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EXISTENCE OF POSITIVE SOLUTIONS FOR p(z)-LAPLACIAN
PROBLEMS

GHASEM A. AFROUZI, HORIEH GHORBANI

ABSTRACT. We consider the system of differential equations

—Apyu = Alg(z)a(u) + f(v)] in Q

—ADyz)v = A[g(z)b(v) + h(u)] in 2

u=v=0 ondN

where p(z) € C1(RY) is a radial symmetric function such that sup |Vp(z)| <
00, 1 < infp(x) < supp(x) < oo, and where —A,(yu = — div |[Vu[P(#)—2vy
which is called the p(z)-Laplacian. We discuss the existence of positive solution
via sub-super-solutions without assuming sign conditions on f(0), h(0).

1. INTRODUCTION

The study of differential equations and variational problems with nonstandard
p(z)-growth conditions has been a new and interesting topic. Many results have
been obtained on this kind of problems; see for example [3] (4} 5] [6] [7, &, 13]. In
[5, [6] Fan and Zhao give the regularity of weak solutions for differential equations
with nonstandard p(x)-growth conditions. Zhang [11] investigated the existence of
positive solutions of the system

—Apyu = f(v) inQ
—Apyv = g(u) in Q (1.1)
u=v=0 ond

where p(z) € CH(RY) is a function,  C RY is a bounded domain. The operator
—Dpyu = — div |Vu[P(*)=2V4) is called p(z)-Laplacian. Especially, if p(z) is a
constant p, System is the well-known p-Laplacian system. There are many
papers on the existence of solutions for p-Laplacian elliptic systems, for example
0, 3, &, 5, 6, 7, 8, 9.
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In [9] the authors consider the existence of positive weak solutions for the p-
Laplacian problem
—Apu = f(v) inQ
—App=g(u) inQ (1.2)
u=v=0 ondN.
There the first eigenfunctions is used for constructing the subsolution of p-Laplacian
problems. Under the condition lim, . f(M(g(u))"/ =1 /up=1 = 0, for all M >
0, the authors show the existence of positive solutions for problem (|1.2]).
In this paper, at first, we consider the existence of positive solutions of the system

—Appyu = F(z,u,v) inQ
—Apyv = G(z,u,v) inQ (1.3)
u=v=0 on 0

where p(z) € C*RY) is a function, F(x,u,v) = [g(z)a(u) + f(v)], G(z,u,v) =
[g(x)b(v) + h(u)], and © C RY is a bounded domain. Then we consider the system

—Apyu = AF(x,u,v) in Q
—Apyv = AG(z,u,v) in Q (1.4)
u=v=0 on o
where p(z) € C*RY) is a function, F(x,u,v) = [g(z)a(u) + f(v)], G(z,u,v) =
[g(x)b(v) + h(u)], A is a positive parameter and  C RY is a bounded domain.
To study p(z)-Laplacian problems, we need some theory on the spaces LP(*)(Q),

WP (Q) and properties of p(z)-Laplacian which we will use later (see []). If
Q c RY is an open domain, write

Ci(Q)={h:heC(Q),h(z) > 1 for z € Q}

ht = sup,cq h(z), h~ = infyeq h(z), for any h € C(Q), LP@(Q) = {ulu is a
measurable real-valued function, [, [u[P(®dz < oo}.

Throughout the paper, we will assume that p € C(Q) and 1 < inf, g~ p(z) <
sup,cpn~ p(z) < N. We introduce the norm on Lp(x)(Q)by

oy = (> 05 [ (100 < 1),

and (LP@ (), | - |p(x)) becomes a Banach space, we call it generalized Lebesgue

space. The space (L) (Q),| - [,)) is a separable, reflexive and uniform convex
Banach space (see [4, Theorem 1.10, 1.14]).

The space WHP()(Q) is defined by WhP@)(Q) = {u € LP®)(Q) : |Vu| €
LP®)(Q)}, and it is equipped with the norm

||U|| = |u|p(w) + |vu|p(w)7 Vu € Wlﬂp(m)(Q)

We denote by W Lp(e) (Q) the closure of C§°(R) in WP@)(Q). Wr@)(Q) and
W," (= )(Q) are separable, reflexive and uniform convex Banach space (see [4, The-
orem 2.1]). We define

(L(u),v) :/ |VuP @ =2VuVude, Yu,v € WHPE(Q),
RN
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then L : WhP@)(Q) — (WP (Q))* is a continuous, bounded and is a strictly
monotone operator, and it is a homeomorphism [7, Theorem 3.11].

