r

0 (Ω)), r ∈ (1, 3),
s ∈ (1, 2). Then

‖u · ∇v‖r,s ≤ C‖u‖L∞(0,T,L3
ω(Ω))‖ · ‖v‖Ls(0,T ;W 2,r(Ω)). (2.8)

Proof. We use the procedure used in [7, Lemma 2.7]. Let 1 < r0 < r < r1 < 3 and
1
r = 1−θ

r0
+ θ

r1
for some θ ∈ (0, 1). Let 1

qj
= 1

rj
− 1

3 , j = 0, 1. We can write for every

w ∈ D(∆rj
) = W 2,rj (Ω) ∩W 1,rj

0 (Ω):

‖u · ∇w‖rj ,ω ≤ C‖u‖3,ω‖∇w‖qj ,ω ≤ C‖u‖3,ω‖∇w‖qj

≤ C‖u‖3,ω‖w‖W 2,rj ≤ C‖u‖3,ω‖∆rjw‖rj .

If φ ∈ Lrj and we put w = ∆−1
rj
φ, we get

‖u · ∇(∆−1
rj
φ)‖rj ,ω ≤ C‖u‖3,ω‖φ‖rj

.

Therefore, the mapping φ→ u·∇(∆−1
rj
φ) is a linear bounded operator from Lrj into

L
rj
ω with the norm less than C‖u‖3,ω. By the use of the Marcinkiewicz interpolation

theorem (see [8], p.106) we get that it is also a linear bounded operator from Lr

into Lr with the norm less than C‖u‖3,ω, that is

‖u · ∇(∆−1
r φ)‖r ≤ C‖u‖3,ω‖φ‖r

for every φ ∈ Lr. If w ∈ D(∆r), then ∆rw ∈ Lr and

‖u · ∇w‖r = ‖u · ∇(∆−1
r (∆rw))‖r ≤ C‖u‖3,ω‖∆rw‖r ≤ C‖u‖3,ω‖w‖W 2,r(Ω).

Inequality (2.8) now follows easily from the Hölder inequality. �

Lemma 2.4. Let ∇u ∈ Lp,q(QT ), p ∈ (3/2, 3], q ∈ [2,∞) and 3/p+ 2/q = 2. Let
v ∈ Xr,s, r ∈ (1, p), s ∈ (1, q). Then

‖v · ∇u‖r,s ≤ C‖∇u‖p,q · ‖v‖Xr,s . (2.9)
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Proof. Since v ∈ Xr,s, it follows from Lemma 2.2 that ∇v ∈ L
3qr

2r+3q−qr , qs
q−s and

‖∇v‖ 3qr
2r+3q−qr , qs

q−s
≤ c‖v‖Xr,s .

The Sobolev inequality gives immediately that ‖v‖ pr
p−r , qs

q−s
≤ C‖v‖Xr,s . The Hölder

inequality yields that ‖v ·∇u‖r,s ≤ ‖∇u‖p,q ·‖v‖ pr
p−r , qs

q−s
and (2.9) is the consequence

of the last two inequalities. �

Lemma 2.5. Let u ∈ Lp,q(QT ), p ∈ (3,∞], q ∈ [2,∞), 3/p + 2/q = 1. Let
v ∈ Xr,s, r ∈ (1, p), s ∈ (1, q). Then

‖u · ∇v‖r,s ≤ c‖u‖p,q · ‖v‖Xr,s . (2.10)

Proof. Let p <∞. Using Lemma 2.2,

‖∇v‖ pr
p−r , qs

q−s
≤ c‖v‖Xr,s .

