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ON A CLASS OF NONLINEAR VARIATIONAL INEQUALITIES:
HIGH CONCENTRATION OF THE GRAPH OF WEAK
SOLUTION VIA ITS FRACTIONAL DIMENSION AND

MINKOWSKI CONTENT

LUKA KORKUT, MERVAN PASIC

ABSTRACT. Weak continuous bounded solutions of a class of nonlinear vari-
ational inequalities associated to one-dimensional p-Laplacian are studied. It
is shown that a kind of boundary behaviour of nonlinearity in the main prob-
lem produces a kind of high boundary concentration of the graph of solutions.
It is verified by calculating lower bounds for the upper Minkowski-Bouligand
dimension and Minkowski content of the graph of each solution and its deriv-
ative. Finally, the order of growth for singular behaviour of the LP norm of
derivative of solutions is given.

1. INTRODUCTION

Let 1 <p<ooand —oo <a<b<oo. Let f(t,n,£) be a Caratheodory function
defined on (a,b) x R x R. We consider a class of nonlinear variational inequalities
with two obstacles ¢ and 1 in the form:

u € K(p,v),

/b [/ [P~ 2/ (v — w)'dt — /b [t u,u') (v —u)dt > 0, (1.1)
aV’u € K(p,v) such thatasupp(v —u) CC (a,b),
where ¢, ¢ € L>*(a,b), ¢ <1 and
K(p,w) = {v € WP ((@,8) N C(la,b) - ¢ < v < in (a,)}
Here the condition v € W,-?((a, b]) means that v € W' (a + ¢,b) for each ¢ > 0.

loc
The main subject of the paper is the graph G(u) of a continuous real function u

defined on [a, b], that is
G(u) ={(t,u(t)) : a <t < b}.

In order to describe a kind of very high boundary concentration of G(u) near the
point t = a, where u is any solution of (|1.1]), we associate to G(u) the following two
numbers:
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e The upper Minkowski-Bouligand (box-counting) dimension of G(u),
log |G
dimys G(u) = limsup (2 — M)’
e—0 log I3

where G.(u) denotes the e-neighbourdhood of G(u) and |Ge¢(u)| denotes
the Lebesgue measure of G (u).
e The s-dimensional upper Minkowski content of G(u),

M?*(G(u) = 1ir;lj(l)lp(2€)572\Ge(U)\7

where s € (1, 2).

In Section 3, for arbitrarily given s € (1,2) we will find some sufficient conditions
on the obstacles ¢ and ¥ and on the nonlinearity f(¢,7,&) such that each solution

u of (1.1)) satisfies
1 —s
|G- (u)] > %(b —a)°e?™* >0 for each ¢ € (0,¢0), (1.2)

where g9 > 0 will be precised too. According to the definitions of dimy; G(u) and
M?#(G(u)), the inequality (1.2]) enables us to show that each solution u of (1.1)
satisfies

dimp G(u) > s and M°(G(u)) > %(b— a)® > 0. (1.3)

Since dim;(AUB) = max{dimy; A, dim; B} and u € WP (a+e,b) for each e > 0,
we have that u is an absolutely continuous function on [a+ ¢, b] which together with
(1.3) gives us

dimpsoe(G(u);a) > s and  dimpgee(G(u);t) =1 for each t € (a,b].

Here dimpsioc(G(u);t) denotes the locally upper Minkowski-Bouligand dimension
of G(u) at a point t € [a, b], given by
dim pzi06(G(u); t) = limsup dimps (G(u) N Be(t, u(t))),
e—0
where B, (t1,t3) denotes a ball with radius 7 > 0 centered at the point (¢1,t2) € R2.
As an easy consequence, we derive that each solution w of (1.1 satisfies:

u ¢ WHP(a,b) and length(G(u)) = oo,
uw€WYP(a+¢e,b) and length(G(ul(a4c,p))) < oo for any e > 0,

where u|r denotes the restriction of u on I. Thus, according to the previous state-
ments, we may conclude that the graph G(u) of any solution u of is (in a
sense) highly concentrated at the boundary point ¢ = a. Furthermore, the state-
ment length(G(u)) = oo is precised in (1.3)). For arbitrarily given s € (1,2) and
under the same hypotheses on ¢, ¢ and f(t,7,&) as in getting of f, we
will prove in Section 3 that each solution u of satisfies

1
|G (ul(a,q)] > 2—6(0 —a)®e*™* > 0 for any ¢ € (a,b) and € € (0,¢,.), (1.4)
where the number €. will be also determined. The preceding inequality yields
1
M*(G(u) N Br(a,u(a))) > ?(%)S for any 7 € (0,b— a). (1.5)

It completes the second inequality in (L.3]).
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Next, for arbitrarily given s € (1,2) and under the same hypotheses on ¢, 1 and
f(t,m, &) as in getting of (1.2)-(1.5), we will show in Section 4 that each solution u
of (1.1)) such that u € C'(a,b) satisfies

2
|Ge(u)] > 24(() —a)¥/?c17%/2 > 0 for each € € (0, ). (1.6)

where g9 > 0 will be also precised. Here u’' denotes the derivative of u in the
classical sense. According to the definitions of dimy; G(u') and M*(G(v')), from
(1.6) we get that each smooth enough solution u od (1.1)) satisfies:

dimy; G(u') > 1+ % and MYW/2(G))) > 2i4(b —a)¥%>0. (1.7)

In we have two estimations for singular behaviour of «' near the boundary
point ¢ = a. Much more information about singular behaviour of ' near the point
t = a can be obtained from asymptotic behaviour of [[u/(|1s(q1ep) as € = 0. More
precisely, from above observation we have in particular that each solution u of
satisfies

limsup ([0 ]| Lo (q1e,6) = 0©.
e—0

However, in Section 5 we will be able to precise this statement. That is, for arbi-
trarily given s € (1,2) and under related hypotheses on ¢, ¥ and f(t,n,€) as in

getting of (|1.2)—(1.7), we will prove that each solution u of (1.1]) satisfies

b ’ 1/p 1 s-1
(/ |u |pdt> > (=) for some ¢ € (0,¢1), (1.8)
a+te €
where ¢ > 0 and ¢; > 0 will be also precised. Immediately from (|1.8]) we obtain the
lower bound for the order of growth of the local singular behaviour of |[u'[| 1r (ae,b)
as € ~ 0, that is
log (fb+8 |u’|pdt) 1/p
lim sup =
30 log1/e

It is worth to mention that the local regular behaviour of ||| z» is widely consid-
ered even in more dimensional case, where u is any solution of quasilinear elliptic
equations associated to p -Laplacian. See for instance Rakotoson’s paper [16] and
references therein.

