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VERTICAL BLOW UPS OF CAPILLARY SURFACES IN R3,
PART 1: CONVEX CORNERS

THALIA JEFFRES, KIRK LANCASTER

ABSTRACT. One technique which is useful in the calculus of variations is that
of “blowing up”. This technique can contribute to the understanding of the
boundary behavior of solutions of boundary value problems, especially when
they involve mean curvature and a contact angle boundary condition. Our goal
in this note is to investigate the structure of “blown up” sets of the form P xR
and AN'xR when P, V' C R? and P (or N) minimizes an appropriate functional;
sets like P X R can be the limits of the blow ups of subgraphs of solutions of
mean curvature problems, for example. In Part One, we investigate “blown up”
sets when the domain has a convex corner. As an application, we illustrate the
second author’s proof of the Concus-Finn Conjecture by providing a simplified
proof when the mean curvature is zero.

1. INTRODUCTION

Consider the nonparametric prescribed mean curvature problem with contact
angle boundary data in the cylinder Q2 x R

Nf=H(z, f) forzeQ (1.1)
Tf-v=cosy on 0, (1.2)

where n > 2, 0 C R” is bounded and open, T'f = Nf=V. -Tf, visthe

P
NI
exterior unit normal on 99, v : 9Q — [0, 7] and f € C?(Q). Examples show that
even if 0f) is smooth, a finitely valued solution f of — need not exist (e.g.
[]). If 99 is locally Lipschitz, then one might consider formulating — as a
variational problem. If 02 is not smooth at xy € Q2 and a generalized solution f
of — exists, the behavior of f near x( is often of great interest; when f is
a variational solution of (L.I)-(L.2) and H(-, f(:)) € L*°(f), then the blow ups of
f at 2o will (usually) be minimal hypersurfaces and specific information about the
behavior of these blow ups can contribute to an understanding of the behavior of
f near xg.

Suppose f € BV () minimizes the functional F : BV (Q2) — R given by

f(g):/gl\/l+\Dg|2dx+/Q/O H(x,t)dtda:—/a cos(v(z))gdz:  (1.3)

Q
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that is, f is a variational solution of (1.1)-(1.2). Assume 09 is locally Lipschitz,
O =(0,...,0) € 0 C R" and H(-, f(-)) € L>®(Q). Let {¢;} and {z;} be real
sequences with €; | 0 as j — oo. For each integer j > 1, set Q; = {x € R" 1 ¢z €
Q} and define f; € BV (§;) by
fle;jx) — z;
filz) = Heo) =2 2 o (1.4)
J

notice that f; minimizes

g
Filo) = [ VI¥DgFds+ [ [ My tdtde [ costaya))gds
Q; Q; Jo 09

and is a variational solution of Ng = Hj(x,g) for x € Q; and Tg - v; = cos~;
on 09, where Hj(x,z) = €;H(¢jz, €;2), v;(x) = v(e;x) and v; = v(e;jx). Notice
that H;(-, f;(-)) — 0 as j — oo. Suppose Qo = lim; o0 2, Voo = lim; o 7; and
Voo = limj_,o, v exist. As in [9] (also [I7, Lemma 1.2]), we can find a subsequence
of {f;}, which we continue to denote {f;}, which converges locally to a function
Joo 1 2 — [—00,00] in the sense that ¢y, — ¢y, in L}, (s X R) as j — oo, where
U; = {(z,t) € Q; x R : t < fj(z)} denotes the subgraph of f;, Uy = {(z,t) €
oo XR: t < foo(x)} denotes the subgraph of fo and ¢y denotes the characteristic
function of a set V' (e.g. [B], [6], [I2]). Furthermore, f is a generalized solution of
the functional

foo(g):/Q \/1—|—|Dg|2dac—/a cos(Voo )9 dHp, (1.5)

in the sense that for each compact subset K of R"*! with finite perimeter, Uy
minimizes the functional F defined on subsets of {2, x R by

Fg(V) :/ | Doy | 7/ co8(Yoo )y dH,.
KN(Qso XR) KN(0Q00 XR)

The sets
P={x € Oy : foolx) =00}, (1.6)
N={2€ 0 : folz) = —0}, (1.7)

have a special structure which is of principal interest to us. The set P minimizes
the functional

D(A) :/ | Do 4| —/ co8(Voo )P4 dH,,. (1.8)

Qoo 0o

and the set N/ minimizes the functional

U(A) :/ | Do 4| +/ co8(Yoo )P4 dH,, (1.9)
in the appropriate sense (e.g. [5], [16]). After modification on a set of measure zero,
we may assume that OUs,, OP and ON coincide with the essential boundaries of
Uso, P and N respectively (e.g. [5, Theorem 1.1]).

When the limiting contact angle v, satisfies certain conditions (depending on
Q), the continuity at and the behavior near O of f are unknown. It would be
valuable to understand the geometry of sets P and A in Q,, which minimizes ® and
W respectively when such conditions hold. Our goal is to determine the possible
geometries of P and N when n = 2 and 7., satisfies appropriate conditions and to
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illustrate the application of this knowledge by proving the Concus-Finn Conjecture
in the special case that the prescribed mean curvature H is zero.

2. STATEMENT OF RESULTS

Set n = 2; we will denote elements of R? by (x,y) rather than by = = (21, z2)
as in the previous section. Let © be an open subset of R? with a corner at O =
(0,0) € 99 such that, for some dy > 0, O is piecewise smooth in Bs,(O) and
90 N Bs, (0) consists of two C! arcs 9T and 9~ whose tangent lines approach
the lines L™ = {# = a} and L~ = {# = —a}, respectively, as the point O is
approached. Let v* and v~ denote the exterior unit normals on 97 and -
respectively. Here o € [0, 7], polar coordinates relative to O are denoted by r and 6
and B;(O) is the ball in R? of radius § about O. Let (z¥(s),y"(s)) be an arclength
parametrization of 9 and (z~(s),y (s)) be an arclength parametrization of 9~ €,
where s = 0 corresponds to the point O for both parametrizations. We will assume

n = lima (a7 (s),y™ (),
72 = limy(27(s), 5™ (5))
both exist and 71,72 € (0,7). In this case,
Qoo = {(rcosf,rsinf) :r >0, —a <l < a}, (2.1)
Y ={(rcos,rsinf) :r>0,0 = (-1y"a}, j=1,2,

and the limiting contact angle ., equals 7; on 31 and v on Xs. A set P C Qu
minimizes ¢ if and only if for each T > 0,

Or(P) < dr(PUS), ®7(P) < ®7(P\S) forevery S C QL |

where QF, = Bp(0) N Qu, £ = Br(0) Ny, j = 1,2, and

Op(A) = /QT | Dol —cos('yl)/ZT dadH! — cos(72) /ET dadH!

= H' QL N0A) — cos(11)H (XT NOA) — cos(ye) H' (X3 NA) .
A set N C Q. minimizes ¥ if and only if for each T > 0,
\I/T(N) < \I/T(./\/U S), \I/T(N) < \I/T(J\/\ S) for everyS C Qg;

where
\I/T(A):/ |D¢A\+cos(71)/ ¢AdH1+cos(72)/ dadH?
Qf, =7 =7

= HY QL N0A) + cos(y1)H (T NOA) + cos(yz) H (B2 N oA).

If P minimizes ®, then after modification on a set of measure zero, we may assume
OP coincides with the essential boundary of P (e.g. [5, Theorem 1.1]) and Qo NOP
consists of a union of rays. If A/ minimizes ¥, then the same holds for ON and
Qoo NON. We may also assume P and N are open.

