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EXISTENCE OF POSITIVE SOLUTIONS FOR p(x)-LAPLACIAN
PROBLEMS

GHASEM A. AFROUZI, HORIEH GHORBANI

Abstract. We consider the system of differential equations

−∆p(x)u = λ[g(x)a(u) + f(v)] in Ω

−∆q(x)v = λ[g(x)b(v) + h(u)] in Ω

u = v = 0 on ∂Ω

where p(x) ∈ C1(RN ) is a radial symmetric function such that sup |∇p(x)| <
∞, 1 < inf p(x) ≤ sup p(x) < ∞, and where −∆p(x)u = − div |∇u|p(x)−2∇u

which is called the p(x)-Laplacian. We discuss the existence of positive solution
via sub-super-solutions without assuming sign conditions on f(0), h(0).

1. Introduction

The study of differential equations and variational problems with nonstandard
p(x)-growth conditions has been a new and interesting topic. Many results have
been obtained on this kind of problems; see for example [3, 4, 5, 6, 7, 8, 13]. In
[5, 6] Fan and Zhao give the regularity of weak solutions for differential equations
with nonstandard p(x)-growth conditions. Zhang [11] investigated the existence of
positive solutions of the system

−∆p(x)u = f(v) in Ω

−∆p(x)v = g(u) in Ω
u = v = 0 on ∂Ω

(1.1)

where p(x) ∈ C1(RN ) is a function, Ω ⊂ RN is a bounded domain. The operator
−∆p(x)u = −div |∇u|p(x)−2∇u) is called p(x)-Laplacian. Especially, if p(x) is a
constant p, System (1.1) is the well-known p-Laplacian system. There are many
papers on the existence of solutions for p-Laplacian elliptic systems, for example
[1, 3, 4, 5, 6, 7, 8, 9].
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In [9] the authors consider the existence of positive weak solutions for the p-
Laplacian problem

−∆pu = f(v) in Ω

−∆pv = g(u) in Ω
u = v = 0 on ∂Ω .

(1.2)

There the first eigenfunctions is used for constructing the subsolution of p-Laplacian
problems. Under the condition limu→+∞ f(M(g(u))1/(p−1)/up−1 = 0, for all M >
0, the authors show the existence of positive solutions for problem (1.2).

In this paper, at first, we consider the existence of positive solutions of the system

−∆p(x)u = F (x, u, v) in Ω

−∆p(x)v = G(x, u, v) in Ω
u = v = 0 on ∂Ω

(1.3)

where p(x) ∈ C1(RN ) is a function, F (x, u, v) = [g(x)a(u) + f(v)], G(x, u, v) =
[g(x)b(v) + h(u)], and Ω ⊂ RN is a bounded domain. Then we consider the system

−∆p(x)u = λF (x, u, v) in Ω

−∆p(x)v = λG(x, u, v) in Ω
u = v = 0 on ∂Ω

(1.4)

where p(x) ∈ C1(RN ) is a function, F (x, u, v) = [g(x)a(u) + f(v)], G(x, u, v) =
[g(x)b(v) + h(u)], λ is a positive parameter and Ω ⊂ RN is a bounded domain.

To study p(x)-Laplacian problems, we need some theory on the spaces Lp(x)(Ω),
W 1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later (see [4]). If
Ω ⊂ RN is an open domain, write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for x ∈ Ω}

h+ = supx∈Ω h(x), h− = infx∈Ω h(x), for any h ∈ C(Ω), Lp(x)(Ω) = {u|u is a
measurable real-valued function,

∫
Ω
|u|p(x)dx < ∞}.

Throughout the paper, we will assume that p ∈ C+(Ω) and 1 < infx∈RN p(x) ≤
supx∈RN p(x) < N . We introduce the norm on Lp(x)(Ω)by

|u|p(x) = inf{λ > 0 :
∫

Ω

|u(x)
λ

|p(x)dx ≤ 1},

and (Lp(x)(Ω), | · |p(x)) becomes a Banach space, we call it generalized Lebesgue
space. The space (Lp(x)(Ω), | · |p(x)) is a separable, reflexive and uniform convex
Banach space (see [4, Theorem 1.10, 1.14]).