Preceding results were obtained in the author’s paper [12] but for the case of
corresponding equation:

7(|y/|p72y/)l = f(ta yvy/) in (a> b)a
y(a) =y(b) =0, (1.10)
y € WoZ ((a,]) N C([a, b))

In this paper we show how the methods presented in [I2] permit us to obtain
some new singular properties of the graph of solutions of the variational inequality
. About some regular properties of solutions of quasilinear elliptic variational
inequalities, we refer reader to [4, 9, 13} [I7]. About the fractal dimensions and their
properties we refer to [II, Bl 8 10, 5] 18, [19].

Finally, let us remark that the existence of at least one solution y of was
discussed in [I2] Appendix, p. 303-304], where the nonlinearity f(¢,7,&) satisfy
related assumptions needed here to obtain 7 (about the existence of con-
tinuous solutions for the equations with singular nonlinearity see [11, Chapter 14]).

>s5—1. (1.9)
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Moreover, if for instance ¢(a) = ¥(a) = 0 and if ¢ is decreasing and convex on
[a, b] and if ¢ is increasing and concave on [a, b], and if f(t,n,§) satisfies:

f(t,n,6) <0, te(ab), n>(t) and £ €R,
f(t,n,6) >0, te(a,b), n<e(t)andfcR,

then each solution y of the equation (1.10]) satisfies ¢(t) < y(t) < ¥(¢) in [a,b]. So
in such case, each solution of (|1.10) also satisfies the variational inequality (1.1))
and thus, the existence of solutions of (|1.1) in this case follows from the existence

result of the equation (|1.10).

2. CONTROL OF ESSENTIAL INFIMUM AND ESSENTIAL SUPREMUM OF SOLUTIONS

In this section, we present a method which plays an important role in the proofs
of the main results. It is so called the control of essinf and esssup of solutions
introduced in [5] and considered in [6] and [7] to get some qualitative properties
of solutions of quasilinear elliptic equations and variational inequalities. Here, we
show that this method can be applied to solutions of variational inequality (1.1)) to
derive some consequences needed in the proofs of the main results.

Lemma 2.1 (Control of ess sup). Let (az,b2) CC (a,b) be an open interval. Let
wo be an arbitrarily given real number such that

essinf ¢ < wy < essinf ). (2.1)

(az,bg) (a2;b2)

Let Jy be a set defined by Jo = (essinf(q, 5,) 9, w2) and let the Caratheodory function
f(t,n,€) satisfy:

f(ta77,§) 207 te (a27b2)7 77€J2a fGR, (22)
. c(p) (essinf(q, p,) ¥ — essinf(q, p,) ©)?
essinf t,m, &)dt > = : , (2.3
/A2 (n,g)eJ2><Rf( ) (bg — ag)P~1 essinf(,, p,) ¥ — w2 (2.3)
where c(p) = 2[4(p — 1)]P~! and A is a set defined by
1 1
Ay = [as + Z(bQ —as),by — Z(bz — ay)).

Then for any solution u of (1.1) there is a oo € (ag, by) such that

’LL(O'Q) Z w2. (24)

We will also need the dual result of Lemma [2.1]

Lemma 2.2 (control of ess inf). Let (a1,b1) CC (a,b) be an open interval. Let 61
be an arbitrarily given real number such that

esssup ¢ < 01 < esssup . (2.5)
(a1,b1) (a1,b1)

Let Jy be a set defined by J; = (01, ess SUP(q, b,) ¥) and let the Caratheodory function
ft,n, &) satisfy:
ft,n,6) <0, te(a,b), n€ i, E€R, (2.6)
c(p) (ess SUP(ay 1) 1 — ess SUDP(a,,5,) )P

esssup f(t,n,&)dt < — —
/Al (n.&)enxR (tm.8) (br —a1)P~t 01 — esssup(a, 1) ¢

)

2.7)
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where c(p) = 2[4(p — 1)]P~! and A; is a set defined by
1 1
A = [a1 + i(bl — al),bl — i(bl — al)].
Then for any solution u of (1.1) there is a o1 € (a1,b1) such that
U(O’l) S 01. (28)

Let us remark that the conditions (2.1)) and (2.5)) will be easy fulfiled in Theorem
3.3 below.

Proof of Lemma[2.1] Let ty and r be two real numbers defined as follows:

az+0b 1
t(): 22 2, T:Z(bgfag).

Let B, = B, (ty) denote a ball with radius r > 0 centered at the point ty. Then we
have

By, = B2T(t0) = (a27b2)7 B, = Br(tO) = A27

where the set Ay is appearing in (2.3). Since |Ba,| = 4r = by — ag, where |A|

denotes the Lebesgue measure of a set A, and using the preceding notations, the
hypotheses (2.2]) and (2.3]) can be rewritten in the form:

f(tﬂ?vf) 207 tGBQT7 ne ‘]2a SER, (29)

1 inf — essinf P

/ essinf  f(t,n, €)dt > c(p) (essin BQ'J/J essinfp, ¢) ‘

B, (M.£)€J2xR 4p—1 pp—1 essinfp, ¥ —ws

Next, let u be a solution of (1.1). Let us suppose a contrary statement to (2.4]),
that is

(2.10)

u(t) <wg for each t € By,. (2.11)
Since ¢ < u in (a,b) and because of (2.1)), besides (2.11)) we have also
ess inf o <u(t) <wy < esginfd; for each t € By,. (2.12)
2r 2r
Using c(p) = 2[4(p — 1)]?~! and | B,| = 2r, from (2.9) we get
ft,u,v') >0 in By, (2.13)

p—1|Br| (essinfp, ¥ —essinfp, ¢)?