It is convenient to introduce some notation. If A and B are points in R?, then
OA denotes the open line segment with endpoints O and A and OA denotes the
closed line segment with endpoints O and A. When the context is clear as in an
arithmetic equality or inequality, OA will denote the length of the line segments
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OA and OA. If A, B,C € Q, then AABC denotes the open triangular region in
R? with vertices A, B and C.

Theorem 2.1. Suppose a < 7/2 and P C Qo minimizes ®. Let (r,0) be polar
coordinates about O. Then one of the following holds:

(i)
(i)
(iii)
(iv)

(vii)

(viii)

P=0orP=0Q;
a< 5,7 +7—7=-2aand P=AAOB, where A € X1, B € ¥ and
angles OAB and ABO have measures 71 and 7o respectively;
a<f,mty—m=20andP = Qs \ AAOB, where A € ¥1, B € ¥
and angles OAB and ABO have measures m — vy, and m — 7y respectively;
v+ 7 — 2 < 2« and there exists A € 31 such that 00s, NOP =31 \ OA,
Qoo NOP is the ray L in Qs starting at A and making an angle of measure
v with 1\ OA and P is the open sector between X1 \ OA and L;

Yo+ 7 — < 20 and there exists A € ¥y such that 00 NOP = B3 UOA,
Qoo NP is the ray L in Qo starting at A and making an angle of measure
1 with OA and P is the open connected region with boundary Yo UOAUL;
y1 + 7 =72 < 2a and there exists B € Xo such that 00 NOP = X, UOB,
Qoo NOP is the ray L in Qo starting at B and making an angle of measure
v2 with OB and P is the open connected region with boundary ¥1 UOAUL;
Y2+ 7 —v1 < 2a and there exists B € Xy such that Qe NP = X2\ OB,
Qoo NOP is the ray L in Qs starting at B and making an angle of measure
Yo with X9 \ OB and P is the open sector between ¥ \ OB and L;

Y1+ 7T =72 < 20, 0o NIP = X1 U{0}, Qoo NIP is a ray L = {0 = [} in
Qo starting at O which makes an angle of measure greater than or equal
to v1 with 31 and an angle of measure greater than or equal to ™ — o with
Yo fiee m—a—yn<f<a—v)andP={F<0<a};or

Yo+ 7 =71 <20, 0N NOP = X U{O}, Qoo NIP is a ray L = {0 = G} in
Qoo starting at O which makes an angle of measure greater than or equal
to m — v, with X1 and an angle of measure greater than or equal to o with
Yo (ie. v—a<fB<a+y—7) and P={-a <0<}

s

Theorem 2.2. Suppose o < 5 and N C Qo minimizes W. Let (r,0) be polar
coordinates about O. Then one of the following holds:

(i)
(ii)
(i)
(iv)

(v)

(vi)

N=0or N =0Q;

a<f, m+yv—7m=-20and/N =Q,\ AAOB, where A€ X1, B € ¥
and angles OAB and ABO have measures v1 and -2 respectively;

a< g, mtyr—1=2a and N' = NAOB, where A € ¥1, B € ¥y and
angles OAB and ABO have measures ™ — vy, and m™ — 72 respectively;
v1+ T — v < 2a and there exists A € X1 such that OQs NON = Yo U
OA, Qo NON is the ray L in Qo starting at A and making an angle of
measure ™ — 1 with OA and N is the open connected region with boundary
Yo UOAUL;

Yo+ 7 — 71 < 2c and there exists A € X1 such that Qe NON = X1 \ OA,
Qoo NON is the ray L in Qoo starting at A and making an angle of measure
T — v with X1\ OA and N is the open sector between ¥1 \ OA and L;

v1 47— 2 < 2« and there exists B € Yo such that Qs NON = X9\ OB,
Qoo NON is the ray L in Qo starting at B and making an angle of measure
T — vo with 3o \ OB and N is the open sector between Yo \ OB and L;
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(vii) 72 + 7T — 11 < 2a and there exists B € X such that 0Qs NON = 31 U
OB, Qo NON is the ray L in Qo starting at B and making an angle of
measure T — o with OB and N is the open connected region with boundary
YLUOAUL;

(vili) v1 4+ 7 — 2 < 2a, 0o NON =33 U{0}, Qoo NON is a ray L = {6 = 3}
in Qs starting at O which makes an angle of measure greater than or equal
to v1 with 31 and an angle of measure greater than or equal to ™ — o with
Yo fiee m—a—yn<f<a—v)andP={-a<0<j}; or

(ix) y2+7—m <2a, 0 NIN =%, U{0}, Qoo NIN is a ray L = {0 = 3}
in Qoo starting at O which makes an angle of measure greater than or equal
to m — v, with X1 and an angle of measure greater than or equal to o with
Yo (ie. v—a<fB<a+y—7) and P={f<6<a}.

Figure 1 illustrates the geometry of P in Theorem 2.1]and N in Theorem [2.2] In
each case, the shaded region illustrates the geometry of P and the unshaded region
illustrates the geometry of N.

3. APPLICATION TO CAPILLARITY

Consider the stationary liquid-gas interface formed by an incompressible fluid in
a vertical cylindrical tube with cross-section 2. For simplicity, we assume that near
(0,0), 0 has straight sides (as in [14]) and so we may assume

Q= {(rcos(f),rsin(d)):0<r<1l,—a<b<al. (3.1)

In a microgravity environment or in a downward-oriented gravitational field, this
interface will be a nonparametric surface z = f(x,y) which is a solution of the
boundary value problem (1.1)-(1.2)) with H(z) = kz + A; that is,
Nf=rf+X inQ (3.2)
Tf-v=cosy ae. ondfd

where Tf = Vf/\/14+|Vf|]?, Nf =V -Tf, v is the exterior unit normal on 052,
k and A are constants with k > 0, v = vy(z,y) € [0,7] is the angle at which the
liquid-gas interface meets the vertical cylinder ([3]) and 1,y € (0,7) are as in §2.

Lemma 3.1. Suppose a < 5 and v +7 — 2 < 2a. Let f € C*(Q)NCH(Q\ {0})
satisfy (3.2) and (3.3) and define

-1

i, y) = (T (). )
V1+IVf(zy)?
to be the (downward) unit normal to the graph of f at (z,y, f(x,y)). Let 8 € (—a, a)
and let {(z;,y;)} be a sequence in Q satisfying lim;_,.(x;,y;) = (0,0) and

(3.4)

lim _(@ys) = (cos(B), sin(B)). (3.5)

(i) If B € [ma+ 7T —v2,a — 71, then limj_,o 7i(x},y;) = (—sin(B), cos(5),0).
(ii) If B € (—a,—a+ 7 — 2], then
lim; o 7i(z;,y;) = (—sin(—a + 7 — ¥2),cos(—a + 7 — 72),0).
(ill) If B € [@ — 11, @), imj_,o0 fi(xj,y;) = (—sin(a — 71), cos(ae — 71),0).
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0 0 @)
B B
case (ii) case (iii) case (iv)
A
@) @) @)
B B
case (v) case (vi) case (vii)
0 @)
case (viii) case (ix)