Since ‖u ·∇v‖r,s ≤ ‖u‖p,q ·‖∇v‖ pr
p−r , qs

q−s
, (2.10) follows immediately. If p = ∞, then

the proof proceeds analogically. �

Lemma 2.6. Let ∇u ∈ Lp,q(QT ), p ∈ (3/2, 3], q ∈ [2,∞) and 3/p+ 2/q = 2. Let
further r ∈ (1, p), s ∈ (2q/(q + 2), q), 3/r + 2/s = 3 and w ∈ Lρ(0, T ;W 2,h) for
every h ∈ (1, 3) and ρ ∈ (1,∞) such that 2/ρ+ 3/h = 3. Then

w · ∇u ∈ Lr,s(QT ). (2.11)

Proof. If we choose ρ = qs/(q − s) and h = 3qs/(3qs − 2q + 2s), then ρ ∈ (2,∞),
h ∈ (1, 3/2), 3/h+ 2/ρ = 3 and w ∈ Lρ(0, T ;W 2,h). Consequently, by the Sobolev
inequality

‖w‖ pr
p−r , qs

q−s
≤ C‖w‖Lρ(0,T ;W 2,h)

and (2.11) follows from the inequality ‖w · ∇u‖r,s ≤ ‖∇u‖p,q‖w‖ pr
p−r , qs

q−s
. �

Lemma 2.7. Let u ∈ Lq(0, T ;W 1,p
0 (Ω)), p ∈ (3/2, 3), q ∈ (2,∞) and 3/p+2/q = 2.

Let further r ∈ (1, 3), s ∈ (1, q), 3/r + 2/s = 3 and w ∈ Lρ(0, T ;W 2,h) for every
h ∈ (1, 3) and ρ ∈ (1,∞), such that 2/ρ+ 3/h = 3. Then

u · ∇w ∈ Lr,s(QT ). (2.12)

Proof. Let us put p′ = 3p/(3− p). Then u ∈ Lp′,q(QT ). Further,

∇w ∈ Lρ(0, T ;Lh′)

for every h′ ∈ (3/2,∞), ρ ∈ (1,∞) such that 2/ρ + 3/h′ = 2. If we choose
h′ = p′r/(p′ − r) and ρ = qs/(q − s), (2.12) then follows immediately from the
inequality ‖u · ∇w‖r,s ≤ ‖u‖p′,q‖∇w‖h′,ρ. �

Remark 2.8. Lemma 2.7 holds also if p > 3 and q = 2. In this case we have
p′ = ∞ and h′ = r.

We now denote

B1(u, v) = u · ∇v =
(
uj
∂v1
∂xj

, uj
∂v2
∂xj

, uj
∂v3
∂xj

)
,

B2(u, v) = v · ∇u =
(
vj
∂u1

∂xj
, vj

∂u2

∂xj
, vj

∂u3

∂xj

)
,

B3(u, v) = B4(u, v) =
(
vj
∂u1

∂xj
, vj

∂u2

∂xj
, u1

∂v3
∂x1

+ u2
∂v3
∂x2

− v3

(∂u1

∂x1
+
∂u2

∂x2

))
.
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Lemma 2.9. Let i ∈ {1, 2, 3, 4}, l′ ∈ (1, 2), l ∈ (1, 3). Let us consider the following
conditions:

(1) u ∈ L∞(0, T ;L3
ω(Ω)),

(2) ∇u ∈ L3,2(QT ),
(3) u1, u2 ∈ Lq(0, T ;W 1,p

0 (Ω)), p ∈ (3/2,∞], q ∈ (2,∞], 3/p+ 2/q ≤ 2,
(4) u1, u2 ∈ Lq(0, T ;W 1,p

0 (Ω)), p ∈ (3,∞], q = 2.
If condition (1) is satisfied and if moreover l ∈ (1, p) for i = 3, then the operator
v 7→ Bi(u, v) is a linear bounded operator from X l,l′ into Ll,l′ with the norm less
than C‖u‖L∞(0,T,L3

ω(Ω)) for i = 1, C‖∇u‖3,2 for i = 2 and C(‖∇u1‖p,q +‖∇u2‖p,q)
for i = 3, 4.