/ f(t,u,u')dt > (p—1) (2.14)
B,

Regarding (2.13]) and (2.14)) we are here in a very similar situation as in the proof
[0, Theorem 5, p. 256] or [I2, Theorem 4.1, p. 282]. In this direction, it is known
that for any ¢o > 1 there exists a function ® € C§°(R) , 0 < ® <1 in R such that
the following properties are fulfilled, see [0, Lemma 5, pp. 267]:

(I)(t) =1,t€ B, and (b(t) =0,te ]R\BQT7

P essinfp, ¥ — wsy

2.15
B(t) >0, te By and | (1) <2, teR. (2.15)
T

For any ¢y > 1, we take a test function
v(t) = (esg inf ) — u(t))®P(t) + u(t), teR.
2r

With the help of (2.12) we have that essinfp, 1 —u(t) > 0 in Ba, and so, it is easy
to check that

v € K(p,v) and supp(v—u) C By, CC (a,b),
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where the space K(p,) was defined in (1.1)). Therefore, we may put in (L.1)) this
test function and we obtain

—/ |u'|POPdt > —p/ [u'[P~24/ (ess inf ¢ — u) PP~ 1D/ dt
Ba, Ba, Bar

+ f(t,u,u')(essinf ¢ — u)PPdt.
Bo,. Bar

Multiplying this inequality by —1 we get

/ o/ POP L < p/ /[P~ 0P (ess inf ¢ — )| |dt
Ba, B, Bar

(2.16)
— ft,u,u)(essinf 1) — u)PPdt.
B, Ba,
For the record, with the help of (2.12]) we also have:
essinf i) — u(t) < essinf1) — essinf ¢, ¢t € By,
By By By (2 17)
essinf ) — u(t) > essinf 1) — wy, t € Bo,. '
Ba,. Ba,-
Using (p — 1)p’ = p and §1(pds) < 1%5{’/ + (5)P~16 especially for
51 = |u/‘p*1¢,p*1’ 52 = (esginfd; - u)|q)/|7 d= p/7
2r
with the help of (2.13)), (2.16) and (2.17]) we obtain
d _
0=[1- —/]/ |u[POPdE < (ﬁ/)p "(essinf 1) — essinf ga)p/ |’ [Pdt
v Js,, p Ba, Ba, Ba, (2.18)

— (essinf 1) — wo) / f(t,u,u')PPdt.
Bar B,
Now, by means of (2.15) we derive
0< (g)p_l(esginhp —ess inf ©)?| B2y \ BT|(CTO)p
(essmfz/)—wg / Ft,u,u’)
Since | B, \ By| = |By| and passing to the limit as ¢g — 1 we obtain
/ fty,y)dt < (p—1)7~

But, this inequality contradicts the assumption (2.14)) and so the hypothesis (2.11))
is not possible. Thus, the desired statement @ is proved. (I

|B | (essinfp, ¥ —essinfp, ¢)P

essinfp,, ¥ — ws

Analogously we can obtain the proof of Lemma[2.2] In Section 5, we need to use
slightly different versions of preceding lemmas.

Lemma 2.3 (A version of Lemma [2.1). Let (a2,b2) CC (a,b) be an open interval.
Let 0y, @y and wo be three arbitrarily given real numbers such that

0y < ess mfgo <wy < essmfw < Q. (2.19)

(a2,b2) (az,b2)
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Let Jy be a set defined by Jo = (6, ws) and let the Caratheodory function f(t,n,€)
satisfy:

f(t77]a§)207 tG(QQabQ)a 776‘]27 €€R7

¢(p) (o — )P (2.20)
(by — ag)P~tessinf(y, p,) 1) — wa’

n,§)EJ2X

/ essinf  f(t,n,&)dt >
Ay ( R
where c(p) = 2[4(p — 1)]P~! and A is a set defined by

Ay =faz + 5(bs — a2), by — 1(b2 — a2)]
Then for any solution u of there is a o9 € (ag,by) such that
u(o2) = wa. (2.21)
We will also need the dual result of Lemma 2.3

Lemma 2.4 (A version of Lemma[2.2). Let (a1,b1) CC (a,b) be an open interval.
Let 6y, @y and 6, be three arbitrarily given real numbers such that

éo <esssupp < 01 < esssupy < @g.
(al,bl) (ahbl)

Let Jy be a set defined by J; = (61,@0) and let the Caratheodory function f(t,n,€)
satisfy:
f(tﬂ?vf)f(), te(a17b1)7 TIEJh geRa
c(p) (@o — )P
esssup f(t,n, & )dt < — — ,
/Al (mE)ES1 xR tm8) (b1 —a1)P~1 61 —esssup(,, 4,y ¢

where c(p) = 2[4(p — 1)]P~! and A; is a set defined by

1 1
A1 = [a1 + i(bl — al), b1 — Z(bl — al)].

Then for any solution w of (L.1) there is a o1 € (a1,b1) such that
’LL(O'l) S 91.
The proof of Lemma |2.3| can be done in analogous way as we did the proof of

Lemma At the end of this section, we give an example for the nonlinearity
f(t,m, &) which satisfies the assumptions of Lemma and Lemma together.

Example 2.5. Let a < as < bs = a1 < by < b. I:Jet wa fmd 01 be two numbers
satisfying (2.1]) and (2.5)). To simplify notation, let 61, &1, 02, and @y be defined by

0, = esssupp, @ = esssup i,
(a1,b1) (a1,b1)

0y = essinf ,  wo = essinf 1.
2 (az,b2) 4 ? (az,b2) v

Next, let f(t,n,£) be a Caratheodory function defined by

W_C(p) (@ — 6o)P (n — @9)~ sin(5Z5; (t — ag))

sin (D9 — wo)? (ba — ag)?

~ N _él + sin( 1301 (t—al))
B ((Z1 - 91))2 l(}b1 —ap)P K[al’bl](t)],

ftn,8) =

K[a2,b2] (t)
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where ¢(p) is the same as in Lemma[2.1]and Lemma[2.2] and where K 4(t) denotes
as usually the characteristic function of a set A. Also, n~ = max{0,—n} and
nt = max{0,n}. Such defined f(t,7n,&) satisfies the assumptions of Lemma
and Lemma [2.2] together.

3. LOWER BOUNDS FOR dimys G(u) AND M*(G(u))

In this section, the statements (|1.2)-(5) will be verified. It will be made by using
the following two lemmas. The first one is a version of [I2, Lemma 2.1, p. 271]
which gives us some useful metric properties of the graph of rapidly oscillating
continuous functions. The second one deals with some sufficient conditions on the
nonlinearity f(¢,7, &) such that each solution of is rapid oscillating in the sense
of the first lemma. It is a consequence of the results obtained in previous section.