Ficure 1. Nlustration for Theorems 2.1] and 2.2

Proof. Suppose {(z;,y;) : j € N} is a sequence in 2 converging to (0,0) as j — oo
and satisfying (3.5); we may assume x; > 0 for all j € N. For each j € N, define

f; € C2(©;) N CH G\ {O}) by (14) with 2; = f(a5,,) and € = /2% + 42, s0
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that

fj(ir, y) _ f(€j$7 Ejy) - f(l'j7 y]) )
€j
Let U; be the subgraph of f; as in §1 and 7i; be the downward unit normal to the
graph of f;; that is,

i (x = (z 1
”]( 7y) (Tf]( ,y), 1+|ij(x,y)\2)’

As in §1, there exists a subsequence of {(z;,y;)}, still denoted {(z;,y;)}, and a
generalized solution f, : Qo — [—00, 0] of such that f; converges to fo in
the sense that ¢y, — ¢y, in L},.(Q x R) as j — oo, where Q. is given in (2.1)).
Let P and N be given by and respectively. Notice that f;(z;/€;,y;/€¢;) =
0 for all j € N and so fu(cos(f),sin(f3)) = 0. Using “density lower bounds” (e.g.
[18, Lemma 3.1]), we see that (cos((),sin(8),0) € dUs and (cos(f),sin(g)) €
Qoo \ (PUN); hence P # Qo and N # Q. Since y; + 7 — 72 < 2a, either P =
or one of cases (iv), (vi) or (viii) of Theorem [2.1] holds and either A" = ) or one of
cases (iv), (vi) or (viii) of Theorem [2.2] holds.

We claim that (Qs x R) N 90U is the portion of a plane IT in Q4 x R, with
(cos(f),sin(B),0) € II. There are two possibilities to consider. The first is that
there exists € > 0 such that B(cos(8),sin(3)) N (P UN) = ). The second is that
(cos(B),sin(B)) € P UON.

Suppose the first case holds and let G = Q. \ (P UN). Notice that f,, is a
classical (i.e. C%(G)) solution of the minimal surface equation in G (e.g. [5], [11]).
Let h(z,y) = f(z,y) — Rf(5), where Rf(3) = lim, o f(r cos(8),rsin(8)) ([9]), and
define h; : Q; — R by

(z,y) € Q.

hi(o,y) = f(Eﬂvﬁjye)‘* Rf(B) _ h(ﬁjfféjy) for j € N,
J J

%;Rﬂm and observe that hj(x,y) = fj(x,y) + ¢;. Hence

th(x,y)Zij(x,y), ($>y) Eg-

From [10, Theorem 3], we see that

Jlggo Vii(x,y) = Vis(z,y) for (z,y)€g (3.6)

Set Cj =

and so lim;_,o Vh;(z,y) = Vfx(x,y) for (z,y) € G. Set E = {(x,y,2) € A xR:
z < h(z,y)} and V; = {(z,y,2) € Q; xR : z < h;j(z,y)}, 7 € N. Notice that
(rcos(B), rsin(B), h(r cos(B), rsin(F))) € OF for r > 0 and so (0,0,0) € OF since
(rcos(B), rsin(B), h(r cos(8),rsin(8))) — (0,0,0) as » | 0. By [14] Theorem 4.5],
E; ={(x,y,2) : t(z,y,2) € E} converges to a (solid) minimal cone C' (with vertex at
(0,0,0)) in R? in the sense that ¢, — ¢c in Li, (R3) asr | 0. Now (Qu x R)NOC
is a minimal surface which is a cone with vertex at (0,0,0) and hence is a portion
of a plane. Notice that V; = E., and so h; converges to hoo, where ho, denote the
generalized solution with subgraph ¢c¢, in the sense that ¢y, — ¢¢ in L, (R?) as
j — oo. By [10, Theorem 3] and (3.6), we see that

J—00
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OC' is a nonvertical plane, V fo, = Vh is a constant vector and (Qs X R)NIU is
the portion of a nonvertical plane IT in Q. x R. Since 7;(z;/€;,y;/€;) = (x;,y;),
we see that lim;_,o 7(2;, ;) = (Vheo, —1)/v/|Vhso|? + 1.

Suppose the second case holds. We may assume (cos(3),sin(8)) € IP; then
(cos(),sin(B),0) is a point on P x R and, in a neighborhood of (cos(3),sin(f), 0),
OUs is a real analytic surface. Since P x R C Uy, this real analytic surface
contains a portion A of 9P x R with (cos(3),sin(3),0) € A. This implies that the
component of Us N (s X R) which contains (cos(3), sin(5),0) is (0P NN ) X R.
Since 7j(x;j/€j,y;/€;) = fi(xj,y;), we see from [10, Theorem 3] that

jli{lolo ﬁ(xjayj) = 5 = (517527 O)a (37)

where £ is the normal to P x R at (cos(8),sin(3),0) which points into P x R.

If we let € = (&1, &2, &3) denote the unit normal to IT at (cos(3), sin(3), 0) pointing
into Us, then it is easy to see (as Concus and Finn observed in [2]) that &3 cannot
be less than 0 (i.e. no plane can meet ¥; x R in angle v; and X5 x R in angle v2)
and so & = 0. Hence Uy, = P X R, where P is given in one of (iv), (vi) or (viii) of
Theorem 2.1/ and N = Q. \ P.

Suppose 3 € [~a + 7 — 2, — 1] holds. From Theorem [2.1} we see that case
(viii) must hold. Since 9P is a line going through (0,0) and (cos(5),sin(3)), we
have ¢ = (—sin(3), cos(),0) and (i.) of Lemma [3.1] follows from (3.7).

Suppose 8 € (—a,—a + 7 — 2] holds. Then case (vi) of Theorem holds,
¢ = (—sin(—a+m—"2),co8(—a+m—2),0) and (ii.) of Lemma|3.1|is established.

Finally, suppose 8 € [ — 71,«). Then case (iv) of Theore holds, & =
(—sin(a — 1), cos(a — 71),0) and (iii.) of Lemma [3.1]is established. O

Remark 3.2. In [I3] and [I4], Shi assumes {2 is a wedge domain (i.e. (3.1]), although
with 3 < a < 7); for simplicity, we consider (convex) wedge domains. However,
as noted in [I3] and [14], the assumption that 02 has straight sides near O can be
relaxed. She also assumes v =77 on {§ = a} and v = 12 on {# = —a}. Neither of
these assumptions has a significant impact on the critical monotonicity estimates
(i.e. (8) and page 339, [14]) which imply that the limit C of the {V;} is a (solid,
minimal) cone with vertex at (0,0,0). Also, the hypothesis of [14, Theorem 4.5]
only requires f to satisfy (with n = 2 and H bounded near O) rather than
. Thus, we may assume in this section that 2 and - are as described in §2 and

f satisfies (1.1 and ({3.3)).

Using (v), (vil) and (ix) of Theorems [2.1| and [2.2| and the techniques used in the
proof of Lemma we see that the following holds.

Lemma 3.3. Suppose a < 5 and v +7 —y1 < 2a. Let f € C*(Q)NCH(Q\ {0})
satisfy and and define 7i(x,y) by (3.4). Let f € (—a,a) and let {(x;,y;)}
be a sequence in  satisfying lim; .o (x;,y;) = (0,0) and (3.5).
(i) If B € [—a+y2, a0+ — 7|, then lim;_, o 7i(x},y;) = (sin(B3), — cos(5),0).
(ii) If B € (—a, —a + 2], then
lim; oo (25, 45) = (sin(—a +72), — cos(—a +72),0).
(ii) If B € [+ — 7, ), then

lim 7(z;,y;) = (sin(a+ vy — ), —cos(a + 71 — m),0).
J—00
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The Concus-Finn Conjecture is the conjecture that if x > 0, 0 < o < 7 and
T — |71 — 72| < 2@, then every solution of (3.2)-(3.3) must be discontinuous at
O = (0,0) (see, for example, [8,[13] and [14]). The second author proved the Concus-
Finn Conjecture in [§]. Here we wish to illustrate the applicability of Theorems
and to calculus of variations problems in R? by providing a proof of the
Concus-Finn Conjecture in the special case that xk = 0 and A = 0. (We note that
while searching for a proof of the conjecture, this case was the first which the second
author considered and its proof provided the roadmap for the proof in the general

case.)

