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NEWTON’S METHOD IN THE CONTEXT OF GRADIENTS

J. KARATSON, J. W. NEUBERGER

ABSTRACT. This paper gives a common theoretical treatment for gradient and
Newton type methods for general classes of problems. First, for Euler-Lagrange
equations Newton’s method is characterized as an (asymptotically) optimal
variable steepest descent method. Second, Sobolev gradient type minimization
is developed for general problems using a continuous Newton method which
takes into account a ‘boundary condition’ operator.

1. INTRODUCTION

Gradient and Newton type methods are among the most important approaches
for the solution of nonlinear equations, both in R™ and in abstract spaces. The
latter are often connected to PDE applications, and here the involvement of Sobolev
spaces has proved an efficient strategy, see e.g. [8, [I2] on the Sobolev gradient
approach and [IL 5] on Newton type methods. Further applications of Sobolev
space iterations are found in [4].

The two types of methods (gradient and Newton) are generally considered as two
different approaches, although their connection has been studied in some papers,
see e.g. [3] in the context of continuous steepest-descent, [7] on variable precondi-
tioning and quasi-Newton methods, and [8, Chapter 7] on Newton’s method and
constrained optimization.

The goal of this paper is to establish a common theoretical framework in which
gradient and Newton type methods can be treated, and thereby to clarify the
relation of the two types of methods for general classes of problems.

Note that there are two distinct ways systems of differential equations may be
placed into an optimization setting. Sometimes it is possible to show that a given
system of PDEs are Euler-Lagrange equations for some functional ¢. In the more
general case one looks for the critical points of a least-squares functional associated
with the given system. Furthermore, one can approach Newton type methods
also in two different ways: from numerical aspect it is the study of the discrete
(i.e. iterative) solution method that is mostly relevant, whereas continuous Newton
methods can lead to attractive theoretical results.

The first part of this paper characterizes Newton’s method in the Euler-Lagrange
case as an (asymptotically) optimal variable steepest descent method for the itera-
tive minimization of the corresponding functional. The second part treats the more
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general (either Euler-Lagrange or least squares) case and develops Sobolev gradient
type minimization using a continuous Newton method which takes into account a
‘boundary condition’ operator.

2. UNCONSTRAINED OPTIMIZATION: NEWTON’S METHOD AS A VARIABLE
STEEPEST DESCENT

Let H be a real Hilbert space and F : H — H an operator which has a potential
¢: H—R;ie.,

¢ (uw)h = (F(u),h) (u,h € H) (2.1)
in Gateaux sense. We consider the operator equation
F(u) =0 (2.2)

and study the relationship between steepest descent and Newton method.

We will observe that Newton’s method can be regarded as a special variable
steepest descent iteration, where the latter means that the gradients of ¢ are taken
with respect to stepwise redefined inner products. Then our main result states
the following principle: whereas the descents in the ordinary gradient method are
steepest with respect to different directions, in Newton’s method they are steep-
est with respect to both different directions and inner products. This optimality
is understood in a (second order) asymptotic sense in the neighbourhood of the
solution.

2.1. Fixed and variable steepest descent iterations. A steepest descent iter-
ation corresponding to the gradient ¢’ in (2.1)) is
Upt+1 = Up — an F(uy,) (2.3)

with some constants a,, > 0. Our aim is to modify this sequence by varying the
inner product of the space H.

2.1.1. Steepest descent under a fized inner product. First we modify the sequence
by introducing another fixed inner product. For this purpose let B: H — H
be a bounded self-adjoint linear operator which is strongly positive (i.e. it has a
positive lower bound p > 0), and let

(u,v)p = (Bu,v) (u,v € H).