Lemma 3.1. Let a be a decreasing sequence of real numbers from interval (a,b)
satisfying

ar \, a and there is an gy > 0 such that for each € € (0, )

3.1
there is a k() € N such that a;—1 — aj < €/2 for each j > k(e). (3:-1)

Let 0(t) and w(t) be two measurable and bounded real functions on [a,b], 0(t) < w(t),
t € la,b], such that

essinf 6§ > essinf 4,
(a2k+2ya2k+l) (a2k+17a2k)

esssup w < esssup w, k>1. (32)

(a2k+1;a2k) (a2k,a2k—1)
Let u be a continuous function on (a,b] such that there is a sequence oy, € (ag, ar—1)
satisfying

u(ogr) > esssup w and u(ogps1) < essinf 0, k> 1.
(azk,a2K-1) (agk41,a2k)

Then
G (u)] > / " wlt) = 0t for cach & € (0,20), (3.3)

where k() and g9 are appearing in (3.1). Moreover, if for a real number ¢ € (a,b)
there is an . € (0,€0) such that ay)—1 € (a,c) for each € € (0,e.) then we have

|G (ul[q,q)| > /ak(s) (w(t) —O(t))dt for each € € (0,e.). (3.4)

Let us remark that the condition (3.2)) can be easy satisfied if for instance 0(t)
is decreasing and w(t) is increasing on [a,b] . The proof of Lemma is omitted
because it is very similar to the proof of [I12, Lemma 2.1, p. 271].

Next, we want to find some conditions on f(t,7n,£) such that each solution u of
(1.1)) admits rapid oscillations in the sense of Lemma

Lemma 3.2. Let ap be a decreasing sequence of real numbers from interval (a,b)
satisfying (3.1). Let for each k > 1 the obstacles p(t) and ¥(t) satisfy:

essinf @ < esssup /2 < essinf 1),
(a2k,a2k-1) (ask,a2k—1) (azk,a26-1 35
esssup v > essinf ¢/2> esssup . (3:5)

(azk+t1,02k) (azk+1,a2x) (a2k41,a2k)
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Let for each k > 1 the sets Ji be defined by:

Jor, = ( essinf ¢, esssup v/2),

(a2k,025-1) " (azg,a25-1)

Jok41 = (( essinf /2, esssup ).

A2k41,02k) (a2k41,a2k)

Neat, let for each k > 1 the Caratheodory function f(t,n,&) satisfy:

f(tﬂ?vf) 2 07 te (a2kaa2k—1)a n S J2ka 5 € Rv (36)
essinf t,m,&)dt
/Agk (W’E)GJM-,XRf( " f) (3 7)
c(p) (essinf gy, anp 1) % — essinf (g, aye 1) ©)P )

> .
(azk—1 — agk)P~ L essinf(qy, ay )P — €SSSUD(4y, apr 1) /2’

and

f(t,n,6) <0, te (agryr,ak), 1€ Jarg1, § €R, (3.8)

/ esssup  f(t,n,&)dt

Aspt1 (0,6)€J2k+1 X R
< _ C(p) (eSS Sup(a2k+laa2k) ,l/} —ess Sup(a2k+l7a2k) (P)p
(azk — agp11)P~1 essinf(q,, | a,.) ©/2 — ess SUD (454 1,a05) P ’
where c(p) = 2[4(p — 1)]P~ and Ay, is a family of sets defined by
1 1
Ay = [a + Z(akfl —ag), agp—1 — Z(akq —ag)], k> 1.

Then for any solution u of (1.1)) there is a sequence oy € (ag, ax—1) which satisfies

u(ogr) > esssup /2 and u(ogp41) < essinf /2, k> 1. (3.10)

(azk,a2k—1) A2k+1,02%)
Proof. Let k be a fixed natural number, k£ > 1, and let

we = esssup /2 and 6 = essinf /2.

(azk,a2k—1) (azk+1,a2k)

Regarding to the hypotheses and (3.6)—(3.9), it is clear that the assumptions of
Lemma and Lemma are satisfied on the intervals [asg, asg—1] and [asg+1, azg)
respectively. Therefore, we may use these two lemmas and so, there is a 09 = 09, €
(agk,ask—1) and o1 = oap11 € (@41, a2;) satisfying and respectively.
Since k is arbitrarily fixed, it implies the existence of a sequence oy, € (ag41,ar)

which satisfies the desired condition (3.10]). d

Combining the preceding two lemmas we derive some new metric properties for
solutions of (1.1). It is the subject of the following result.

Theorem 3.3. For arbitrarily given real number s € (1,2), let the sequence ay, and
the obstacles ¢ and v be given by:

b—a 11/5
= — (= k>1
ag =a+ 9 (k) ) Z 5

ot)==-2(t—a) and P(t)=2(t—a), teE (a,b),

(3.11)



10 L. KORKUT, M. PASIC EJDE-2007/37

where 3 satisfies 1 < 3 < oo and 3 = 5*. If the Caratheodory function f(t,n,§)

satisfies (3.6)—(3.9) in respect to such (p, %, ar), then each solution u of (1.1) sat-

isfies:

G (u)| > 2%(%) — )2 for each e € (0,20 = g 4, (3.12)
Geltlio)] > g5(c— )&~ for each e € (0,2.), (3.13)

dimy Gu) > s and M (G((y)) > %(b —a), (3.14)
M*(G(u) N By (a, u(a))) > %(%)s for any r € (0,b— a), (3.15)

\B+1
where £, = min{eg, %}

Proof. The proof is done in a few steps.

Proof of . It is not difficult to check see the proof of [12] Corollary 5.2, p.
289], that the sequence ay, given in satisfies the hypothesis in respect
to ¢ and k(e) determined by

1 T 1 e
Co <6) < k(e) < 2 (5) for each € € (0,¢0), (3.16)

where ¢ = 2 (”*Ta) P and £ = b*Ta.

Let us remark that double inequalities in is needed to ensure k(g) € N.
Also, it is clear that the obstacles ¢ and 1 given in satisfy the hypothesis
(3.5). Thus, the assumptions of Lemma are fulfilled and therefore, we have that
each solution u of has rapid oscillations in the sense of (3.10). Moreover, it
implies that each solution u of satisfies the main assumption of Lemma
where w = /2 and 6§ = ¢/2. So, we obtain

G (u)] > %/%) ((t) — p(£))dt for each = € (0, 0).

Putting the data from (3.11)) in the right hand side of the preceding inequality, we
get
ax(e) b— 1
|G (u)] > / 2(t — a)dt = (J)2<7)2/6 for each € € (0,e0). (3.17)
a 2 k(e)
Let us remark that from the left inequality in (3.16]) we have in particular
1 1 B
6] > Z(bfa)ﬁ“sﬁ%l for each € € (0,¢0).