Theorem 3.4 (Concus-Finn Conjecture with £ = XA = 0). Suppose 0 < a < § and
k=A=01n (3.2). Suppose further that = — |y1 — 72| < 2a.. Then every solution

of (3.2))-(3.3) must be discontinuous at O = (0,0).

Proof. We may suppose 71 + 7 — 72 < 2o, £ = A = 0in (3.2), f € C*(Q) N
CH(Q\ {O}) satisfies and and f is continuous at O. The graph of f,
G ={(z,y, f(z,y)) : (x,y) € Q}, may be represented in isothermal coordinates. It
follows from the arguments in [7] and [9] that there exists X : B — R3, X (u,v) =
(z(u,v),y(u,v), 2(u,v)), (with B = {(u,v) : u? + v? < 1}) such that

e X is a homeomorphism of B and G and a diffeomorphism of B and G,

e X, X, =0and |X,| =|X,| on B,

e AX(u,v)=(0,0,0) for (u,v) € B.
Since f is continuous at O, we know, in addition, K (u,v) = (z(u,v),y(u,v)) is a
homeomorphism of B and ; if f were discontinuous at O, then there would be
a closed, nontrivial interval I C 0B such that K(u,v) = (0,0) for each (u,v) € I
[7,[@9]. We will assume X (1,0) = (0,0, £(0,0)).

Consider the Gauss map 77 o K of G; in particular, recall that since G has zero
mean curvature, the stereographic projection (from the north pole) of the Gauss
map, which we denote ¢ : B — R2?, is an analytic function of u + iv when we
consider B and R? as being in the complex plane. Notice that g : B — B.

Let mg : [0,8] — B be defined by K(mg(t)) = t(cos(),sin(d)) for each 6 €
(—a, ). Let 6 and 05 satisfy —a 4+ 7 — 9 < 67 < 03 < o — ;. From Lemma
we see that

ltil%l g(mep(t)) = —sin(f) +icos(f) for each 6 € [0y, 05]

and, in particular, | lim; o g(me(t))| =1 for 0 € (61, 02).

On the other hand, the Phragmen-Lindelof Theorem for (bounded) analytic
functions applied to g (when restricted to a suitable subdomain of B and composed
with a conformal map) implies that lim; o g(me(t)) lies on the line segment joining
—sin(61) + icos(f1) and —sin(fa) + icos(f2) and hence |limgj o g(me(t))| < 1 for
0 € (61,02) (e.g. [I]). This contradiction implies that our assumption that f was
continuous at O was incorrect. (]

4. AUXILIARY LEMMAS

In this section, let P denote a minimizer of ® and N denote a minimizer of ¥.
We do not assume o < g since the results here will also be used in Part T'wo, where
5 < a < 7. After modification on a set of measure zero, we may assume

(i) each component of Q NIP (and of Qo NIN) is a connected component
of the intersection of ., and a line;
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(if) oo N IP consists of the union of rays (and lines) in Qo which do not
intersect in Q. and

(iii) Qoo N ON consists of the union of rays (and lines) in Qo which do not
intersect in Q.

These items follow since the sets 9P x R and ON x R are ruled minimal surfaces
in R? which are area minimizing with respect to compact perturbations (e.g. [16]).

Lemma 4.1. For each v, T € R with 0 < r < T, there are only finitely many
components of Qoo NOP (o of Qoo N ON') which intersect QL \ Q7. .

Proof. Suppose {M,, : n € N} is a countably infinite collection of distinct com-
ponents of Qoo NP, 0 < r < T and M, N QL \ Q7 # 0 for each n € N. Let
D € QT \ Q7 be an accumulation point of {M,,}. If D € Q,, pick € > 0 such that
By(D) C Q. If D € Xy, pick € > 0 such that By.(D) Ny = . If D € Xy, pick
€ > 0 such that By (D)NY; = (. Since D is an accumulation point of {M,,}, there
is a subsequence {M,,, } of {M,,} such that M,, N B.(D) # 0 for each k € N. Hence
HY(Qo N M,,) > e for each k. Since HY (ST UXT) < co. we see that &7 (P) = oo,
a contradiction. The argument for Qo N ON is similar. O

Remark 4.2. We will later show in Lemma[4.18|that for each T' > 0, Q5 NIP and
Qs N ON each have only finitely many components which intersect Q2 . We note
that if & > /2 or if an infinite number of components of Q, NP (or of Qe NIN)
contain O as an endpoint, then the proof of Lemma already yields this result.
However, if o < 7/2, the fact that ®7(P) < co (or U (N) < oo) does not suffice
to exclude an infinite number of components of Q. N IP (or of Oy, N ON) from
intersecting QL and this is illustrated in the following example.

Example 4.3. Let 0 < a < 7/2 and set S = U2, (272n71 272) x R and U =
Qs N S. Notice that Qo NOU = US 5 M,,, where

M, ={27"} x (=27 " tan(a), 27" tan(«)),
and O is an accumulation point of the sequence {M,, : n € N}. If T > 1, then
HY(QL NoU) = tan(a) and @7 (U) < oo and W1 (U) < oo for any choice of y; and
Y2-
Lemma 4.4. If My and Ms are two distinct components of Qoo NOP (o1 of Qo N

ON) and My N My = {A}, then A = O and the angle between M; and My has
measure greater than or equal to 7.

Proof. Suppose two components of Q.,, N OP intersect at a point A € 0, and,
if A = O, then they meet in an angle of measure less than 7. Then either one
component P; of P is a convex wedge with vertex A or one component A7 of
Qs \ P is a convex wedge with vertex A. Suppose the first case holds and let

F1GURE 2. Convex wedge 1
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I, and I be the components of Qo N OPy; then ) NI, = {A}. Let B € I,
C € I, and T > max{OA, OB,OC} (see Figure[2). Since P minimizes ®, ¢ (P) <
or(P\ AABC) and so

AC + AB < BC,

which is a contradiction. Thus the first case cannot hold.

FiGURE 3. Convex wedge 2

Suppose the second case holds and let I; and I, be the components of Q. NAN;
and B € I;, C € I (see Figure . Let T be as above. Since P minimizes
D, ¢7(P) < ¢r(PUAABC) and so AC + AB < BC, which is a contradiction.
Thus the second case cannot hold. The argument for components of Qo N IN is
essentially the same. O

Remark 4.5. We may state Lemma [£.4] informally as follows:

Two components of Qo N IP (or of Qo N IN) cannot meet on
Y1 UXs. Two components of Qo NP (or of Qo NON') which meet
at O meet in a angle of measure greater than or equal to 7.

Lemma 4.6. Suppose A € 1 NOPNI(Qs \P) and B € X1\ {A} with AB C OP.
Let Py denote the connected component of P whose closure contains AB. Then the
measure of the angle P1 makes at A is greater than or equal to 7.