Proof. If i = 1 then the proof follows immediately from Lemma 2.3. If i = 2 then
the proof follows immediately from Lemma 2.4. If i = 3 and i = 4 the proof is the
consequence of Lemma 2.4 and Lemma 2.5. �

For i ∈ {1, 2, 3, 4} let us consider the problem
∂v

∂t
− ν∆v +Bi(u, v) +∇P = g in QT , (2.13)

∇ · v = 0 in QT , (2.14)

v = 0 on ∂Ω× (0, T ), (2.15)

v|t=0 = 0. (2.16)

Lemma 2.10. Let i ∈ {1, 2, 3, 4}. Let g ∈ Ll,l′ , 2/l′ + 3/l = 3, l′ ∈ (1, 2), l ∈
(3/2, 3). Let the condition i) from Lemma 2.9 be fulfilled and C‖u‖L∞(0,T ;L3

ω(Ω)) < ε
for i = 1, C‖∇u‖3,2 < ε for i = 2, C(‖∇u1‖p,q + ‖∇u2‖p,q) < ε and l ∈ (3/2, p)
for i = 3 and C(‖∇u1‖p,q + ‖∇u2‖p,q) < ε for i = 4, where ε is a sufficiently small
positive number. Then there exists a unique v ∈ X l,l′ and ∇P ∈ Ll,l′ , which solve
the problem (2.13)-(2.16).

Proof. The operator v → ∂v
∂t + Alv is one to one linear bounded operator from

X l,l′ onto Ll′(0, T ;Ll
σ). According to Lemma 2.9, the norm of the operator v →

P l
σBi(u, v) is sufficiently small. Accordingly, the operator v → ∂v

∂t +Alv+P l
σBi(u, v)

is one to one linear bounded operator from X l,l′ onto Ll′(0, T ;Ll
σ). Therefore, there

exists a unique v ∈ X l,l′ such that
∂v

∂t
+Alv + P l

σBi(u, v) = P l
σg

that is
P l

σ

(∂v
∂t

− ν∆v +Bi(u, v)− g
)

= 0

holds for almost every t ∈ (0, T ). The existence of P such that (2.13) follows from
Helmholtz decomposition of the space Ll. �

3. Proof of Theorem 1.2

We suppose throughout this section that the assumptions of Theorem 1.2 are
satisfied. Let i ∈ {1, 2, 3, 4} be fixed and the condition (Ai) from Theorem 1.2 be
fulfilled. φ denotes the associated pressure to u. Let r̃ ∈ (0, r). Let us localize the
problem (1.1)-(1.4) in a standard way: Let ψ ∈ C∞(QT ) be a cut-off function such
that ψ(x, t) = 0 if (x, t) ∈ QT \ Q2r/3+r̃/3, ψ(x, t) = 1 if (x, t) ∈ Qr/3+2r̃/3 and
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ψ(x, t) ∈ [0, 1] for every (x, t) ∈ QT . We set w = K(∇ · (ψu)), v = ψu− w, where
K = KDr . Then v satisfies the following system of equations:

∂v

∂t
− ν∆v +Bi(u, v) +∇(ψφ) = hi in QT , (3.1)

∇ · v = 0 in QT , (3.2)

v = 0 on ∂Ω× (0, T ), (3.3)

v|t=0 = 0, (3.4)

where

h1 = −ν∆ψu− 2ν∇ψ · ∇u+ u · ∇ψu+ φ∇ψ − ∂w

∂t
+ ν∆w − u · ∇w +

∂ψ

∂t
u,

h2 = −ν∆ψu− 2ν∇ψ · ∇u+ φ∇ψ − ∂w

∂t
+ ν∆w − w · ∇u+

∂ψ

∂t
u,

h3 = h4 = (h3
1, h

3
2, h

3
3),

h3
i = −ν∆ψui − 2ν∇ψ · ∇ui + φ

∂ψ

∂xi
− ∂wi

∂t
+ ν∆wi − w · ∇ui +

∂ψ

∂t
ui, i = 1, 2,

h3
3 =− ν∆ψu3 − 2ν∇ψ · ∇u3 + φ

∂ψ

∂x3
− ∂w3

∂t
+ ν∆w3 +

∂ψ

∂t
u3

+ u1
∂ψ

∂x1
u3 + u2

∂ψ

∂x2
u3 − u1

∂w3

∂x1
− u2

∂w3

∂x2
+ w3

∂u1

∂x1
+ w3

∂u2

∂x2
.