The space W 1,p(x)(Ω) is defined by W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈
Lp(x)(Ω)}, and it is equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈ W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). W 1,p(x)(Ω) and
W

1,p(x)
0 (Ω) are separable, reflexive and uniform convex Banach space (see [4, The-

orem 2.1]). We define

(L(u), v) =
∫

RN

|∇u|p(x)−2∇u∇vdx, ∀u, v ∈ W 1,p(x)(Ω),
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then L : W 1,p(x)(Ω) → (W 1,p(x)(Ω))∗ is a continuous, bounded and is a strictly
monotone operator, and it is a homeomorphism [7, Theorem 3.11].

Functions u, v in W
1,p(x)
0 (Ω), is called a weak solution of (1.4); it satisfies∫

Ω

|∇u|p(x)−2∇u∇ξdx =
∫

Ω

λF (x, u, v)ξdx, ∀ξ ∈ W
1,p(x)
0 (Ω),∫

Ω

|∇v|q(x)−2∇v∇ξdx =
∫

Ω

λG(x, u, v)ξdx, ∀ξ ∈ W
1,p(x)
0 (Ω).

We make the following assumptions

(H1) p(x) ∈ C1(RN ) is a radial symmetric and sup |∇p(x)| < ∞
(H2) Ω = B(0, R) = {x||x| < R} is a ball, where R > 0 is a sufficiently large

constant.
(H3) a, b ∈ C1([0,∞)) are nonnegative, nondecreasing functions such that

lim
u→+∞

a(u)
uP−−1

= 0, lim
u→+∞

b(u)
uP−−1

= 0 .

(H4) f, h ∈ C1([0,∞)) are nondecreasing functions, limu→+∞ f(u) = +∞,
limu→+∞ h(u) = +∞, and

lim
u→+∞

f(M(h(u))
1

p−−1 )
up−−1

= 0, ∀M > 0 .

(H5) g : [0,+∞) → (0,∞) is a continuous function such that L1 = minx∈Ω̄ g(x),
and L2 = maxx∈Ω̄ g(x).

We shall establish the following result.

Theorem 1.1. If (H1)–(H5) hold, then (1.3) has a positive solution.

Proof. We establish this theorem by constructing a positive subsolution (φ1, φ2)
and supersolution (z1, z2) of (1.3), such that φ1 ≤ z1 and φ2 ≤ z2. That is (φ1, φ2)
and (z1, z2) satisfy∫

Ω

|∇φ1|p(x)−2∇φ1 · ∇ξdx ≤
∫

Ω

g(x)a(φ1)ξdx +
∫

Ω

f(φ2)ξdx,∫
Ω

|∇φ2|p(x)−2∇φ1 · ∇ξdx ≤
∫

Ω

g(x)b(φ2)ξdx +
∫

Ω

h(φ1)ξdx,∫
Ω

|∇z1|p(x)−2∇z1 · ∇ξdx ≥
∫

Ω

g(x)a(z1)ξdx +
∫

Ω

f(z2)ξdx,∫
Ω

|∇z2|p(x)−2∇z2 · ∇ξdx ≥
∫

Ω

g(x)b(z2)ξdx +
∫

Ω

h(z1)ξdx,

for all ξ ∈ W
1,p(x)
0 (Ω) with ξ ≥ 0. Then (1.3) has a positive solution.