FIGURE 4. 0 <7,

Proof. From Lemmad.4]and (i)-(iii), we see that only one component of P contains
AB in its closure; let us denote this component by P;. Denote by 6 the measure
of the angle at A formed by 9P; and assume 6 < ~;. Let C be the point on
Qo N IP; for which the angle CBA has measure m — 71 (see Figure . Since P
minimizes ®, ¢7(P) < ¢7(P\ AABC) for T large. Hence AC — cos(y1)AB < BC.
Now AC = (sin(v1)/sin(y1 — 0))AB and BC = (sin(6)/sin(y; — 6))AB and so
sin(y1) — cos(y1) sin(y; — 6) < sin(f). A short calculation shows that this implies
1 < cos(y1 — 0), which contradicts the assumption that 6 < ;. O

Lemma 4.7. Suppose A € Yo NOPNI(Qs \P) and B € X9\ {A} with AB C OP.
Let Py denote the connected component of P whose closure contains AB. Then the
measure of the angle P1 makes at A is greater than or equal to s.
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Lemma 4.8. Suppose A € 1 NIOP NI(Qoo \ P). Then A lies in the closure
of exactly one connected component Py of P and OP; makes an angle of measure
exactly v, at A.

FIGURE 5. 0 > 7

Proof. Since A # O, Lemma[4.4] implies that only one component P; of P contains
A in its closure. Let 6 be the measure of the angle P; makes at A and assume
6 > . Let B € ¥ and C € Qu N OP; such that B ¢ P; and angle CBA
has measure y; (see Figure p). Now ¢r(P) < ¢r(P U AABC) for large T and
so AC < BC — cos(y1)AB. Now AC = (sin(y1)/sin(@ — 71))AB and BC =
(sin(#)/sin(f — v1))AB and so

sin(y1) < sin(f) — cos(y1) sin(f — 7).

A short calculation shows that this implies 1 < cos(f — 71 ), which contradicts the
assumption that 6 > ;. (]

Lemma 4.9. Suppose O € OP N I(Qoo \ P), A € Qo NIP, B € 1, AAOB C
Qoo \ P and 6 is the measure of the angle AOB. Then 61 > 7 — ;.

FIGURE 6. O € 9P NO(Ns \ P)

Proof. Assume 01 < m — 1. Let A be the component of Q. \ P which contains
AAOB. Pick C € Q4 NIN; such that angle CBO has measure 7, (see Figure @
Now ¢7(P) < ¢r(P UACBO) for large T and so OC < BC' — cos(y1)OB. Since
OC = (sin(y1)/sin(f; + v1))OB and BC = (sin(6)/sin(f; + 71))OB, we see that

sin(y1) < sin(f1) — cos(vy1) sin(fy + 11).

A short calculation shows that this implies 1 < cos(m — 61 — 1), which contradicts
the assumption that 6; < 7w — ;. (]



EJDE-2007/152 VERTICAL BLOW UPS 13

Lemma 4.10. Suppose A € Lo NIP NI Qoo \ P). Then A lies in the closure
of exactly one connected component Py of P and OP; makes an angle of measure
exactly vo at A.

Lemma 4.11. Suppose O € OP N O(oo \ P), A € Qs NOP, B € ¥y, NAOB C
Qoo \ P and 6y is the measure of the angle AOB. Then 03 > 7 — 5.

Lemma 4.12. Suppose A € 1NONNI(Qs\N) and B € %1\ {A} with AB C ON.
Let N1 denote the connected component of N whose closure contains AB. Then
the measure of the angle N1 makes at A is greater than or equal to m — 1.

FIGURE 7. m—0 <m—m

Proof. From Lemma[d.4]and (i)-(iii), we see that only one component of A contains
AB in its closure; let us denote this component by A;. Denote by = — 6 the
measure of the angle at A formed by OA7 and assume 6 > 71. Let C be the point
on Q N AN, for which the angle CBA has measure v, (see Figure @ Since N/
minimizes ¥, Y7 (N) < pr(N\AABC) for T large. Hence AC'+cos(y1)AB < BC.
Now AC = (sin(v1)/sin(@ — 71))AB and BC = (sin(d)/sin(@ — v1)AB and so
sin(y1) + cos(y1) sin(f — 1) < sin(f). A short calculation shows that this implies
1 < cos(f — 1), which contradicts the assumption that 6 > ;. Thus § < ~; and
so the measure ™ — 6 of the angle which A; makes at A is greater than or equal to
™= 1. [l

Lemma 4.13. Suppose A € S3NONNI(Qs\N) and B € SN2\ {A} with AB C ON.
Let N1 denote the connected component of N whose closure contains AB. Then
the measure of the angle N1 makes at A is greater than or equal to ™ — 7.

Lemma 4.14. Suppose A € X1 NON N O(Noo \ N). Then A lies in the closure
of exactly one connected component N1 of N' and ON1 makes an angle of measure
exactly m — 1 at A.

Lemma 4.15. Suppose A € X3 NON NI \ N). Then A lies in the closure
of exactly one connected component N1 of N' and ON1 makes an angle of measure
exactly m — vo at A.

Lemma 4.16. Suppose O € ON NI(Qo \N), A€ Qo NON, B Xy, NAOB C
Qoo \ N and 0, is the measure of the angle AOB. Then 01 > ;.

Lemma 4.17. Suppose O € ON NI(Qoo \N), A € Qo NON, B € 53, NAOB C
Qoo \ N and 0 is the measure of the angle AOB. Then 03 > 7.

The proofs of Lemmas [4.7] [£.10} [£:11] and [£.13] follow those of Lemmas

[4:9 and respectively. The proofs of Lemmas [£.14) and [£.15] are similar to that of
Lemma [{.8 while the proofs of Lemmas [£.16 and [£.17] are similar to that of Lemma
4.9
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Lemma 4.18. For each T > 0, only finitely many components of Qoo NIP (or of
Qoo NON ) intersect QL.

Proof. Example [£.3] illustrates the only case with which we need to deal. Suppose
0<a<m/2,T>0and QL NP = U M,, where M,, = A,B,, A, € ¥,
B, € ¥5, OA,11 < OA, and OB, 11 < OB, foreachn € Nand A4,, — O, B,, — O
as n — o0o. Let P; be a component of P whose boundary contains Mj3. Then
either OP; = My U M3 U A3 A3 U BaB3 or P = M3 U M4 U A3A, U B3By. Let
us assume the first case holds. Notice then by Lemmas [I.8] and [£.9] that 9P makes
angles of measure ; at As and Az and angles of measure 7, at By and Bs. Hence
291 + 29 = 27 or 1 + 2 = 7; this implies 1 and X, are parallel, a contradiction.
A similar argument applied to Qo N AN shows that 2(m —v1) + 2(7 — 72) = 27 or
Y1 + 72 = 7 again. (|

Lemma 4.19. Suppose o > 5. Then:

(a) Two components of Qoo NIP for which the closure of one (or both) of the
components is disjoint from 0Qs cannot be parallel.

(b) Two components of Qoo NON for which the closure of one (or both) of the
components is disjoint from 0Q, cannot be parallel.

Proof. Suppose M7 and M, are distinct components of ., NIP such that M is a
line or ray in Q,, M> is a line in 2, and M; and M are parallel. We may assume
that either

(i) M; and Ms lie on the boundary of a component P; of P or
(ii) M; and My lie on the boundary of a component N of Q4 \ P.