Putting this inequality in (3.17)), for any € € (0, &), we get

(b—a)? (1)2‘% gET .1 .
Ge z 1 z—EPTT > b—a)’e“?,
Gl 2 = (7) oo (b= )

where we have used that 8 > 1 and 28/(8 + 1) = s. Thus, we have proved the
inequality ([3.12]).
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Proof of (3.13). For ¢ € (a,b), let

b—a l(c—a)ﬁ"’l}
BB (b—a)

It is easy to check that for any ¢ € (a,b) the number e, given by (3.18]) satisfies

g. = min{gg = (3.18)

ap(e)—1 € (a,c) for each € € (0,¢.),

where the sequence ay, is given in (3.11]) and the number k(g) is given in (3.16).
3.1

Therefore, we may apply Lemma |3.1| again and so, for each ¢ € (a,b) and for any
solution u of (|1.1)) we have

Gelulo) 2 5 [ (6(0) = (0}t for cach = € (0,20)

Putting the data from (3.11]) in this inequality and using the same calculation as

in the proof of (3.12f) we prove (3.13]).
Proof of (3.14). According to the definition of dimy; G(u), from (3.12)) immedi-
ately follows that

dimp; G(u) = limsup (2 — M)
=0 loge
1 2—s(p _ s 26

2 maup (2 800/

e—0 0oge

_ s /96

=limsup (2 — (2 — s)iOg€ - log[(bl a)°/2 ]) = s.

e—0 oge oge

It proves the first inequality in (3.14]). Also, according to the definition of M*(G(u)),
from (3.12) we get:

M*(G(u)) = limsup(2¢)*~?|G.(u)| > lim sup(2€)s_2[(b _ a)s<€2_s]
1

e—0 e—0

b—a)®
—_ 25—2( 26a) 1imS(1)lp(€S_252_s) > ?(b _ a)s7
E—

which proves the second inequality in (3.14)).
Proof of (3.15)). At the first, since u € K(p,) we have in particular that

o(t) <u(t) <¢(t),t €la,b] and wu(a)=0.

Making intersections of ¢(t) = —2(t — a) and ¥(t) = 2(¢t — a) with B,(a,0), it is
easy to see that

G(ulja,at21) € G(u) N By(a,0) for any r € (0, V5(b — a)),
and so, we have
M%G(uhww%])) < M*(G(u) N By(a,0)) for any r € (0, (b— a)). (3.19)
On the other hand, using (3.13)) for ¢ = a + %, we get

1, r

?(ﬁ)s for any r € (0,b — a).

Combining this inequality with (3.19) we get the proof of (3.15). Thus, we have
proved all statements of Theorem O

MS(G(uha,aJr%])) >
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At the end of this section, we give an example of such a class of the nonlinearity
f(t,n, &) which satisfies the assumptions of Theorem

Example 3.4. In order to simplify the notation, let 521@-4-1, W2k 415 gzk, Wk, O2k11,
and woyy, be defined by:

Oor = essinf ¢, @ = essinf ¢, wop = esssup /2,
(a2k,a26-1) (a2k,a26-1) (az2k,a2K-1)
Oop+1 = esssup @, @opyr1 = esssup ¥, Oy = essinf /2.

(a2k41,a2k) (a2k41,a2k) (azk+1,a28)

Let f = f(t,n,§) be a Caratheodory function

Te(p) o~ s (= @)~ SiGg (E—an))
= — 0. )P I ;
I sin k:1[(w2k 2k) (Wor — wor)? (a2k—1 — a2k)P fazesaze] (1)
~ 7] (n — Oog1)t S5 =apy (= azk-1))
- W —0 ! 0 Ka a t 9
( 2k+1 2k+1) (92k+1 _ 92k+1)2 (GQk _ a2k+1)p l[agkt1, 2k]( )]

where ¢(p) is appearing in (3.7) and (3.9)) , and where K 4(t) denotes as usually the
characteristic function of a set A. Also, n~ = max{0, —n} and n* = max{0, n}.
It is not difficult to check that f(¢,n,&) is continuous in all its variables and that

f(t,n, &) satisfies the hypotheses (3.6)—(3.9).

4. LOWER BOUNDS FOR dimy; G(u') AND M*(G(v))
In this section, the inequalities ((1.6) and (1.7)) will be verified. As the first, we

give a discrete version of Lemma [3.1] which is a modification of [I2] Lemma 6.3, p.
291].

Lemma 4.1. Let oy, be a decreasing sequence of real numbers from interval (a,b)
satisfying
or "\ a and there is an g9 > 0 such that for each € € (0,eq)

4.1
there is a k() € N such that 0j_1 — 0; < /2 for each j > k(e). (41)

Let dy, be a sequence of real numbers such that
62k+1 >0 and dgp, < 0, k> 1.
Let z be a continuous function on (a,b] for which there is a sequence s € (0k,0k—1)
such that
2(Sok41) = Oopr1 and  2z(Sop) < do, k> 1.
Then there holds true

oo

|G:(2)] > Z doks1(0or — ooxr1) for each € € (0,g0),
k=k(e)

where k() and o are appearing in (4.1)).

The proof of the lemma above is exactly the same as the proof of [12) Lemma
2.1, p. 271].

As a basic result, we need the following lemma on the asymptotic behaviour of
|G:(u')] as € & 0, where u’ is the derivative in the classical sense of any smooth
enough real function u.
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Lemma 4.2. Let a be a decreasing sequence of real numbers from interval (a,b)
satisfying (3.1). Let wor and Oap11 be two sequences of real numbers satisfying
Wop > min{92k+1, ng,l}, k> 1. (42)

Let u be a real function, u € C((a,b]) N C(a,b), for which there is a sequence
ok € (ag,ar—1) such that

u(oar) > war,  and u(oggt1) < Bapi1, k> 1. (4.3)
Then
|G (u)] > Z (wor — O241) for each e € (0,¢), (4.4)
k=k(e/2)

where k(g) and o are defined in (3.1]).

Proof. Lagrange’s mean value theorem, applied on the interval (o, ox—_1), where the
sequence oy, is defined in (4.3)), we get the existence of a sequence sy € (o, 0k—1),
k > 1 such that

u(oar) — u(oag11) u(oor—1) — u(oar)

u' Sok+1) = u/ Sok) = . 4.5
(s211) Ook — Ooky1 (525) Ook—1 — O2k (4:5)

Using (4.3)) and the notation:

wap, — Bay Oor—1 — wag
2(t) =u(t), t € (a,b), Oopyr = b TZEHL 5 = 2RoL TRk
T2k — O2k+1 O2k—1 — O2k

the statement (4.5) can be rewritten in the form: there is sy € (o, 0%-1), k > 1,
such that

Z(82k+1) > dop+1 >0 and Z(Sgk) <o <0, k>1. (4.6)

On the other hand, it is easy to see that the sequence oy, just like ay satisfies a very
similar condition to (3.1)); that is,

o \va and o;_1—o0; <¢g/2 foreachj> k(g)7 e € (0,e9), (4.7

where k(g) and gg are exactly the same as in (3.1). Now, by means of (4.6) and
4.1