Denote by V¢ the gradient of ¢ with respect to the energy inner product (-, -)p.
Then

(Vo) v)p = o0

which implies

(u) = ¢'(w)v = (F(u),v) = (B~'F(u),v)p  (u,v € H),

Vpo(u) =B 'F(u) (u€ H). (2.4)
That is, the change of the inner product yields the change of the gradient of ¢,
namely, the modified gradient is expressed as the preconditioned version of the
original one. Consequently, a steepest descent iteration corresponding to the gra-
dient ¢’5 is the preconditioned sequence

Upi1 = Up — an B F(uy) (2.5)

with some constants «,, > 0.
Convergence results for such sequences are well-known if ¢ is strongly convex,
which can be formulated in terms of the operator F' (see e.g. the monographs
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[, [B]). For instance, if the spectral bounds of the operators F'(u) are between
uniform constants M > m > 0 (in the original resp. the energy inner product),
then the constant stepsize a,, = 2/(M + m) yields convergence with ratio

_M—m
T M+m

for the sequences and , resp. Clearly, the aim of the change of the inner
product is to achieve better spectral bounds in the new inner product. For instance,
for PDEs a sometimes dramatic improvement can be achieved by using the Sobolev
inner product instead of the original L? one (see the monograph [8] on Sobolev
gradients).

q

2.1.2. Steepest descent under a variable inner product. Assume that the nth term
of an iterative sequence is constructed and let B,, : H — H be a strongly positive
bounded self-adjoint linear operator. It follows similarly to that the gradient
of ¢ with respect to the inner product (.,.)p, is

Vs, ¢ =B, "F(u) (ueH). (2.6)
The relation (2.6) means that a one-step iterative sequence
Un4+1 = Up — Qp B;IF(un) (27)

(with some constants «;, > 0) is a variable steepest descent iteration corresponding
to ¢ such that in the nth step the gradient of ¢ is taken with respect to the inner
product {.,.)p, .

Several such types of iterative method are known including variable metric meth-
ods (see e.g. the monograph [13]). In this context ‘variable’ is understood as
depending on the step n. We note that Sobolev gradients under variable inner
product can also be defined in the context of continuous steepest descent, and the
inner product may depend continuously on each element of the Sobolev space (see
[111, [12]).

Convergence results for sequences of the form (2.7) are given in [2| [7], formu-
lated again for convex functionals in terms of spectral bounds. Namely, under the
stepwise spectral equivalence relation

M Buh, B) < (F'(up)h,h) < My(Buh,h) (n €N, h e H) (2.8)

(with some constants M,, > m,, > 0) and assuming the Lipschitz continuity of F”,
one can achieve convergence with ratio

M, —m,

= limsup ——.
q pMn+mn

(This convergence is global if «,, includes damping.) In particular, superlinear
convergence can also be obtained when ¢ = 0, and its rate is characterized by the
speed as M,,/m, — 1.

Clearly, the variable steepest descent iteration can also be regarded as a
quasi-Newton method, since the relation provides the operators B, as ap-
proximations of F’(u,). Moreover, the choice B,, = F’(u,,) yields optimal spectral
bounds m,, = M,, = 1 in , and the corresponding variable steepest descent
iteration becomes Newton method with quadratic convergence speed.
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2.1.3. Conclusion. Altogether, we may observe the following relationship between
steepest descent and Newton methods. A usual steepest descent method defines
an optimal descent direction under a fixed inner product, but the search for an
optimal descent may also include the stepwise change of inner product. If these
inner products are looked for among energy inner products (.,.)p, corresponding
to , then a resulting variable steepest descent iteration coincides with a quasi-
Newton method. Under the special choice B,, = F’(u,,) we obtain Newton’s method
itself in this way, and the convergence results suggest that the optimal convergence
is obtained with this choice. Roughly speaking, this means the following principle:
whereas the descents in the gradient method are steepest with respect to different
directions, in Newton’s method they are steepest with respect to both different
directions and inner products.

However, the above principle is not proved by the quoted convergence results
themselves. Namely, in their proof in [7] they a priori compare the rate of quasi-
Newton method to the exact Newton’s method, hence the obtained convergence
estimates are obviously not better than those for the exact Newton’s method.
Therefore our goal in the next section is to verify the above stated principle in
a proper sense.