Let A € M; and B € M, be fixed with AB orthogonal to M; and M,. Now pick
C € My and D € My such that AB and CD are parallel and AB = CD < AC =
BD. Fix T > max{OA,OB,0C,0OD}. Assuming (i.), the minimality of P implies
&7 (P) < &p(P\ACDB) or AC+BD < AB+CD. However AC+BD > AB+CD
and we have a contradiction. Assuming (ii.), the minimality of P implies ®7(P) <
O (PUACDB) or AC + BD < AB+ CD. However AC + BD > AB + CD and
we have a contradiction. This proves the Lemma when M; and M, are distinct
components of OP. The proof when M; and M are distinct components of AN is
similar. g

Lemma 4.20. Let Q; = {0 < § < a} and Q2 = {—a < 6 < 0}. Then no
component of Q1 NOP nor of Q1 NON can be parallel to X1 and no component of
Qo NOP nor of Qo NON can be parallel to 3.

Proof. Suppose L is a component of Q. NOP such that L1 = LNQ, # O and L is
parallel to ;. From (i)-(iii) of §4, we know that L is either a ray starting at a point
on Yy (if a < §) or a line in Qu (if @ > 7) and, in either case, Ly is a ray in (4
starting at a point A = (a,0). Let B € ¥; and set C(= C(B)) = B+ (a,0) € L;.
Select T > max{OA,OB,0C}. Let A denote the open region with boundary
OACB. Now the open region U C €y with boundary 1 UL; UOA is a component
of Q1 NP or a component of Q; NN
Suppose first that U is a component of 21 NP. Since

O (P) < @p(P\ A),

we obtain
AC — cos(y1) OB < BC + OA.
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FIGURE 8. UC P

Since BC' = OA is fixed (independent of B), AC = OB and |cos(y1)] < 1, we
obtain
0B < 20A
1 —cos(y1)
for all B € 31, which is impossible for sufficiently large OB.
Suppose second that U is a component of €; \ P. Since

O (P) < @p(PUA),

we obtain AC < BC' + OA — cos(y1) OB. Since BC = OA is fixed (independent
of B), AC = OB and |cos(71)| < 1, we obtain

OB < 20A

1+ cos(v1)
for all B € ¥, which is impossible for sufficiently large OB.

The case in which L is a component of Qo NON and L; = L N Q is parallel
to X follows by a similar argument. The cases in which L is a component of
Qo NOP or of Qo NON such that Ly = LN Qy is parallel to Xy follow using
similar comparison arguments. (]

5. PROOFS FOR CONVEX CORNERS: THEOREMS [2.1] [2.2]

In this section, we assume a < g and let P and N denote minimizers of ® and
U respectively. Notice that the only situations in which differences between the
geometry when o = 7 and o < § occur first in cases (ii) and (iii), where we assume
a < %, second when a = § and components of 9P or N might be distinct parallel
lines in Q, a possibility eliminated by Lemma .19} and third when a = § and 9P
(or ON) contains a single line parallel to Q. This last possibility cannot occur as
a simple comparison argument shows. Thus we may assume o < 3 subsequently.
The arguments used here are similar to those of Tam ([I5]). The conclusions of

Theorems [2.1] and [2:2] follow from the eight claims proven here.

Claim (1). Every component of ., N 9P is unbounded and every component of
Qoo N ON is unbounded unless |y; + 72 — 7| = 2.

Suppose that v + 12 — 7™ # —2a and M = AB is a bounded component of
Qs NOP, where A € X1 and B € ¥. Notice that no component of Q. NOP can
have O in its closure since otherwise 2o, N P would contain a ray in Q. with O
as one endpoint and this ray would intersect M, in contradiction to (i)-(iii). Hence

O€cP\Qu\PorOe,\P\P.
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In the first case, there exist C' € ¥1 and D € X5 such that ACOD is a component
of P and ACOD C AAOB. From Lemmas [£.8 and [4.9] we see that ACOD makes
angles of measure v; at C, v at D and 2« at O. Therefore v; + 2 + 2o = 7 or
Y1 + 72 — ™ = —2«, a contradiction.

In the second case, there exist C' € X1 and D € Y5 such that ACOD is a
component of Qs \ P. From Lemmas [4.8]and [4.9] we see that ACOD makes angles
of measure m—~; at C, m—~2 at D and 2« at O. Therefore 71—y +1—72+2a =7
or v1 + v2 — ™ = 2a, a contradiction. The argument for Q. \ N is similar.

Claim (2). Qo NIP and Qs NON have at most one component.

Suppose M7 and M> are distinct components of 2., N OP such that M; and M,
lie on the boundary of a component P; of P or a component N7 of Q4 \ P. Now
Lemma @ implies M7 and M, are either parallel or the lines L1 and Lo on which
they respectively lie intersect at a point E outside of Q.. We will consider the
various cases individually and show that each leads to a contradiction.

C

FIGURE 9. Case (a)

(a) My and My are parallel, My U My C 0Py, L1 NXy # () and Ly N Xy # 0.
Let A€ LinNnX;, and B € Ly N Xy, We will pick C € M; and D € Ms such
that AB and CD are parallel (see Figure E[); we let T > max{OA,OB,0C,0D}.
Now ®7(P) < &7 (P \ OACDB), where OACDB denotes the open polygon with
vertices O, A,C, D and B. Then

AC + BD < cos(v1)OA + cos(y2)OB + CD.

Since the lengths OA, OB and CD are fixed, this inequality is false when AC and
BD are sufficiently large.

FIGURE 10. Case (b)

(b) My and My are parallel, My U My C 0Ny, L1 Ny # 0 and Ly N3y # 0.
Let A€ LinNXy and B € Ly NYy. We will pick C € M; and D € M, such
that AB and C'D are parallel (see Figure ; we let T > max{OA,0OB,0C,OD}.
Now &7(P) < &7(P UOACDB), where OACDB denotes the open polygon with
vertices O, A, C, D and B. Then

AC + BD < CD — cos(y1)OA — cos(v2)OB.
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FIGURE 11. Case (c)

Since the lengths OA, OB and CD are fixed, this inequality is false when AC' and
BD are sufficiently large.

(c) My and My are parallel, My U My C 0Py, LiNYy # 0 and Ly N3y # 0.
Let Ac LiNE; and B € LyNY;. We will pick C € M; and D € M such that
AB and CD are parallel (see Figure[I1); we let T > max{OA, OB,0C,0D}. Now
&7 (P) < &7(P\ ACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD < cos(y1)AB + CD.

Since the lengths AB and C'D are fixed, this inequality is false when AC and BD
are sufficiently large.

FIGURE 12. Case (d)

(d) My and M, are parallel, My U My C ONi, LiNYy # 0 and Ly NS, # (.
Let Ac LiNY, and B € LyNY;. We will pick C € M; and D € Ms such that
AB and CD are parallel (see Figure ; we let T > max{OA,OB,0C,0D}. Now
O (P) < &p(P UACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD < CD — cos(v1)AB.

Since the lengths AB and C'D are fixed, this inequality is false when AC and BD
are sufficiently large. o
(e) My and My are parallel, M; UMy C 0Py, L1 N3 # 0 and Ly N X # (. Let
A€ LNy and B € Ly NY,. We will pick C € M; and D € M, such that AB
and CD are parallel (see Figure [L3); we let 7' > max{OA, OB,OC,OD}. Now
o7 (P) < dp(P\ ACDB),
where AC DB denotes the open polygon with vertices A, C, D and B. Then

AC + BD < cos(y2)AB + CD.
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FIGURE 13. Case (e)

Since the lengths AB and C'D are fixed, this inequality is false when AC and BD
are sufficiently large.