Step 1. We construct a subsolution of (1.3). Denote

α =
inf p(x)− 1

4(sup |∇p(x)|+ 1)
, R0 =

R− α

2
,

b = min{a(0)L1 + f(0), b(0)L1 + h(0),−1},
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and let

φ(r) =



e−k(r−R) − 1, 2R0 < r ≤ R,

eαk − 1 +
∫ 2R0

r
(keαk)

p(2R0)−1
p(r)−1

×[ (2R0)
N−1

rN−1 sin(ε(r − 2R0) + π
2 )(L1 + 1)]

1
p(r)−1 dr, 2R0 − π

2ε < r ≤ 2R0,

eαk − 1 +
∫ 2R0

2R0− π
2ε

(keαk)
p(2R0)−1

p(r)−1

×[ (2R0)
N−1

rN−1 sin(ε0(r − 2R0) + π
2 )(L1 + 1)]

1
p(r)−1 dr, r ≤ 2R0 − π

2ε ,

where R0 is sufficiently large, ε is a small positive constant which satisfies R0 ≤
2R0 − π

2ε ,
In the following, we will prove that (φ, φ) is a subsolution of (1.3). Since

φ′(r) =


e−k(r−R) − 1, 2R0 < r ≤ R,

−(keαk)
p(2R0)−1

p(r)−1

×[ (2R0)
N−1

rN−1 sin(ε(r − 2R0) + π
2 )(L1 + 1)]

1
p(r)−1 dr, 2R0 − π

2ε < r ≤ 2R0,

0, 0 ≤ r ≤ 2R0 − π
2ε ,

it is easy to see that φ ≥ 0 is decreasing and φ ∈ C1([0, R]), φ(x) = φ(|x|) ∈ C1(Ω̄).
Let r = |x|. By computation,

−∆p(x)φ = −div |∇φ(x)|p(x)−2∇φ(x)) = −(rN−1|φ′(r)|p(r)−2φ′(r))′/rN−1.

Then

−∆p(x)φ =



(ke−k(r−R))p(r)−1
[
− k(p(r)− 1) + p′(r) ln k

−kp′(r)(r −R) + N−1
r

]
, 2R0 < r ≤ R,

ε( 2R0
r )N−1(keαk)(p(2R0)− 1)

× cos(ε(r − 2R0) + π
2 )(L1 + 1), 2R0 − π

2ε < r ≤ 2R0,

0, 0 ≤ r ≤ 2R0 − π
2ε ,

If k is sufficiently large, when 2R0 < r ≤ R, then

−∆p(x)φ ≤ −k[inf p(x)− 1− sup |∇p(x)|( ln k

k
+ R− r) +

N − 1
kr

] ≤ −kα.

Since α is a constant dependent only on p(x), if k is a big enough, such that−ka < b,
and since φ(x) ≥ 0 and a, f are monotone, this implies

−∆p(x)φ ≤ a(0)L1 + f(0) ≤ g(x)a(φ) + f(φ), 2R0 < |x| ≤ R . (1.5)

If k is sufficiently large, then

a(eαk − 1) ≥ 1, f(eαk − 1) ≥ 1, b(eαk − 1) ≥ 1, h(eαk − 1) ≥ 1

where k is dependent on a, f, b, h, p, and independent on R. Since

−∆p(x)φ = ε(
2R0

r
)N−1(keαk)(p(2R0)− 1) cos(ε(r − 2R0) +

π

2
)(L1 + 1)

≤ ε(L1 + 1)2Nkp+
eαkp+

, 2R0 −
π

2ε
< |x| < 2R0 .

Let ε = 2−Nk−p+
e−αkp+

. Then

−∆p(x)φ ≤ L1 + 1 ≤ g(x)a(φ) + f(φ), 2R0 −
π

2ε
< |x| < 2R0. (1.6)
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Obviously,

−∆p(x)φ = 0 ≤ L1 + 1 ≤ g(x)a(φ) + f(φ), |x| < 2R0 −
π

2ε
. (1.7)

Since φ(x) ∈ C1(Ω), combining (1.5), (1.6), (1.7), we have

−∆p(x)φ ≤ g(x)a(φ) + f(φ)

for a.e. x ∈ Ω. Similarly we have

−∆p(x)φ ≤ g(x)b(φ) + h(φ),

for a.e. x ∈ Ω. Let (φ1, φ2) = (φ, φ), since φ(x) ∈ C1(Ω̄), it is easy to see that
(φ1, φ2) is a subsolution of (1.3).