Functions u, v in Wol’p(x)(fl), is called a weak solution of (1.4); it satisfies
/ |Vul[P® =2V uVeds = / AF(z,u,v)édz, VE € W™ (Q),
Q Q
/ V0|9 20y Vede = / AG(z,u,v)edx, VE € WP (Q).
Q Q

We make the following assumptions
(H1) p(x) € CY(RY) is a radial symmetric and sup |Vp(z)| < oo
(H2) Q = B(0,R) = {z||z] < R} is a ball, where R > 0 is a sufficiently large
constant.
(H3) a,b € C1([0,00)) are nonnegative, nondecreasing functions such that

u——o00 -

lim
u——too P~ -1

(H4) f,h € C'([0,00)) are nondecreasing functions, lim,_, 1o f(u) = +00,

limy— 4 oo h(u) = 400, and

Lo SO () )

u——+00 up~—1

=0, VM >0.

(H5) g :[0,400) — (0,00) is a continuous function such that L; = min cq g(z),
and Ly = max,cq g(x).
We shall establish the following result.

Theorem 1.1. If (H1)-(H5) hold, then (1.3)) has a positive solution.

Proof. We establish this theorem by constructing a positive subsolution (¢1, ¢2)
and supersolution (21, z2) of ([L.3)), such that ¢ < z; and ¢ < z5. That is (¢1, P2)
and (z1, z2) satisfy

[ 1V 290 - Veds < [ glalatonsde+ | foaléds,
Q Q Q
[ IVoap 291 Veds < [ gaploads + [ hiongds,
Q Q Q
/ |V21|p(x)72Vzl -Védx > / g(x)a(z)édx +/ f(22)&dz,
Q Q Q
/ V2o |P®) =2V 2y - VEdz > / g(x)b(22)Edx +/ h(z)Ed,
Q Q Q
for all £ € Wol’p(z)(Q) with £ > 0. Then has a positive solution.
Step 1. We construct a subsolution of . Denote
infp(z) —1 R—a

= s R =,
4(sup |Vp(z)| + 1 0 2

)
b = min{a(0)Li + £(0),b(0)L1 + h(0), -1},
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and let
e k=R 1, 2Ry <r <R,
— 1 [P0 (o) ST
o(r) = [% sin(e(r — 2Ro) + 5)(L1 + 1)]?“1)*1 dr, 2Rg— 5 <7 < 2Ry,
— 14+ f230 keo‘k) p(rf)l
[% sm(ao(r —2Ry) + Z)(L1 + 1)]70Tdr, r<2Ry— X,

where Ro is sufficiently large, € is a small positive constant which satisfies Ry <
2Ry — 5,
In the following, we will prove that (¢, ¢) is a subsolution of . Since

e k=R _1, 2Ry <r <R,
P(2Rp)—1
¢(r) = ~(ke) o
- N-—-1 1
x[BE sin(e(r — 2Ro) + Z)(L1 + 1)]7=Tdr, 2Ro — & < r < 2Ry,
0, 0<r < 2R, x,

it is easy to see that ¢ > 0 is decreasing and ¢ € C1([0, R]), ¢(z) = ¢(|z|) € C1(Q).
Let r = |z|. By computation,
—Ap(ay® = = div [Vo(@) 72V () = —(rV ! ()P 72! (1) /e
Then
(ke RU=RNPI=1T — k(p(r) — 1) + p/(r) Ink

—kp'(r)(r = R) + ¥, 2Ry <r <R,
—Bp@) 9 = | e(Fe) N (ke*) (p(2Ro) — 1)

x cos(e(r — 2Ro) + 5)(L1 + 1), 2Ry — 52 <1 < 2Ry,

0, 0 <r< 2R0 - 2e»

If k is sufficiently large, when 2Ry < r < R, then
Ink N -1
Ayyd < —klinf p(z) —1 = sup|Vp(a)| (= + R — 1)+ ==] < ko