2.2. Newton’s method as an optimal variable steepest descent. We con-
sider the operator equation and the corresponding potential ¢ : H — R. In
this subsection we assume that ¢ is uniformly convex and ¢” is locally Lipschitz
continuous. More exactly, formulated in terms of the operator F' in , we impose
the following conditions:

(i) F is Gateaux differentiable;

(ii) for every R > 0 there exist constants P > p > 0 such that

pllall* < (F'(wh, k) < Plh|*> (lull < R, h e H); (2.9)
(iii) for every R > 0 there exists a constant L > 0 such that
[1F'(u) = F'(0)[| < Llfu =] (Jull, 0] < R).
These conditions themselves do not ensure that equation has a solution, hence
we impose condition
(iv) equation has a solution u* € H.
Then the solution u* is unique and also minimizes ¢. We note that the existence
of u* is already ensured if the lower bound p = p(R) in condition (ii) satisfies

limp 00 Rp(R) = 400, or if p does not depend on R at all (see e.g. [4], [5])
Let ug € H and let a variable steepest descent iteration be constructed in the

form :
U1 = up, — By ' F (ug) (2.10)
with suitable constants aj > 0 and strongly positive self-adjoint operators By.
Let n € N and assume that the nth term of the sequence (2.10)) is constructed.
The stepsize a, yields steepest descent with respect to B, if ¢(uy,+1) coincides with
the number

U(Bn) = gl;% qs(“n - OéBfrle(un))
We wish to choose B,, such that this value is the smallest possible within the class
of strongly positive operators

B={B <€ L(H) self-adjoint : 3p >0 (Bh,h) >p||h||* (he H)} (2.11)
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where L(H) denotes the set of bounded linear operators on H. (The strong positiv-
ity is needed to yield R(B,,) = H, by which the existence of B, 'F(u,) is ensured
in the iteration.) Moreover, when B,, € B is varied then one can incorporate the
number « in B, since aB,, € B as well for any o > 0. That is, it suffices to replace
1(Bn) by

m(By) = 6(un — By Flun)), (212)
and to look for

Join, m(By) .

Our aim is to verify that

éni% m(By) = m(F'(u,)) up to second order (2.13)
n€

as u, — u*; i.e., the Newton iteration realizes asymptotically the stepwise optimal
steepest descent among different inner products in the neighbourhood of w*. (That
is, the descents in Newton’s method are asymptotically steepest with respect to both
different directions and inner products.) We note that, clearly, the asymptotic result
cannot be replaced by an exact one, this can be seen for fixed u,, by an arbitrary
nonlocal change of ¢ along the descent direction.

The result can be given an exact formulation in the following way. First
we define for any v > 0 the set

B(v1) = {B € L(H) self-adjoint : (Bh,h) > vi||h||> (h € H)}; (2.14)
i.e., the subset of B with operators having the common lower bound 14, > 0.

Theorem 2.1. Let conditions (i)-(iv) be satisfied. Let ug € H and let the sequence
(uk) be given by with some constants ay, > 0 and operators By, € B, with B

defined in .
Let n € N be fized, m(B,,) defined by and let

. 1 _ _ _ _
m(By) = 6+ ) <Hn(Bn 1gn -, 19”)5 B, 1gn - H, 1gn> ) (2.15)
where
=), gn=F(u,), H,= F/(Un) (2.16)
Then

(1) there holds

g}ier}gﬁl(Bn) = 1 (F' (un));

(2) 1(By,) is the second order approzimation of m(B,)); i.e., for any v1 > 0
and B,, € B(v1)

(with B(v1) defined by ), where C > 0 depends on ug and vy, but does
not depend on B, or u,.