Step 2. We construct a supersolution of (1.3) Let z1 be a radial solution of

−∆p(x)z1(x) = (L2 + 1)µ, in Ω,

z1 = 0 on ∂Ω .

We denote z1 = z1(r) = z1(|x|), then z1 satisfies

−(rN−1|z′1|p(r)−2z′1)
′ = rN−1(L2 + 1)µ, z1(R) = 0, z′1(0) = 0 .

Then

z′1 = −|r(L2 + 1)µ
N

|
1

p(r)−1 , (1.8)

and

z1 =
∫ R

r

|r(L2 + 1)µ
N

|
1

p(r)−1 dr.

We denote β = β((L2 + 1)µ) = max0≤r≤R z1(r), then

β((L2 + 1)µ) =
∫ R

0

|r(L2 + 1)µ
N

|
1

p(r)−1 dr = ((L2 + 1)µ)
1

p(q)−1

∫ R

0

| r

N
|

1
p(r)−1 dr,

where q ∈ [0, 1]. Since
∫ R

0
| r
N |

1
p(r)−1 dr is a constant, then there exists a positive

constant C ≥ 1 such that
1
C

((L2 + 1)µ)
1

p+−1 ≤ β((L2 + 1)µ) = max
0≤r≤R

z1(r) ≤ C((L2 + 1)µ)
1

p−−1 . (1.9)

We consider

−∆p(x)z1 = (L2 + 1)µ in Ω

−∆p(x)z2 = (L2 + 1)h(β((L2 + 1)µ)) in Ω
z1 = z2 = 0 on ∂Ω .

Then we shall prove that (z1, z2) is a supersolution for (1.3). For ξ ∈ W 1,p(x)(Ω)
with ξ ≥ 0, it is easy to see that∫

Ω

|∇z2|p(x)−2∇z2 · ∇ξdx =
∫

Ω

(L2 + 1)h(β((L2 + 1)µ))ξdx

≥
∫

Ω

L2h(β((L2 + 1)µ))ξdx +
∫

Ω

h(z1)ξdx.

Similar to (1.9), we have

max
0≤r≤R

z2(r) ≤ C[(L2 + 1)h(β((L2 + 1)µ))]
1

(p−−1) .
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By (H3), for µ large enough we have

h(β((L2 + 1)µ)) ≥ b(C[(L2 + 1)h(β((L2 + 1)µ))]
1

p−−1 ) ≥ b(z2).

Hence ∫
Ω

|∇z2|p(x)−2∇z2 · ∇ξdx ≥
∫

Ω

g(x)b(z2)ξdx +
∫

Ω

h(z1)ξdx, (1.10)

Also ∫
Ω

|∇z1|p(x)−2∇z1 · ∇ξdx =
∫

Ω

(L2 + 1)µξdx.

By (H3), (H4), when µ is sufficiently large, according to (1.9), we have

(L2 + 1)µ ≥ [
1
C

β((L2 + 1)µ)]p
−−1

≥ L2a(β((L2 + 1)µ)) + f [C[(L2 + 1)
1

(p−−1) (h(β((L2 + 1)µ)))
1

(p−−1) ]

≥ g(x)a(z1) + f(z2),

then ∫
Ω

|∇z1|p(x)−2∇z1 · ∇ξdx ≥
∫

Ω

g(x)a(z1)ξdx +
∫

Ω

f(z2)ξdx. (1.11)

According to (1.10) and (1.11), we can conclude that (z1, z2) is a supersolution of
(1.3).

Let µ be sufficiently large, then from (1.8) and the definition of (φ1, φ2), it is
easy to see that φ1 ≤ z1 and φ2 ≤ z2. This completes the proof. �

Now we consider the problem

−∆p(x)u = λF (x, u, v) in Ω

−∆p(x)v = λG(x, u, v) in Ω
u = v = 0 on ∂Ω.