Since « is a constant dependent only on p(z), if k is a big enough, such that —ka < b,
and since ¢(z) > 0 and a, f are monotone, this implies

—Ap@)¢ < a(0)Ly + f(0) < g(z)a(¢) + f(¢), 2R <|z[<R.  (1.5)
If k is sufficiently large, then
a(e™ —1)>1, fle** —1)>1, ble™* —1)>1, he*-1)>1
where k is dependent on a, f,b, h, p, and independent on R. Since

2R
—Dpa)¢ = 5(70

<e(Ly +1)2VkP ek 2R, — 21 < |z| < 2Ry .
g

JN 1 (ke®)p(2Ro) — 1) cos(e(r — 2Ro) + 5)(L1 +1)

Let e =2-Nk=P e=o*»" Then
~Dya)6 < L+ 1 < gla)a(d) + f(9),2Ro — - < |e] <2Ro. (1.6)
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Obviously,
D)9 =0 < L +1 < g(a)a(d) + £(6). o] < 2Ro — -
Since ¢(z) € C1(Q), combining , , 7 we have
—Dp)¢ < g(z)al(e) + f(8)
for a.e. x € Q. Similarly we have
—Dy@)¢ < g(2)b(d) + h(e),
for a.e. € Q. Let (¢1,02) = (¢,¢), since ¢p(z) € C1(Q), it is easy to see that
(¢1,$2) is a subsolution of (L.3).
Step 2. We construct a supersolution of Let z; be a radial solution of
—Apyzi(z) = (L + 1)p, in Q,
z1=0 on 0N.
We denote z1 = z1(r) = z1(]z|), then z; satisfies
—(rN T P22 = e N (L + 1), 21 (R) = 0,21(0) = 0.
Then

!

7 =

W|W7 (1.8)

and

R
L 1 1
Z1=/ |W|pmfldr.

We denote 8 = 8((L2 + 1)p) = maxo<,<p 21(r), then
R R
L 1 1
BT+ ) = [ PR e = (2 + v [T
0 N o N

where ¢ € [0,1]. Since fOR |%|P<T'l>*1dr is a constant, then there exists a positive
constant C' > 1 such that

S((La + D) < B((La + 1)) = e 21 (1) < C((La+ )75 (19)

We consider
—Apyz1 = (La +1)p in Q
—Apzyze = (Lo + 1)h(B((L2 + 1)p)) in Q
z1=20=0 on 09Q.
Then we shall prove that (z1,2;) is a supersolution for (T.3). For & € WhP(®)(Q)
with & > 0, it is easy to see that

/ |V [P =2V 2y - VEda :/(L2 + 1)R(B((Ly + 1)p))édx
Q Q

> [ Lab(3(La+ V)da + [ h)sda.

Similar to (1.9), we have

max 25(r) < Cl(La + DA(A(Lz + D)7 7.
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By (H3), for u large enough we have

h(B((La + 1)) > b(C[(La + DA(B((Ls + L)p)]7 1) > b(za).

Hence

/|V22|p($)_2v,22~v5dx2/g(:r)b(zz)fdx—l—/ h(z)€dz, (1.10)
Q Q

Q
Also

/ V21 P72V 2, - Vede = / (Lo + 1) pédz.
Q Q
By (H3), (H4), when u is sufficiently large, according to (1.9)), we have

(L2 + D 2 [ B((Lz + D) !

> Loa(B((La + 1)) + fIC[(La + 1) T D (h(B((Ly + 1)p))) 7 5]
> g(z)a(z1) + f(z2),
then

/|Vzl|p(”:)_2V21-Vﬁde/g(m)a(zl)ﬁdx—i—/f(zz)ﬁdx. (1.11)
Q Q Q

According to (1.10) and (1.11)), we can conclude that (z1,22) is a supersolution of

3.
Let u be sufficiently large, then from (1.8) and the definition of (¢1, ¢2), it is
easy to see that ¢; < z; and ¢ < zo. This completes the proof. O

Now we consider the problem
—Apyu = AF(2,u,v) inQ
—ADp)v = AG(2,u,v) in Q (1.12)
u=v=0 on 0.
If p(z) = p (a constant), because of the homogenity of p-Laplacian, (1.3) and
(1.4) can be transformed into each other; but, if p(x) is a general function, since
p(z)-Laplacian is nonhomogeneous, they cannot be transformed into each other.