Proof. (1) This part of the theorem is obvious since, using that H, = F'(u,) is
positive definite by assumption (ii), we obtain

(By) > B = in(Hy) = (' (un)).
(2) We verify the required estimate in four steps. (i) First we prove that

[un —u*|| < Ro, (2.18)
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where Ry depends on ug; that is, the initial guess determines an a priori bound for
a ball B(u*, Ryg) around u* containing the sequence ([2.10). For this it suffices to
prove that the level set corresponding to ¢(ug) is contained in such a ball; i.e.,

{ue H:(u) < duo)} C B(u", Ro), (2.19)

since u,, is a descent sequence with respect to ¢.
Let u € H be fixed and consider the real function
) =o(uw + ) teR)
=¢lu ,
[
which is C2, convex and has its minimum at 0. Assumption (ii) implies that there
exists p; > 0 such that

(" (Wh,h) > pa||R]* (v —u"|| < 1,h e H),
and hence
f'®) zp (It <1).
Then elementary calculus yields that f/(1) > p; and f(1) — f(0) > p1/2, hence
p(u) — o(u”) = f(llu—u™[]) = F(1) + f(1) = f(0)
> f(D)(lu— | = 1)+ £(1) — f(0)

N 1
Zpl(HU—U | —5)-

This implies that if

ERO

Ju=l > - (o) — ou)) + 3

then ¢(u) > ¢(up); that is, (2.19)) holds with this Ry.
(ii) In the sequel we omit the index n for notational simplicity, and let
U=Un, §=4gn, H=H, B=Bpy,

where g, = F(u,) and H,, = F'(u,) were defined in (2.16]). Using these notation,

turns into

Further, we fix v; > 0 and assume that B € B(v;) as defined by (2.14)).
Now we verify that

m(B) = ow) ~ (B~ g,9) + 5 (HB g, B~g) + Ry, (221)

where
|Ri| < Chflu —u*|? (2.22)

with C; > 0 depending only on ug and v;. Let z = B~'g. Then the Taylor
expansion yields

1
m(B) = ¢(u = 2) = ¢(u) = (¢'(u), 2) + 5(¢" (W), 2) + R, (2.23)
here the Lipschitz continuity of ¢” implies

L
[Ra| < 1 (2.24)
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where Lg is the Lipschitz constant corresponding to the ball B(u*, Ry) according
to assumption (iii). Here

Vo(u) = F(u) =g and VZ2¢(u) = F'(u) = H, (2.25)
hence the definition of z and the symmetry of B yield
(Vo(u),z) = (B7'g,9), (V¢'(u)z,2)=(HB 'g,B™'g)
and in order to verify (2.22)) it suffices to prove that

2] < Kiflu —u”| (2.26)
with K3 > 0 depending on ug and v;. The Taylor expansion for V¢ yields
9="Vo(u) = Vo(u*) + VZo(u")(u —u") + o1, (2.27)

where I
0 *
lo1] < 2l — e
with Lo as above. Here Vo(u*) = 0. Let Py be the upper spectral bound of V2¢
on the ball B(u*, Ry), obtained from assumption (ii). Then, also using (2.18), we

have
Lo Ry

* L * * *
lgll < Pollu— | + Sl — |2 < (Py+ =5 ) u = || = Kollu— . (2.28)
From this the assumption B € B(v;) yields
2 = 1B~ gll < (Ko/mn) u— u"|l

hence ([2.26]) holds with K7 = Ky/v;1 and thus (2.21))-(2.22) are verified.

(iii) Now we prove that

Bu) = B+ 59,7 g) + Ra, (229)

where

|Ra| < Collu —u*|? (2.30)
with Cy > 0 depending only on ug and v;. Similarly to —, we have

P(u) = p(u’) + (Vo(u®),u —u”) + %(V%(U*)(U —u'),u—u")+ 02,

where

ool < 22— u |
Here ¢(u*) = 8, Vo(u*) = 0 and

[(V2(u)(u —u*),u—u") — (H(u—u"),u —u*)| < Loflu —u|®

from H = V2¢(u) and the Lipschitz condition. Hence

Bu) = 4 5 (H (), — ) + 05,
where

2L

0
los| < THU —u*?.