(1.12)

If p(x) ≡ p (a constant), because of the homogenity of p-Laplacian, (1.3) and
(1.4) can be transformed into each other; but, if p(x) is a general function, since
p(x)-Laplacian is nonhomogeneous, they cannot be transformed into each other.
So we can see that p(x)-Laplacian problem is more complicated than than that of
p-Laplacian, and it is necessary to discuss the problem (1.4) separately.

Theorem 1.2. If p(x) ∈ C1(Ω̄), Ω = B(0, R), and (H3)–(H5) hold, then there
exists a λ∗ which is sufficiently large, such that (1.4) possesses a positive solution
for any λ ≥ λ∗.

Proof. We construct a subsolution of (1.4). Let β ≤ R
4 satisfy

|p(r1)− p(r2)| ≤
1
2
,∀r1, r2 ∈ [R− 2β, R]. (1.13)

In the following we denote

δ = min{ inf p(x)− 1
4(sup |∇p(x)|+ 1)

}, p+
∗ = sup

R−2β≤|x|≤R

p(x), p−∗ = inf
R−2β≤|x|≤R

p(x),

b = min{a(0)L1 + f(0), b(0)L1 + h(0),−1}.
(1.14)
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Let α ∈ (0, β], and set

φ(r) =



e−k(r−R) − 1, R− α < r ≤ R,

eαk − 1 +
∫ R−α

r
(keαk)

p(R−α)−1
p(r)−1 [ (R−α)N−1

rN−1

× sin(ε(r − (R− α)) + π
2 )(L1 + 1)]

1
p(r)−1 dr, R− 2β < r ≤ R− α,

eαk − 1 +
∫ R−α

R−α− π
2ε

(keαk)
p(R−α)−1

p(r)−1 [ (R−α)N−1

rN−1

× sin(ε(r − (R− α)) + π
2 )(L1 + 1)]

1
p(r)−1 dr, r ≤ R− 2β,

where ε = π
2(2β−α) which satisfies ε(R− 2β − (R− α)) + π

2 = 0.
In the following, we will prove that (φ, φ) is a subsolution of (1.4). Since

φ′(r) =



e−k(r−R) − 1, R− α < r ≤ R,

−(keαk)
p(R−α)−1

p(r)−1

[ (R−α)N−1

rN−1

× sin(ε(r − (R− α)) + π
2 )(L1 + 1)]

1
p(r)−1 dr, R− 2β < r ≤ R− α,

0, r ≤ R− 2β.

It is easy to see that φ ≥ 0 is decreasing and φ ∈ C1([0, R]), φ(x) = φ(|x|) ∈ C1(Ω).
Let r = |x|. By computation,

−∆p(x)φ(x) =



(ke−k(r−R))p(r)−1[−k(p(r)− 1)
+p′(r) ln k − kp′(r)(r −R) + N−1

r ], R− α < r ≤ R,

ε(R−α
r )N−1(keαk)(p(R−α)−1)

× cos(ε(r − (R− α)) + π
2 )(L1 + 1), R− 2β < r ≤ R− α,

0, r ≤ R− 2β.

If k is sufficiently large, when R− α < r ≤ R, then we have

−∆p(x)φ ≤ −kp(r)[inf p(x)− 1− sup |∇p(x)|( ln k

k
+ R− r) +

N − 1
kr

] ≤ −kp(r)δ.