(4.7), we have that the function z satisfies the assumptions of Lemma [4.1| and so,
we get:

Ge(u)| = [G=(2)] > Y boptr(o2k — O2k41)
k=k(c/2)
= wop — 0
= Z 7( 2k _ 2k+1)(0'2k - 02k+1)
heh(y2) T2k T 0241
= Z (wo — Oapy1) for each € € (0,&p).
k=k(c/2)
Thus, Lemma [4.2] is proved. O

Next, we give the main result of this section.
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Theorem 4.3. Let the hypotheses of Theorem [3.3 be still assumed; that is: for
arbitrarily given real number s € (1,2), let the sequence ay, and the obstacles ¢ and

Y be given by (3.11)), and let the Caratheodory function f(t,n,§) satisfy (3.6)—(3.9)
in respect to such (,v,ax). Then each solution u of (1.1)) satisfies:

G0) 2 S0 P foraach € 0,0= 120, (0s)
dimpy; G(u') > 1 +§ and M7*2(G))) > 2i4(b —a)*?, (4.9)

The proof of the above theorem can be done with similar arguments as in [14]
Theorem 3.4 and Corollary 3.5].

5. FULL CONTROL OF ESS INF AND ESS SUP OF SOLUTIONS

In contrast to the method of control of essinf and esssup of solutions of
which was presented in Section 2, here we involve on the nonlinearity f(¢,n,¢)
slightly stronger conditions than and to obtain some stronger conclusions
than and . More precisely, for any solution w of we need to estimate
from below the measure of sets where essinf v and esssupu are exceeded. It will
play an important role in the following section, where the inequality and
will be proved. The so called full control of essinf and esssup of solutions
of corresponding equation (|1.10) was considered in [12] Section 4]. Here, it is the
subject of the following two lemmas.

Lemma 5.1. Let (ag,b2) CC (a,b) be an open interval. Let we be an arbitrarily
giwen real number such that

esssup ¢ < wy < essinf ). (5.1)
(az,b2) (az,b2)

Let Jy be a set defined by Jo = (essinf(,, p,) @, w2) and let the Caratheodory function
f(t,n, &) satisfy:

f(tﬂ?’f) 207 te <a27b2)7 WEJ27 §€R, (52)
) c(p) (ess SUD(q,,5) ¥ — €88 i0f (4, by) )P
ff(t,n, &) > . ; € J2, §ER,
etsgjlrz} Ft:m.) (by — ag)P essmf(azybz) P — wo " 2 &
(5.3)
where c(p) = 2(167)(p — 1)P~L and Ay is a set defined by
1 1
Ay = [as + E(bz —ag), by — E(bz — ag)).
Then for any solution u of we have
1 1
u(t) > ws for each t € [ag + Z(bg —ag),bs — 1({)2 —az)]. (5.4)

The dual result of Lemma [5.1]is the following.

Lemma 5.2. Let (a1,b1) CC (a,b) be an open interval. Let 61 be an arbitrarily
given real number such that

esssup ¢ < 61 < essinf 1.

(a1,b1) (a1,b1)
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Let Jy be a set defined by J; = (61, ess SUP (4, ,b,) ) and let the Caratheodory function
f(t,n, &) satisfy:

f(tﬂ?,f)ﬁ(), te(alvbl)v 77€J1a fGR,
C(p) (eSS SUP (a4 ,by) Y — ess inf(al,ln) (p)p

esssu t,n,&) < — , € Ji, £ER,
teAlp f( n f) (bl _ al)p 01 — ess Sup(al’bl) © n 1 €
where c(p) = 2(16P)(p — 1)P~t and Ay is a set defined by
1 1
A1 = [al + E(bl — al), b1 — E(bl — al)].
Then for any solution u of (1.1)) we have
1 1
u(t) <60y foreacht € a1 + Z(bl —ay),by — Z(bl —a1)]. (5.5)

The above lemma can be proved analogously as in the proof of Lemma to
be shown below. For the proof we use the following two propositions that will be
shown later.

Proposition 5.3. Let (¢,d) C (az,b2) be an open interval. Let wo be an arbitrarily
given real number such that
esssup ¢ < wy < essinf . (5.6)
(C,d) (C,d)

Let Jy be a set defined by Jo = (essinf(. g p,w2) and let the Caratheodory function

f(t,n,&) satisfy
f(t,n,6) >0, te(cd),ne s, E€R. (5.7)

Then for any solution u of (1.1 such that u(c) = u(d) = wy there is a t* € (¢, d)
satisfying
u(t*) > wo. (5.8)

The condition u(c) = u(d) = ws can be avoided as follows.

Proposition 5.4. Let (¢,d) C (as,bs) be an open interval such that

d—c d—c¢
d
2’ * 2

N(c,d) C (ag,b2), where N(c,d) = (c— ).

Let wy be an arbitrarily given real number such that

inf ¢ < wy < essinf ). 5.9
e < < ©9

Let Jy be a set defined by Jo = (essinf(q, 5,) 9, w2) and let the Caratheodory function
f(t,n,€) satisfy:

ft,n,8) >0, teN(c,d), ne s, £€R, (5.10)

— 1)1 (esssupy, — essinf P
essinf f(¢t,n, &) > op+1 (p ) ( D( 2’,1)2) 4 (02.02) )
te(c,d) (d—c)p essinfy(c.aq) ¥ — w2

form € Jy and € € R. Then for any solution u of (L.1) there is a t* € N(c,d)
satisfying u(t*) > wa.

. (5.11)

The proof of these two propositions will be presented later; meanwhile we proceed
with the proof of Lemma [5.1
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Proof of Lemma[5.1] Since for any (c¢,d) C (az,b2) and a function g = g(¢) we have

essinf g < essinfg and esssupg < esssupg,
(a27b2) (C’d) (C,d) (a27b2)

one can show that the main hypotheses 7 guarantee that the conditions
(5.6)—-(5.7) and (5.9)—(5.10) are satisfied, where (c,d) C as, bs) such that N(c,d) C
(az2,b2). Thus, Proposition may be used here as well as Proposition provided
the hypothesis is satisfied too.