Therefore it remains to prove that
[(H(u—u"),u—u) = (H'g,9)| < Csllu —u*|. (2.31)

Here implies
9=Vo(u) = V2o(u)(u—u*) + o1 = H(u—u*) + (V2(u") — H)(u —u") + 01
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Using again the Lipschitz condition for V2¢, we have
1(V2p(u") = H)(u— )| < Lollu —u”|]%,
hence
g=H@u—u")+ 04 (2.32)
with
|04] < Cllu —u*|*. (2.33)
Setting into the left-hand side expression in and using the symmetry
of H, we obtain
[(H(u—u"),u—u") —(H g, 9)| = (g — 04, H (g — 04)) — (H "9, 9)]|
=|—2(H g, 04) + (H " 04, 04)]
< 2(H™'g, 04)| + [(H " 04, 04)] -
Let py be the lower spectral bound of V2¢ on the ball B(u*, Ry), obtained from
assumption (ii). Then |[H~!|| < 1/po. Hence, using (2.28)), (2.33) and (2.18)), we
have
(=), =) = (g, < - (2Nl + lealP)
1
Po
< pio(2Koc4 + RoC}) Ju— w1,

that is, (2.31) holds and thus (2.29)-(2.30) are verified.
(iv) Let us set (2.29) into (2.21) and use notation R3 = Ry + Ra :

< — (2KaCullu— | + Cflu - w1

1 - 1
m(B) = 6+ 5 (H 9,7t g)— (B 19,9>+§<HB '9,B7'g) + Ry

1 _ N N _
:ﬂ+§<H(B ly—H '9),B lg— H 'g) + Rs
= 1m(B) + Rs,
where by (2.22)) and (2.30),

|Rs| < Cllu—u*|f?

with C' = Cy + Cy. Therefore (2.17)) is true and the proof is complete. O

Remark 2.2. A main application of the above theorem arises for second order
nonlinear elliptic problems. Then one can define various Sobolev gradients using
different weight functions in the Sobolev inner product. For instance, in the case of
Dirichlet problems one can use weighted Sobolev norms (h, h), = [, w(x)|Vh|? dx
where w is a positive bounded function, or more generally (h, h)w = [, W(z)Vh -
Vhdx where W is a bounded uniformly positive definite matrix function. Such
weighted norms can be written as (Bh, h)Hé with some operator B as in on
the space H = H}(Q2), where (., .>H% denotes the standard Sobolev inner product,
hence the optimality result of Theorem [2.I] covers such Sobolev gradient precondi-
tioners.
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3. CONSTRAINED OPTIMIZATION FOR NEWTON’S METHOD AND SOBOLEV
GRADIENTS

A different interpretation of Newton’s method in Sobolev gradient context uses
minimization subject to constraints, which we build up using a continuous Newton
method. Suppose that ¢ is a C? function from R™ into R. What philosophy
might guide a choice of a numerically efficient gradient for ¢? We first give a quick
development for the unconstrained case which gives a somewhat different point of
view to the previous section. We then pass to the constrained case.

If ¢ arises from a discretization of a system of differential equations then the
ordinary gradient, a list of partial derivatives of ¢ is a very poor choice for numerical
purposes. We illustrate this by a simple example in which the underlying equation
isw —u =0 on [0,1]. For n a positive integer, a finite dimensional least-squares
formulation is, with 6 = 1/n,

n

1 Up — Uk—1 Uk + Up—1
P(uo, ut, ... up) = ) Z( S - 9 )2, (3.1)
k=1
where (ug,u1,...,u,) € R"1. It may be seen that if (ug,us,...,u,) is a critical

point of ¢ then ¢(ug,u1,...,u,) =0 and so

Uk — Uk—1 Uk + Ug—1
— =0, k=1,...
5 2 b b ’n7

which are precisely the equations to be satisfied by the Crank-Nicholson method for
this problem. It is widely understood that the ordinary gradient of ¢ is a disaster
numerically using steepest descent. By contrast, consider the gradient of ¢ taken
with respect the following finite dimensional emulation of of the Sobolev space
HY2([0, 1)):

n

Ul — Up— U + Up—
afup,ur,- ) = uld =Y (TP (T ) (32)
k=1

u = (ug,ut,...,u,) € R" 1. The Sobolev gradient of ¢ at such a u is the element
(Vs¢)(u) so that

¢'(wh = (h,(Vsd)(u))s, he R,

where (-,-)s denotes the inner product associated with (3.2).