So we can see that p(x)-Laplacian problem is more complicated than than that of
p-Laplacian, and it is necessary to discuss the problem (|1.4]) separately.

Theorem 1.2. If p(z) € C*(Q), Q@ = B(0,R), and (H3)-(H5) hold, then there
exists a \* which is sufficiently large, such that (1.4) possesses a positive solution
for any A > \*.

Proof. We construct a subsolution of (1.4). Let 5 < % satisfy
1
Ip(r1) — p(r2)| < §7V7"177“2 € [R—2B,R]. (1.13)

In the following we denote

infp(z) — 1

*

= min{4 (z),

, py = sup  p(x), p.= inf p
(Sup\Vp(x)Hl)} R—26§|x|§R(> ¥ R—28<|2|<R

b =min{a(0)L;, + f(0),b(0)L; + h(0), —1}.
(1.14)
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Let a € (0, 5], and set

e k(r=R) _ 1, R—a<r<R,

ok 1 I ety S

o(r) = ><s1n( (r— (R a))—l—f)(Ll—i—l)]Wdr R-28<r<R-a,
(7 B ol (=

><s1n( (r —(R a))—|— 2)([/1—1—1)]Wdr7 r < R-—20,

where € = 53— which satisfies e(R—28—(R—a))+ 5 =0.
In the following, we will prove that (¢, @) is a subsolution of (1.4]). Since
_k(T_R)—l R—a<r<R,
p(R-a)-1
(keak) p(H—1
¢(r) = q (oo
xsin(e(r — (R —a)) + 5)(L1 + 1)]?“3*1 dr, R—28<r<R-—aq,
0, r<R-—20.

It is easy to see that ¢ > 0 is decreasing and ¢ € C1([0, R]), ¢(z) = ¢(|z|) € C1(Q).
Let r = |z|. By computation,
(ke Fr=RN)pI= [ k(p(r) — 1)
p'(r)Ink —kp'(r)(r —R)+ =], R—a<r<R,
—Dp)d(x) = § g(B2)N =1 (keak)w(f—a)=1)
xcos(e(r—(R—a))+5)(L1+1), R-28<r<R-aq,

0, r<R-—20.
If k is sufficiently large, when R — a < r < R, then we have
Ink N-1
Apey <~k fint p(x) 1~ sup |Vp<x>|<“7 +R=1)+ =] < 05,
If k satisfies
kPe§ = — (1.15)
and since ¢(z) > 0 and a, f is monotone, it means that
—Ap@)¢ < Ma(0)Ly + f(0)) < Mg(@)a(d) + f(9)), R —a < [z| < R (1.16)

p(z)
3),

From (H3), (H4) there exists a posmve constant M such that a(M — 1) > 1,
J(M—=1)>1,b(M—1)>1, h(M —1) > 1. Let
ak =1InM. (1.17)
Since
R—a T
—Ap)p(r) = 6(7)]\7 Hke> )( (R—a)—1)cos(e(r — (R—a)) + 5)(1)1 +1)
<e(Ly+ 1)2N(k:eo‘k)p* LR-28<|r|<R-a,

if

2N (ke®k )P =1 < A, (1.18)
then

—Bp)d(x) < MLy +1) < Mg(@)a(d) + f(¢), R-20<|z|<R—-a. (1.19)
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Obviously
—Ap@)(x) =0 <AL+ 1 < Mg(2)a(d) + f(9)), |zl <R-25.  (1.20)
Combining (1.15), (1.17) and (1.18)), we only need

—b pi—1
e2N| A MPE <A,
and according to ([1.13)), (1.14), we only need

p:r—l
(GEVMP N 2 <
Let .
A= (EQNij*1|;b|p2; )2p%
B 4 '

If A > A* is sufficiently large, then (1.18]) is satisfied.
Since ¢(z) = ¢(|z|) € C1(Q), according to (1.16]), (1.19) and (L.20), it is easy to
|i

see that if A is sufficiently large, then (¢1, ¢2) is a subsolution of

Step 2. We construct a supersolution of (|1.4). Similar to the proof of Theorem
[1.1] we consider