Remark 3.1. We can proceed in such a way that both supp w and supp v lie in
Q3r/4+r̃/4. Therefore, it is possible to replace the function u in the term Bi(u, v) and
also in the right hand side hi of (3.1) with a function ηu, where η ∈ C∞(QT ) is such
a cut-off function that η(x, t) = 0 if (x, t) ∈ QT \Qr, η(x, t) = 1 if (x, t) ∈ Q3r/4+r̃/4

and η(x, t) ∈ [0, 1] for every (x, t) ∈ QT . For the sake of simplicity we still write u
instead of ηu.

We will show at first that

hi ∈ Ll,l′ , for some l′ ∈ (1, 2), l ∈ (3/2, 3) such that
2
l′

+
3
l

= 3. (3.5)

We will use the following global estimates for u and φ derived in [5], Theorem 3.1:∥∥∂u
∂t

∥∥
q,s

+ ‖∇2u‖q,s + ‖∇φ‖q,s <∞, s ∈ (1, 2), q ∈ (1, 3/2),
2
s

+
3
q

= 4, (3.6)

‖∇u‖h,ρ <∞, h ∈ (1, 3), ρ ∈ (1,∞),
2
ρ

+
3
h

= 3, (3.7)

‖u‖h∗,ρ <∞, h∗ ∈ (3/2,∞), ρ ∈ (1,∞),
2
ρ

+
3
h∗

= 2, (3.8)

and

‖φ‖r,s <∞, r ∈ (3/2, 3), s ∈ (1, 2),
2
s

+
3
r

= 3,

if
∫

Ω

φ(x, t)dx = 0 for every t ∈ (0, T ).
(3.9)

We have immediately from (3.9) that φ∇ψ ∈ Ll,l′ . It follows from Lemma 2.1 that∥∥∂w
∂t

∥∥
l,l′

=
∥∥ ∂
∂t

(K(∇ψ · u))
∥∥

l,l′
=

∥∥K( ∂

∂t
(∇ψ · u)

)∥∥
l,l′
≤ c

∥∥ ∂
∂t

(∇ψ · u)
∥∥

q,l′
,
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where 1/q = 1/l + 1/3. Since 2/l′ + 3/q = 4, we have ∂w/∂t ∈ Ll,l′ by (3.6).
Similarly, ν∆w ∈ Ll,l′ , as follows from Lemma 2.1 and (3.7).

Let us show that also the terms of the type u·∇w and w·∇u are from Ll,l′ for some
l′ ∈ (1, 2), l ∈ (3/2, 3) such that 2/l′+3/l = 3. By (3.7), u ∈ Lρ(0, T ;W 1,h

0 (Ω)), for
every h, ρ such that 2/ρ+3/h = 3, h ∈ (1, 3), ρ ∈ (1,∞). Consequently, Lemma 2.1
gives that w ∈ Lρ(0, T ;W 2,h

0 (Ω)). Let us note that in the following paragraphs we
use Remark 3.1.

If i = 1, it follows from Lemma 2.3 that

‖u · ∇w‖l,l′,Ω ≤ C‖u‖L∞(t0−r2,t0+r2,L3
ω(Dr))‖ · ‖w‖Ll′ (0,T,W 2,l(Ω)) <∞

and u · ∇w ∈ Ll,l′ for every l, l′ from (3.5).
If i = 2, it follows from Lemma 2.6 that w · ∇u ∈ Ll,l′ for every l, l′ from (3.5).
Let i = 3. We apply Lemma 2.6 and get: If moreover p ≥ 3 then the terms

w · ∇u are in Ll,l′ for every l, l′ from (3.5). If p ∈ (3/2, 3) and q ∈ (2,∞) then the
terms w · ∇u are in Ll,l′ for l ∈ (1, p) and l′ ∈ (2q/(q + 2), q). If p ∈ (3/2, 3) and
q = ∞ then the terms w · ∇u are in Ll,l′ for l ∈ (1, p) and l′ ∈ (2p/(3p − 3), 2).
Similarly, using Lemma 2.7 we get that the terms u · ∇w are in Ll,l′ for every l, l′

from (3.5).
Finally, let i = 4. Then the terms w · ∇u are in Ll,l′ for every l, l′ from (3.5), as

follows easily from Lemma 2.6. Similarly, the terms u ·∇w are in Ll,l′ for every l, l′

from (3.5) due to Lemma 2.7 and Remark 2.8.
The remaining terms in hi, i = 1, 2, 3, 4 belong obviously to the space Ll,l′ for

every l, l′ from (3.5) and (3.5) is proved.