In [§], it is indicated about seven steepest descent iterations suffices using the
Sobolev gradient whereas for steepest descent with the ordinary gradient a large
number of iterations is required (on the order of 30, 5000, 500000 iterations required
for n=10,20,40 respectively).

In the above example we might have been guided in our choice of metric by
the fact that the Sobolev space H1:2([0,1]) is a good choice of a metric for the
underlying continuous least squares problem

1 [
B(u) = 5/ (W — )2, we HY2(0,1]).
0
That this Sobolev metric renders ® differentiable (in contrast with trying to define
® as a densely defined everywhere discontinuous function on Ly([0,1])) is a good
indication that its finite dimensional emulation should provide a good numerical
gradient.
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Examining (3.1)), together we see that elements (ug, u1,. .., u,) have similar
sensitivity (i.e., similar sized partial derivatives) in both expressions. Note that the
first and last components of such a vector have sensitivity quite different from the
other n — 1 components. Roughly, when various components of the argument of ¢
have widely different sensitivity, the resulting gradient is very likely to have poor
numerical properties. As explained in [4] 8], the Sobolev gradient compensates,
yielding an organized way to define a preconditioned version of the original gradient.
This phenomena is pervasive for functionals which arise from discretizations of
systems of differential equations. In what follows, we see how to achieve this benefit
when a natural norm is not available. Essentially we see how Newton’s method fits
into the family of Sobolev gradients.

Suppose ¢ is a C? real-valued function on R”™ and that a more or less obvious
norm as in has not presented itself. Following the opening remarks in [§], if
u € R™ define g : R™ — R by

B(h) = ¢(h+u), heR"

For h close to zero, one might expect the sensitivity in § of various components of
h to somewhat match their sensitivity in ¢'(u)h. Now

¢'(wh = (h, (Vé)(u))=n,
using the ordinary gradient of ¢ and
B'(w)h = (h, (Vo(u+ h))pn.
For sensitivities of h in both of 3'(u)h and ¢'(u)h to approximately match, one

might ask that (V¢ (u) and V3(u) (ordinary gradients) be dependent. The following
result indicates conditions under which this dependency can be found.

Theorem 3.1. Suppose u € R"™ and ¢ is a C® function from R™ to R so that
(Vo) (u))~! exists. Then there is an open interval J containing 1 and a function
z:J — R" so that

tVo)(u) = (Vo)(2(t), teJ.
Proof. Denote by v a positive number so that if ||y — u|| < 7, then (Vo)(y))~!

exists. By basic existence and uniqueness theory for ODE, there is an open interval
J containing 1 and z : J — R™ so that z(1) = « and

Z(t) = (Vo) (1)1 (Vo)(u), teJ (3.3)
and hence
(Vo)(2))'(t) = (V@) (u), te (3.4)
Consequently,
(Vo) (2()) — (Vo) (2(1)) = (t = 1)(VP)(u), te
(Vo) (2(t) = t(V)(u), teJ (3.5)
since z(1) = u. O

Thus starting at z(1) = u, the path followed by the solution z to is a
trajectory under a version of continuous Newton’s method since (V¢)(u) in
may be replaced by (V¢)(z(t), t € J with just a change of scaler multiples due to
the fact that the vector field directions are not altered. Hence ([3.3) traces out, in a
sense, a path of equi-sensitivity. If the interval J can be chosen to include 0, then
z(0) will be a sought after zero of V.
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By [10] one may substantially reduce the C? differentiability in the preceding.
This reference also indicates how some of the above considerations apply to systems
of PDE in which indicated inverses do not exist.

We now turn to a constrained optimization setting motivated in part by the
above. Two versions are indicated, one for Sobolev gradient steepest descent and
the other for continuous Newton’s method.