Next, we claim that:
for any (¢,d) C Ag such that d — ¢ = (b2 — ag)/8
(5.12)

bg—ag b2—

. 2 *
— >
there is t* € (c 16 ,d+ 16 ) such that u(t*) > ws,

where b )
A, — 2 — G2 _ V2 — a2 .
2 = loa = b =
To prove (5.12)), let (¢,d) be an open interval such that (¢,d) C Ay and d — ¢ =
(ba — ag)/8. Tt is clear that

by — as by — as
C
16 6 ) C (az,b2),

where N(c,d) = (c — 45¢,d + 945©). Putting by — as = 8(d — ¢) in (5.3) and using
c(p) = 2(167)(p — 1)P~1 we get

. s
?Z?§E§ ft,n,6) > ess ;‘gf f(t,n,&)

N(e,d) = (¢ —

,d+

(p—1)P~1 (ess SUP (qy,by) ¥ — €ssinf (g, p,) ©)P

2p+1
> (d—c)p essinf (g, p,) Y — w2
> optl (p— 1)p71 (ess SUP(ay,by) Y —ess inf(ambz) ©)? €Jo, ECR
- (d—c)p essinf y(c,q) ¥ — w2 v S '

Therefore, the assumption (5.11]) is satisfied too and so, by Proposition there is
t* € N(c,d) such that u(t*) > we. Thus, the assertion (5.12) is verified.
Next, we define two intervals (c1,d;) and (c2,ds) by

(c1,d1) = (a2 + i(52 —as),az + i(bQ —as))

16 16
3 1
(szdz) = (bz - E(bz - a2)752 - E(lh - az))~

It is easy to check that

(Civdi) QAQ and dz — C; = (bgfag)/8, for i = 1,2
So, applying (5.12)) to both interval [c1,d;] and [cg,ds] we get two points ¢ and t3
such that

1 1
E(bg —az),d; + E(bg —a)) and wu(t])>ws, fori=1,2. (5.13)

It is clear that

tz( S (Ci —

[ag + i(bz - a2),b2 - 2(52 - a?)} - [t’{,t;] - (a2ab2)~ (5'14)

Next, we claim that
u(t) > wy for each t € [t7,t5]. (5.15)



EJDE-2007/37 NONLINEAR VARIATIONAL INEQUALITIES 17

On the contrary, if there is a point tg € [}, t5] satisfying u(tg) < we then by means of
(5.13)) we can construct an open interval (¢, d) C (¢7, t3) such that u(c) = u(d) = ws
and u(t) < wg in (¢,d). For example, we can choose ¢ and d by

c=max{t € [t],to] : u(t) =wa} and d=min{t € [to,t5] : u(t) = wa}.

But, by Proposition it is not possible and so, the assertion ([5.15)) holds true.
Because of (5.14)), it gives us the desired conclusion (5.4)). Thus, Lemma is
proved. ([

Proof of Proposition[5.3 Let us suppose the opposite claim to (5.8); that is,
u(c) =u(d) =ws and wu(t) <wy foreacht e (¢ d). (5.16)
We are going to prove that (5.16]) is not possible. In this direction, let v be a test

function defined by
o(t) = {u& in (c,d),

u(t) otherwise.

Since u € K (p, ) and because of (5.6) and (5.16)), we have also that v € K (p, )
and

wy —u(t) >0 in (cd),
0 otherwise.

u(t) — u(t) = {

Hence, this test function can be applied in (1.1) and so, we obtain

d d
0< / |u/[Pdt < —/ F(t u,u')(wa — u(t))dt <0,

where the main assumption (5.7)) is used. So, we get v/ = 0 in (¢,d). But, it
contradicts (5.16)). Thus, (5.16) is not possible and the desired conclusion ([5.8)) is
proved. O

Proof of Proposition[5.4} Let (¢,d) C (a2,b2) be an interval such that N(c,d) C
(a2,b2), where N(c,d) = (¢ — %5¢,d + %5<). Let wy be an arbitrarily given real
number satisfying (5.9) and let the Caratheodory function f(¢,n, &) satisfy (5.10))

and (5.11)). Immediately from (5.11]) we get

(p—1)P~! (ess SUD (g, .5,) ¥ — €88 inf(q, b,) p)P

d
/ ( essinf  f(t,n, &)dt > 2P

n,€)E€J2 X R (d—c)p—1 essinfy(c.q) ¥ — wa
(5.17)
Let the numbers ¢ and dy and the set As be defined by
d— d—
Co =cC— 20, do =d+ ¢ A22[07d].

Then
N(Ca d) = (623 d2)a

1 1
Ay =[c2 + i(dQ —¢2),dy — i(dz — )],
2(d—c) = dQ — Ca.
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Therefore, from the inequalities (5.9), (5.10) and (5.17)), we get

0~0 < essinf p < ws < essinfy < @y,

(Cz,dg) (027d2
f(tﬂ?,ﬁ)zoa t6(027d2)a UGJ% £€R,
. c(p) (@o — 00)?
essinf t,n, &)dt > - )
/,42 (n,g)erfo( 7€) (d2 — c2)P~ Y essinf(c, q,) 1 — w2

where Jy = (6, ws), fy = ess inf (a, b,) ©5 Wo = €SSSUP(q, 4,y ¥, and c(p) = 2[4(p —
1)]P~L. Hence, the assumptions of Lemma are satisfied especially on the open
interval (c2,d2) CC (a,b), it implies the existence of a t* € (cg,ds) such that
u(t*) > wo. Thus, Proposition [5.4] is shown. O

6. THE ASYMPTOTIC BEHAVIOUR OF |[u/||zr AS € = 0

In this section, we will study the asymptotic behaviour of ||u’||» as e ~ 0 which
was presented by the inequalities (1.8]) and (1.9]). It will be made for such continuous
functions which satisfy a ”jumping” condition in the sense of (5.4)) and (5.5)), as
follows.

Lemma 6.1. Let ay be a decreasing sequence of real numbers from interval (a,b)
satisfying
ar \,a and ay —apy1 < ag—1 —ag, k>1 and

there is an €2 > 0 such that for each € € (0,¢e2) (6.1)
there is a j(¢) € N such that aj) > a+e.
Let u be a real function defined on [a,b] such that u € Wlf)’cp((a, b)) N C([a,b]) and
u(t) >0 for each t € Agy,

6.2
u(t) <0 foreacht € Aggy1, k> 1, (6:2)

where

1 1
Ay = lar + —(ap—1 — ap),ap—1 — —(ar—1 —ax)], k>1.

4 4
Then there is a sequence xy € (a,b), k € N and a constants ¢ only depending on
given data such that each solution u of (1.1) satisfies

i(e)

b P
u' () Pdt > ¢ (max, u) or each ¢ € (0,¢e3), 6.3
IR W ey =38, O, (63)

where j(€) is appearing in (6.1]).