If k satisfies
kp−∗ δ = −λb, (1.15)

and since φ(x) ≥ 0 and a, f is monotone, it means that

−∆p(x)φ ≤ λ(a(0)L1 + f(0)) ≤ λ(g(x)a(φ) + f(φ)), R− α < |x| ≤ R. (1.16)

From (H3), (H4) there exists a positive constant M such that a(M − 1) ≥ 1,
f(M − 1) ≥ 1, b(M − 1) ≥ 1, h(M − 1) ≥ 1. Let

αk = lnM. (1.17)

Since

−∆p(x)φ(x) = ε(
R− α

r
)N−1(keαk)(p(R− α)− 1) cos(ε(r − (R− α)) +

π

2
)(L1 + 1)

≤ ε(L1 + 1)2N (keαk)p+
∗ −1, R− 2β < |x| < R− α,

if
ε2N (keαk)p+

∗ −1 ≤ λ, (1.18)
then

−∆p(x)φ(x) ≤ λ(L1 + 1) ≤ λ(g(x)a(φ) + f(φ)), R− 2β < |x| < R− α. (1.19)
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Obviously

−∆p(x)φ(x) = 0 ≤ λL1 + 1 ≤ λ(g(x)a(φ) + f(φ)), |x| < R− 2β . (1.20)

Combining (1.15), (1.17) and (1.18), we only need

ε2N |−b

δ
λ|

p
+
∗ −1

p
−
∗ Mp+

∗ −1 ≤ λ,

and according to (1.13), (1.14), we only need

(
π

β
2NMp+

∗ −1|−b

δ
|

p
+
∗ −1

p
−
∗ )2p−∗ ≤ λ .

Let

λ∗ = (
π

β
2NMp+

∗ −1|−b

δ
|

p
+
∗ −1

p
−
∗ )2p−∗ .

If λ ≥ λ∗ is sufficiently large, then (1.18) is satisfied.
Since φ(x) = φ(|x|) ∈ C1(Ω), according to (1.16), (1.19) and (1.20), it is easy to

see that if λ is sufficiently large, then (φ1, φ2) is a subsolution of (1.4).

Step 2. We construct a supersolution of (1.4). Similar to the proof of Theorem
1.1, we consider

−∆p(x)z1 = λ(L2 + 1)µ in Ω

−∆p(x)z2 = λ(L2 + 1)h(β(λ(L2 + 1)µ)) in Ω
z1 = z2 = 0 on ∂Ω ,

where β = β(λ(L2 + 1)µ) = max0≤r≤R z1(r). It is easy to see that∫
Ω

|∇z2|p(x)−2∇z2 · ∇ξdx =
∫

Ω

λ(L2 + 1)h(β(λ(L2 + 1)µ))ξdx

≥
∫

Ω

λL2h(β(λ(L2 + 1)µ))ξdx +
∫

Ω

λh(z1)ξdx.

Similar to (1.9), we have

max
0≤r≤R

z2(r) ≤ C[λ(L2 + 1)h(β(λ(L2 + 1)µ))]
1

(p−−1) .

By (H3) for µ large enough we have

h(β(λ(L2 + 1)µ)) ≥ b(C[λ(L2 + 1)h(β(λ(L2 + 1)µ))]
1

p−−1 ) ≥ b(z2).

Hence ∫
Ω

|∇z2|p(x)−2∇z2 · ∇ξdx ≥
∫

Ω

λg(x)b(z2)ξdx +
∫

Ω

λh(z1)ξdx. (1.21)

Also ∫
Ω

|∇z1|p(x)−2∇z1 · ∇ξdx =
∫

Ω

λ(L2 + 1)µξdx.

By (H3), (H4), when µ is sufficiently large, according to (1.9), we have

(L2 + 1)µ ≥ 1
λ

[
1
C

β(λ(L2 + 1)µ)]p
−−1

≥ L2a(β(λ(L2 + 1)µ)) + f(C[λ(L2 + 1)h(β(λ(L2 + 1)µ))]
1

(p−−1) ) .
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Then ∫
Ω

|∇z1|p(x)−2∇z1 · ∇ξdx ≥
∫

Ω

λg(x)a(z1)ξdx +
∫

Ω

λf(z2)ξdx. (1.22)

According to (1.21) and (1.22), we can conclude that (z1, z2) is a supersolution of
(1.4).

Similar to the proof of Theorem 1.1, if µ is sufficiently large, we have φ1 ≤ z1

and φ2 ≤ z2. This completes the proof. �
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