FIGURE 14. Case (f)

(f) M; and My are parallel, My U My C ON7, L1 N3 # 0 and Ly N Xy # (.
Let A€ LiNEy and B € Ly N Yy. We will pick C € M; and D € M, such that
AB and CD are parallel (see Figure ; we let T > max{OA,OB,0C,0D}. Now
& (P) < &p(P UACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD < CD — cos(v2)AB.

This inequality is false when AC and BD are sufficiently large.

(g) My and My are not parallel, My U My C 9Py, L1 N3y # 0 and Ly NEq # 0.
Let A€ LiNE; and B € LyNY;. We will pick C € M; and D € M, such that
AB and CD are parallel (see Figure ; we let T > max{OA, OB,0C,OD}. Now
&7 (P) < &p(P\ ACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD — cos(y1)AB < CD.

FIGURE 15. Case (g)
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Now AC = EC — FA and BD = ED — EB and we have
EC+ ED <CD+ EA+ EB + cos(v1)AB.

Since the lengths FA, EB and AB are fixed, this inequality is false when EC' and
ED are sufficiently large.

FIGURE 16. Case (h)

(h) M; and M, are not parallel, My UMy C ON1, LiNY; # 0 and Ly NY; # (.
Let Ac L1NE; and B € Ly NY;. We will pick C € M; and D € M, such that
AB and CD are parallel (see Figure ; we let T > max{OA,OB,0C,0D}. Now
& (P) < &p(P UACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD < CD — cos(v1)AB.

Now AC = EC — EA and BD = ED — EB and we have
EC+ED<CD+ EA+ EB — cos(71)AB.
This inequality is false when EC' and ED are sufficiently large.

FIGURE 17. Case (i)

(i) My and My are not parallel, My U My C 0Py, LiyNYXy # 0 and Lo Ny # 0
and Let A € L1NY; and B € LoNX,. We will pick C € My and D € M, such that
AB and CD are parallel (see Figure ; we let T > max{OA,OB,0C,0D}. Now
&1 (P) < @p(P\OACDB), where OACD B denotes the open polygon with vertices
0,A,C,D and B. AC + BD — cos(y1)OA — cos(y2)OB < CD, AC = EC — EA
and BD = ED — EB implies

EC+ED <CD+ EA+ EB + cos(71)OA + cos(v2)OB.

Since the lengths FA, EB, OA and OB are fixed, this inequality is false when EC
and ED are sufficiently large.

(j) My and My are not parallel, My U My C ON7, L1 N1 # 0 and Lo N 3o # 0.
Let A€ L1nNXy and B € Ly NYs. We will pick C € My and D € M, such that
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FIGURE 18. Case (j)

AB and CD are parallel (see Figure ; we let T > max{OA, OB,0C,OD}. Now
Or(P) < O (PUOACDB), where OAC D B denotes the open polygon with vertices
0,A,C,D and B. AC + BD < CD — cos(y1)OA — cos(y2)OB, AC = EC — EA
and BD = ED — EB implies

EC+ED<CD+ EA+ EB — cos(y1)OA — cos(v2)OB.
This inequality is false when EC' and ED are sufficiently large.

FIGURE 19. Case (k)

(k) My and M; are not parallel, M; U My C 9Py, L1 N3y # 0 and Ly N Xy # (.
Let A€ LiNYEy and B € Ly N Xy. We will pick C € M; and D € M, such that
AB and CD are parallel (see Figure ; we let T > max{OA, OB,0C,OD}. Now
&7 (P) < &p(P\ ACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD — cos(v2)AB < CD.
Now AC = EC — EA and BD = ED — EB and we have
EC+ED <CD+ EA+ EB + cos(v2)AB.

Since the lengths FA, EB and AB are fixed, this inequality is false when EC' and
ED are sufficiently large.

(1) My and My are not parallel, M; U My C ON7, Ly Ny # 0 and Ly N Xy # (.
Let A€ LiNEy and B € Ly N Yy. We will pick C € M; and D € M, such that
AB and CD are parallel (see Figure 20); we let T > max{OA, OB,0C,0D}. Now
&1 (P) < ®7(P U ACDB), where ACDB denotes the open polygon with vertices
A,C,D and B. Then

AC + BD < CD — cos(y2)AB.
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FIGURE 20. Case (1)

Now AC = EC — FA and BD = ED — EB and we have
EC+ED<CD+ EA+ EB — cos(v2)AB.

This inequality is false when EC' and ED are sufficiently large. This proves Claim
(2.) for Qs NOP. The proof for N, NIN is essentially the same.

Claim (3). Suppose Qo NP has A € ¥; as an endpoint. Then either

(i) 1 +7v2 — 7 = —2a and P = AAOB, where B € %5 and angles OAB and
ABO have measures ; and 7, respectively,
(ii) v1 + 72 — 7 = 2c and P = Qo \ AAOB, where B € 33 and angles OAB
and ABO have measures m — y; and m — 7, respectively, or
(iii) Qoo N OP is a ray with endpoint A which makes angles of measure v; and
m — 1 with 3; and P is the component of Q, \ 9P which forms an angle
of measure 7y, at A.

If |1 + v2 — 7| # 2a, Claim (1) implies o, N IP is an infinite ray with endpoint
A. Even when |y; + 72 — 7| = 2a, Qoo NP might be an infinite ray with endpoint
A. We shall suppose this is the case. Then (iii) follows from Lemma

Claim (4). Suppose Qo NIP has B € ¥y as an endpoint. Then either

(i) 1 +72 — 7= —2a and P = AAOB, where A € ¥; and angles OAB and
ABO have measures 7; and 7, respectively,
(ii) y1 + 72 — 7 = 2a and P = Qy \ AAOB, where A € ¥; and angles OAB
and ABO have measures m — y; and m — 7, respectively, or
(iii) Qoo NOP is a ray with endpoint B which makes angles of measure 7y, and
T — v9 with 3y and P is the component of Q. \ 9P which forms an angle
of measure v, at B.

Let us suppose 2, NIP is an infinite ray with endpoint B. Then our claim follows
from Lemma [4.10)

Claim (5). Suppose Qs N IP has O = (0,0) as an endpoint. Then Qo N IP is
a ray with endpoint O which makes angles of measure 6; and 0, with ¥; and X,
respectively (and 6 + 62 = 2a) such that

(i) 61 > v1 and 03 > ™ — 2 if P is the open (infinite) sector whose boundary
contains >; and

(ii) 61 > ™ — 1 and 63 > 7, if P is the open (infinite) sector whose boundary
contains Y.
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The proof of our claim follows from Lemmas [£.6] and [£.I1] when P is the open
(infinite) sector whose boundary contains ¥; and from Lemmas and when
P is the open (infinite) sector whose boundary contains ¥s.

Claim (6). Suppose Qs NON has A € ¥ as an endpoint. Then either

(i) 71 + v — 7 =2a and N = AAOB, where B € %, and angles OAB and
ABO have measures m — 7, and 7 — ¥, respectively,
(ii) 1 +72 —7 = —2a and N = Qo \ AAOB, where B € 35 and angles OAB
and ABO have measures 7; and 7. respectively, or
(iii) Qoo NON is a ray with endpoint A which makes angles of measure v, and
7 — 1 with 3 and N is the component of Q. \ ON which forms an angle
of measure ™ — v, at A.