Proof. First, it is well known (see for instance in [2, Theorem 9.12 pp.166]) that in
the space W, ?(Q), @ C RN, there is a constant ¢, > 0 such that for u € W,"*(Q)
and p > N,

s ] < eyl Vu, (6.4

Next, let u be a real function satisfying (6.2]). Then there is a sequence zj, of the
zero-points of u such that:

1 1
u(zy) =0, xp € (ar — —(ar — apt1), ar + ~(ar—1 — ax)),
4 4 (6.5)

3
A C (zg,x5-1), k>2 and |z — zp—1| < i(ak—Q —ag—1), k=>3.
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In particular for N = 1 and Q = (z4,2%_1) we have u € Wy (xy,z,_1) and so,
from (6.4)) follows

sup  [ul < eplwr — w1 [P0 | Lo @y
($k,ﬂ?k71)
that is to say
1

o ||B —_—
o) —

LP(zg,25-1) —

( sup [u))’, k>2 (6.6)
(Tk,R—1)
where the constant ¢ > 0 does not depend on k, only on p. Now, according to (6.2)),
(6.5) and we calculate that
J(e) (e) 1
14 ey = DN Wby 2D g ( sup Jul)”
Lr(a+e,b) ];2 LP(zg,r—1) 1;2 |xk _ $k_1|p 1 <($k71'k—1) )
j(e)

2 (maxy, |ul|)?
p(Z\P k
>c (3) ;;:3 (ar> — an_1)P 1 for each € € (0,¢e2).

Thus, Lemma [6.1] is proved. (|
Combining Lemmas 5.1 and [5.2] we are able to derive a kind of rapid oscillations

for solutions of (1.1]) in the sense of (5.4) and ([5.5).

Lemma 6.2. Let ay be a decreasing sequence of real numbers from interval (a,b)
satisfying (3.1). Let for each k > 1 the obstacles o(t) and (t) satisfy:

esssup ¢ < esssup ¥/2 < essinf 1,

(azk,a2k—1) (azk,a2r-1) (azk,azk—1)
. . (6.7)
essinf ¢ > essinf /2> esssup .
(0«2k+17a2k) (azk+1,azk) (a2k+17a2k)
Let the sets Ji be defined by:
Jor, = ( essinf ¢, esssup /2),
(azk,a2k-1 (az2k,a2r—1)
Jogr1 = ( essinf /2, esssup ), k>1.
(a2k+1,a2k) (a2k41,02k)
Neat, let for each k > 1 the Caratheodory function f(t,n,€) satisfy
f(tanag) 207 te (a2k7a2k¢*1)7 77€J2k7 fER, (68)
ess inf f(t7 m, f) > c(p) (esslsup(a%a%fl) Y - ess inf(azk’a%fl) <p)p7
te Aoy, (a2r—1 — agx)P essinf(q,, 4, )% — ess SUP (45 a2k 1) Y/2
(6.9)
where n € Ja, £ € R and:
f(tanaf) < Ov te (a2k+17a2k)a ne J2k+17 g S R7 (610)
esssup f(t,n,&)dt < — <) (ess'sup(a%H’a%) Y 5 o1 0an) <,0)p’
t€EA2k+1 (an - a2k+1)p €ss lnf(a2k+1’a2k) 90/2 — SSSUD (a5 4 1,a0,) P
(6.11)

where ) € Jogy1, € € R and c(p) = 2(167)(p — 1)P~ and Ay is a family of sets
defined by

1 1
Ay = [ag + TG(ak—l —ag), ag—1 — E(ak—1 —ag)], k> 1.
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Then for any solution u of (1.1)) we have:

u(t) > esssup /2 for eacht € Ay, (6.12)
(azk,a2k—1)
u(t) < essinf @/2 for eacht € Aggy1, k> 1, (6.13)
(agp41-a2k)

where Ay, is a family of sets defined by

1 1
Ay = [ay + i(akq —ag),ak—1 — Z(akq —ag)], k>1
Proof. Tt is clear that the assumptions of Lemmas [5.1] and [5.2] are fulfilled on the
intervals [ag, bo] = [agk, asr—1] and [a1,b1] = [ask+t1,azx] respectively, where wy =

€SS SUD (4, a0y 1) ¥/2 and 0 = ess inf(a%ﬂ,a%) /2. Therefore, from (5.4) and (5.5))
immediately follows (6.12]) and (6.13))). O

Regarding Example |3.4] above, it is easy to construct a class of Caratheodory
functions f(t,n, &) which satisfies the assumptions of Lemma
Next, we give the main result of the section.

Theorem 6.3. For arbitrarily given real number s € (1,2), let the sequence aj and
the obstacles ¢ and 1) be given by (3.11). If the Caratheodory function f(t,n,&) sat-

isfies 1) in respect to such (p, 1), ax) then there are two positive constants
¢ and g9 depending only on given data such that each solution u of (1.1)) satisfies

b
1 Ss—
(/ |u’|pdt)1/p > (=) ! for each ¢ € (0, min{ez, 1}),
a+e €
. log (f;+8 |u'|Pdt) L/p
lim sup >s—1.
=0 log1/e

Proof. 1t is easy to see that ¢, ¢ and a; given by (3.11)) satisfy the assumptions
of Lemma It implies that each solution u of (1.1) satisfies the assumptions of
Lemma [6.1} where j(¢) = k(e), and k(e) is given in (3.16)), and

b—a b—a, 1 1,8+
B B

ﬂ ’( 2 (%> }7

g9 = min{

where ¢ is appearing in (3.16). For the record, in order to prove that aj given in
(3.11]) satisfies (6.1]) in respect to e, it is used the following elementary inequalities

1(1)1+1/5 < 1 )1/6 _ (1)1/ﬁ < l( 1 )1+1/3 < ﬂ(l 14+1/3
Bk T k-1 k - B'k—1 ] L J
where k > 2 and § > 0. Putting such (¢, ¥, ax) into (6.3]), we obtain

k(e)

/b |u’(t)|pdt > cz(ak +ag_1 —a)P 1 for each ¢ € (0,¢2)
ate a k=3 2 (ak—z —ak_l)P—l y€2)-

Now, with the help of the same technical details as in the proof of [I2, Theorem
8.1, p. 298-299], from (3.11)) and previous inequality easy follows that
k(E) 1 P 1 r
10 s ey = €1 D KOFBIETITE > 0 (k(e)) TFHEDTEHL 2 (0,e5).
k=3
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Taking the p-root in the preceding inequality and using (3.16[), we obtain
1+4)(1-1)—141 Ly 28 -1 1id-n5%
||ul||LP(a+E,b) > Cl(k(E))( 5)( )BT Z cl(g) B+1 (g) B+1

1is- .
Zai(2)7 € (0 minfer, 1),
It proves Theorem O
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