—Ap@yzr = MLz +1)p in Q
—Apyz2 = MLz + Dh(BA(Lz + 1)) in Q
z1 =22 =0 on 09,

where 8 = B(A(L2 + 1)p) = maxo<,<r 21(r). It is easy to see that
/ |V [P =2V 2y - Vedz = / ML 4+ 1) R(BN Ly + 1) p))édz
Q Q

> [ ALh(B(E2 + Di)édo + [ MCer)ede.

Similar to (1.9]), we have
1

max 25(r) < CN(Lz + DABNL2 + D))=

By (H3) for p large enough we have
R(BONEz + 1)) = B(CIA(L2 + DABALz + D)}~ 1) = b(z2).

Hence
/Q V2 [P 72V 2y - VEda > /Q Mg(2)b(22)Edx + /Q Ah(z1)€Edz. (1.21)
Also
/ V2 [P 72V 2, - Vede = / MLy 4 1) péda.
By (H3), (H4), whefl 1 is sufficiently large, acco?rding to , we have
(Lo + D > 1A + D))
1

> Lya(B(A(Lz + 1)p)) + F(CA(L2 + DR(BA(Lz + 1)) =1
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Then
/|Vz1|p(z)72Vz1-V§dx2//\g(x)a(zl)fdx—l—//\f(zQ)fdm. (1.22)
Q Q Q

According to (1.21)) and (1.22)), we can conclude that (z1,22) is a supersolution of

(1.4).
Similar to the proof of Theorem if p is sufficiently large, we have ¢; < z;
and ¢o < z5. This completes the proof. O

REFERENCES

[1] J. Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple param-
etes, J. Math. Anal. Appl. Article In Press.
[2] C. H. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear
Anal. 62 (2005) 751-756.
[3] X. L. Fan, H. Q. Wu, F. Z. Wang, Hartman-type results for p(t)-Laplacian systems, Nonlinear
Anal. 52 (2003) 585-594.
[4] X. L. Fan, D. Zhao, On the spaces LP(*)(Q) and W™P(=)(Q), J. Math. Anal. Appl. 263
(2001) 424-446.
[5] X. L. Fan, D. Zhao, A class of De Giorgi type and Holder continuity, Nonlinear Anal. TMA
36 (1999) 295-318.
[6] X. L. Fan, D. Zhao, The quasi-minimizer of integral functionals with m(x) growth conditions,
Nonlinear Anal. TMA 39 (2000) 807-816.
[7] X. L. Fan, Q. H. Zhang, Ezistence of solutions for p(x)-Laplacian Dirichlet problem, Nonlin-
ear Anal. 52 (2003) 1843-1852.
[8] X. L. Fan, Q. H. Zhang, D. Zhao Figenvalues of p(x)-Laplacian Dirichlet problem, J. Math.
Anal. Appl. 302 (2005) 306-317.
[9] D. D. Hai, R. Shivaji, An ezxistence result on positive solutions for a class of p-Laplacian
systems, Nonlinear Anal. 56 (2024) 1007-1010.
[10] M. Rizicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in
Math, vol. 1784, Springer-Verlag, Berlin, 2000.
[11] Q. H. Zhang, Ezistence of positive solutions for elliptic systems with nonstandard p(z)-growth
conditions via sub-supersolution method, Nonlinear Anal. 67 (2007) 1055-1067.
[12] Q. H. Zhang, Ezistence of positive solutions for a class of p(x)-Laplacian systems, J. Math.
Anal. Appl. 302 (2005) 306-317.
[13] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory,
Math. USSR Izv. 29 (1987) 33-36.

GHASEM A. AFROUZI
DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, MAZANDARAN UNIVERSITY, BABOL-
SAR, IRAN

E-mail address: afrouzi@umz.ac.ir

HORIEH GHORBANI
DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, MAZANDARAN UNIVERSITY, BABOL-
SAR, IRAN

E-mail address: seyed86@yahoo.com



	1. Introduction
	Step 1
	Step 2
	Step 2

	References