First recall that there are two distinct ways systems of differential equations
may be placed into an optimization setting. Sometimes a given system of PDE are
Euler-Lagrange equations for some functional ®. In this case critical points of ® are
precisely solutions to the given system of PDE. In the second case for F: X — Y
a C? function from a Hilbert space X into a Hilbert space Y, think of

F(u)=0

as representing a system of differential equations. Such a system may often be
placed in an optimization setting by defining

B(u) = SIF@)%, we X. (3.6)

It is common that, for u € X, the range of F’(u) is dense in X. In this case it
follows that uw € X is a zero of F' if and only if it is a critical point of ® (see [§]).

In either the Euler-Lagrange or the least squares cases one might want a critical
point of ® which lies in some manifold contained in X. A convenient way that
such a manifold might be specified is by means of a function B from X into a third
Hilbert space S. In effect one can specify ‘boundary conditions’ or, more accurately,
supplementary conditions on a given system by requiring that

B(u)=0 (3.7)

in addition to (3.6). For each u € X, denote by Pg(u) the orthogonal projection
of X onto N(B’(u)). For X a finite dimensional space assume that B’(u)B’(u)*
has an inverse for all u € X where B’(u)* is the adjoint of B'(u) considered as a
member of L(X,S). This is a natural assumption in that S would generally have
smaller dimension that X.

With this assumption it may be seen that

Pp(u)=1—B'(v)"(B'(u)B'(u)*) ' B'(u), uecX

since Pp(u) is idempotent, symmetric and has range N(B’(u)). We make the addi-
tional assumption that Pp is C. For ¢ as in (3.6) and (¢'(z)h = (h, Vé(u))x,z,h €
X, define

(Veo)(x) = Pp(u)(Vo(z)), ze€X.
Then if
2000=z€X, 2'(t)=-(Vpo)(2(t), t=>0, (3.8)
we have the following result.
Theorem 3.2. For z as in (3.8),
B(2)(t)=0, t>0.
This follows since

B(2)'(t) = —=B'(2(t)) Pp(2(t)(Ve)(2(t)) =0, t=0. (3.9)
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Thus if in (3.8), B(z) = 0 it follows that B(z(¢)) = 0,¢ > 0 and hence if
u = tlim z(1),

then B(u) = 0 as well as (Vo) (u) = 0.

We now give a similar development for continuous Newton’s method by means of
the following result. Denote by each of X,Y, S a Banach space. For x € X, r > 0,
X, (x) denotes the ball in X of radius r centered at X.

Theorem 3.3. Suppose r > 0, xg € X, F : X,.(x9) = Y, B : X,.(zg) — S are
each Ct, B(xg) = 0. Suppose also that h : X, (xo) — H is a locally Lipschitzian
function so that if © € By(xo) then

F'(z)(h(x)) = =F(x0) and h(z) € N(B'(x)), [h(z)llx <r. (3.10)
Denote by z : [0,1] — X,.(xg) so that
2(0) =mo, 2'(t) =h(2(t)), te]0,1]. (3.11)

Then F(z(1)) =0 and B(z(1)) = 0.
Proof. Note that z(t) € B,(zo) since h(z(t)) € X,(0), t € [0,1]. Also note that

(B2)'(t) = B'(2(1))2'(t) = B'(z())h(t) =0, t€[0,1]
and so B(z(t)) =0, t € [0,1] since B,-(xo) = 0. Hence B(z(1)) = 0. But also,

F(2)'(t) = F'(2(1))2'(t) = F'(2(t))h(2(t)) = =F(x0), t€][0,1]

and so
F(z(t)) = F(xo) = —tF(x0)
that is,
F(z(t)) = (1 —1t)F(x), te]0,1].
Thus F(z(1)) =0. O

In case F'(z) has an inverse, continuous and defined on all of X, one may take
in place of (3.11)) the following:

h(z) = —F'(z)"'F(x0), z € X, (3.12)
more likely recognizable as a Newton vector field or else the conventional field:
h(z) = —F'(2)"'F(z), =€ X. (3.13)

With (3.12)) continuous Newton’s method is on [0, 1] and with (3.13) continuous
Newton’s method is on [0,00). In these last two cases, there is no possibility of
imposing further boundary conditions using a function B.
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