Let us suppose Qo NON is an infinite ray with endpoint A. Then our claim follows
from Lemma 14

Claim (7). Suppose Q. NON has B € X5 as an endpoint. Then either

(i) v1+72 — 7 =2a and N = ANAOB, where A € 3; and angles OAB and
ABO have measures m — y; and 7 — 5 respectively,
(i) m+72—7m=—2a and N = Qs \ AAOB, where A € ¥; and angles OAB
and ABO have measures 7; and -y respectively, or
(iii) Qoo NON is a ray with endpoint B which makes angles of measure 73 and
7T — 2 with X9 and A is the component of Q.. \ N which forms an angle
of measure ™ — 2 at B.

Let us suppose ., NON is an infinite ray with endpoint B. Then our claim follows
from Lemma 151

Claim (8). Suppose . N AN has O = (0,0) as an endpoint. Then Qo N ON is
a ray with endpoint O which makes angles of measure 6; and 6, with ¥; and X,
respectively (and 6y + 62 = 2a) such that

(i) 61 > 7 — 1 and 03 > 9 if A is the open (infinite) sector whose boundary
contains >; and

(ii) 61 > 1 and 05 > 7™ — 72 if N is the open (infinite) sector whose boundary
contains Y.

The proof of our claim follows from Lemmas and when N is the open
(infinite) sector whose boundary contains 37 and from Lemmas and [£.13| when
N is the open (infinite) sector whose boundary contains Y.

The conclusions of Theorem follow from the results in §4 and the Claims
proven above except for the restrictions on 77 and 7, in (iv)-(vii). For example,
one consequence of (v) is that if v9 + 7 — 1 > 2, then the conclusion of (v),
illustrated in Figure 1 (v), cannot hold. To see this, assume the inequality above
and the conclusion of (v) both hold. Set § = 2a++;—7 and 8 = y1 +71—~2—2a > 0.
Let D be the point of intersection of the lines on which rays L and X lie; notice
that D ¢ Q.. Fix B € L and let C be the point on Y5 determined by the
condition that angle ABC has measure 8. Then angle OCB has measure m — 5.
Let A be the open subset of ., whose boundary is the quadrilateral ABCO. For
T > max{OA,OB,0C}, &7 (P) < (P \ A) or

AB < BC + cos(y1)OA + cos(y2)OC.
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Notice that AB = DB — DA, OC = DC — DO, DC = (sin(ﬂ)/sin(’yg))DB and
BC = (sin(0)/sin(y2))DB. Set m = DA+ cos(y1)OA — cos(y2) DO. Then

DB < MDB + cos('yg)s_mﬂDB +m
sin(ys) sin(y2)

or .

sin(7yz) < sin(f) 4 cos(vy2) sin(B) + %é%)
Since B = v2 — 0, we obtain

sin(y2) < sin(f) — cos?(y2) sin(0) + cos(7y2) sin(7z) cos(f) + %gﬁ)
or, after dividing by sin(2) and simplifying,
m
< - —. :
1 < cos(yg —0) + DB (5.1)

Now 0 < 72 — 0 < 27 and so cos(y2 — 0) < 1. Therefore, for DB sufficiently large,
cos(y2 — 0) + H5 < 1, in contradiction to .

The other restrictions on 41 and 72 in (4v) - (vii) of Theorem follow using
similar arguments. The conclusions of Theorem follow from the results in §4
and the Claims proven previously in this section except that the restrictions on ¢
and 2 in (i) - (vii) follow as above.

Acknowledgements. The first author thanks the Mathematical Sciences Research
Institute for its stimulating environment and generous support. The second author
is indebted to the Max-Planck-Institut fiir Mathematik in den Naturwissenschaften,
in Leipzig, and the Centre for Mathematics and its Applications, Australian Na-
tional University, in Canberra, for their hospitality during some of the course of
this study.

REFERENCES

[1] H. Bear and G. Hile, Behavior of Solutions of Elliptic Differential Inequalities near a point
of Discontinuous Boundary Data, Comm. PDE 8 (1983), 1175-1197.

[2] P. Concus and R. Finn, Capillary wedges revisited, SIAM J. Math. Anal. 27 (1996), no. 1,
56—69.

[3] R. Finn, Equilibrium Capillary Surfaces, Springer-Verlag, New York, 1987.

[4] R. Finn and R. Neel, C-singular solutions of the capillary problem, J. Reine Angew. Math.
512 (1999), 1-25.

[5] E. Giusti, Generalized solutions of prescribed mean curvature equations, Pacific J. Math. 88
(1980), 297-321.

[6] E. Guisti, Minimal Surfaces and Functions of Bounded Variation, Birkh&user, Boston, 1984.

[7] K. E. Lancaster, Boundary behavior of a nonparametric minimal surface in R® at a noncon-
vez point, Analysis 5 (1985), 61-69.

[8] K. E. Lancaster, A Proof of the Concus-Finn Conjecture, preprint.

[9] K. E. Lancaster and D. Siegel, Ezistence and Behavior of the Radial Limits of a Bounded
Capillary Surface at a Corner, Pacific J. Math. Vol. 176, No. 1 (1996), 165-194. Correction
to figures, Pacific J. Math. Vol. 179, No. 2 (1997), 397-402.

[10] U. Massari and L. Pepe, Successioni convergenti di ipersuperfici di curvatura media asseg-
nata, Rend. Sem. Univ. Padova 53, (1975), 53-68.

[11] M. Miranda, Un principio di massimo forte per le frontiere minimali e una sua applicazione
alla risoluzione del problema al contorno per l’equazione delle superfici di area minima, Rend.
Sem. Mat. Univ. Padova 45 (1971), 355-366.

[12] M. Miranda, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa 4 (1977), 313-322.

[13] Danzhu Shi, Behavior of Capillary Surfaces at a Reentrant Corner, Ph.D. Dissertation,
Stanford University, February 2005.



24 T. JEFFRES, K. LANCASTER EJDE-2007/152

[14] Danzhu Shi, Capillary Surfaces at a Reentrant Corner, Pacific J. Math. Vol. 224, No. 2
(2006), 321-353.

[15] L. F. Tam, The Behavior of Capillary Surfaces as Gravity Tends to Zero, PhD Dissertation,
Stanford University 1984.

[16] L. F. Tam, The behavior of a capillary surface as gravity tends to zero, Comm. Partial
Differential Equations 11 (1986), 851-901.

[17] L. F. Tam, Regularity of capillary surfaces over domains with corners: borderline case, Pacific
J. Math. 124 (1986), 469-482.

(18] L. F. Tam, On Existence Criteria for Capillary Free Surfaces without gravity, Pacific J.
Math. 125, No. 2 (1986), 469-485.

THALIA JEFFRES
DEPARTMENT OF MATHEMATICS AND STATISTICS, WICHITA STATE UNIVERSITY, WICHITA, KANSAS,
67260-0033, USA

E-mail address: jeffres@math.wichita.edu

KIRK LANCASTER
DEPARTMENT OF MATHEMATICS AND STATISTICS, WICHITA STATE UNIVERSITY, WICHITA, KANSAS,
67260-0033, USA

E-mail address: lancaster@math.wichita.edu



	1. Introduction
	2. Statement of Results
	3. Application to capillarity
	4. Auxiliary Lemmas
	5. Proofs for convex corners: Theorems 2.1, 2.2
	Claim (1)
	Claim (2)
	Claim (3)
	Claim (4)
	Claim (5)
	Claim (6)
	Claim (7)
	Claim (8)
	Acknowledgements

	References