Proof of Theorem 1.2. Let us fix now l, l′ from (3.5) such that hi ∈ Ll,l′ . Let
ṽ ∈ X l,l′ and P , ∇P ∈ Ll,l′ , solve the equations (3.1) - (3.4). The existence of
this solution follows from Lemma 2.9, Lemma 2.10 and Remark 3.1, since the norm
of the operator Bi(u, ·) is or can be made sufficiently small due to the condition
(ai). Then V = ṽ − v and p = P − ψφ solve the equations (2.13) - (2.16) with the
right hand side 0 and V ∈ Xq,s and ∇p ∈ Lq,s, where q, s fulfil conditions from
(3.6). Transferring now the term Bi(u, V ) to the right hand side and using (2.5)
and Lemma 2.9, we obtain that

‖V ‖Xq,s ≤ C‖u‖L∞(t0−r2,t0+r2;L3
ω(Dr))‖V ‖Xq,s if i = 1,

‖V ‖Xq,s ≤ C‖∇u‖3,2,Qr
‖V ‖Xq,s if i = 2,

‖V ‖Xq,s ≤ C(‖∇u1‖p,q,Qr
+ ‖∇u2‖p,q,Qr

)‖V ‖Xq,s if i = 3,

‖V ‖Xq,s ≤ C(‖∇u1‖p,2,Qr + ‖∇u2‖p,2,Qr )‖V ‖Xq,s if i = 4.

While C‖u‖L∞(t0−r2,t0+r2;L3
ω(Dr)) < 1 due to the assumption (A1) in Theorem 1.2

(supposing that ε is sufficiently small), C‖∇u‖3,2,Qr
, C(‖∇u1‖p,q,Qr

+‖∇u2‖p,q,Qr
)

and C(‖∇u1‖p,2,Qr + ‖∇u2‖p,2,Qr ) can be made smaller than 1 by diminishing r.
In any case we have V ≡ 0 and v = ṽ. Therefore, v solves the equations (3.1) -
(3.4) and v, hi and Bi(u, v) are from Ll,l′ , where l, l′ fulfil the conditions from (3.5)
and l ∈ (1, p) if i = 3. It follows from Lemma 2.2 that

∇v ∈ Lα,α′
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for every α ∈ [l,∞), α′ ∈ [l′,∞) such that 2/α′ + 3/α = 2. Thus, by the choice
α = l and α′ = 2l/(2l − 3), we have that

∇v ∈ Ll, 2l
2l−3 .

Since v = 0 on ∂Ω× (0, T ), we have immediately that v ∈ L
3l

3−l , 2l
2l−3 and that

3
3− l

3l
+ 2

2l − 3
2l

= 1.

By the definition of v, v = u in a space-time neighborhood of (x0, t0). We can now
use Theorem 1.1 and the proof of Theorem 1.2 is complete. �

Remark 3.2. The condition (A3) in Theorem 1.2 can be replaced by the condition

(A3’) ∇u1,
∂u2
∂x2

, ∂u2
∂x3

, ∂u3
∂x2

∈ Lp,q(Qr), p ∈ (3/2,∞], q ∈ (2,∞], 3/p+ 2/q ≤ 2

or by the more general condition

(A3”) ∂ui

∂xj
∈ Lpi

j ,qi
j (Qr), pi

j ∈ (3/2,∞], qi
j ∈ (2,∞], 3/pi

j + 2/qi
j ≤ 2, for i = 1, 2

and j = 1, 2, 3.

Similarly, the condition (A4) from Theorem 1.2 can be replaced by the condition

(A4’) ∇u1,
∂u2
∂x2

, ∂u2
∂x3

, ∂u3
∂x2

∈ Lp,q(Qr), p ∈ (3,∞], q = 2.
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