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EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS
TO A MODEL FOR THE FLOW OF AN INCOMPRESSIBLE,

BAROTROPIC FLUID WITH CAPILLARY EFFECTS

DIANE L. DENNY

Abstract. We study the initial-value problem for a system of nonlinear equa-

tions that models the flow of an inviscid, incompressible, barotropic fluid with
capillary stress effects. We prove the global-in-time existence of a unique, clas-

sical solution to this system of equations, with a small initial velocity gradient.

The key to the proof lies in using an L2 estimate for the density ρ, and us-
ing the smallness of the initial velocity gradient, to obtain uniqueness for the

density.

1. Introduction

In this paper, we consider equations which arise from a model of the multi-
dimensional flow of an incompressible, barotropic fluid with capillary stresses.
When viscosity is neglected, these equations reduce to the following system, written
in terms of the density ρ, the pressure p, and velocity v:

Dv
Dt

+ ρ−1∇p = c∇∆ρ, (1.1)

∇ · v = 0. (1.2)

Here c is a coefficient of capillarity which is a small, positive constant, and the
material derivative D/Dt = ∂/∂t + v · ∇. The term c∇∆ρ arises from capillary
stresses, as described in the theory of Korteweg-type materials developed by Dunn
and Serrin [4]. The fluid’s thermodynamic state is determined by the density ρ.
The pressure p is determined from the density by an equation of state p = p̂(ρ).
In related work, the existence of a solution to a similar system of equations for the
case of viscous fluid flow, which also includes a hyperbolic equation for density and
a parabolic equation for temperature, has been proven by Hattori and Li [7, 8],
and by Bresch, Desjardins, and Lin [2]. Anderson, McFadden and Wheeler [1] have
given a review of related theories and applications to diffuse-interface modelling.

In this model, it will be shown that ∂ρ/∂t, ∇ρ, and ∇v are small, for suitable
initial data. Although the conservation of mass equation is only approximately
satisfied, the model equations (1.1), (1.2) might be useful as an approximation in
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the case of almost constant density, and nearly incompressible fluid flow with a
small velocity gradient. We write equation (1.1) equivalently as

Dv
Dt

+ ρ−1p̂′(ρ)∇ρ = c∇∆ρ (1.3)

The purpose of this paper is to prove the existence of a unique, global-in-time,
classical solution v, ρ to equations (1.2), (1.3) with suitable initial velocity data v0 ∈
Hs, under periodic boundary conditions. That is, we choose for our domain the N-
dimensional torus TN , where N = 2 or N = 3. The proof of the existence theorem
is based on the method of successive approximations, in which an iteration scheme,
based on solving a linearized version of the equations, is designed and convergence of
the sequence of approximating solutions to a unique solution satisfying the nonlinear
equations is sought. The framework of the proof follows one used, for example, by
A. Majda for proving the existence of a solution to a system of conservation laws
[10]. Embid [5] also uses the same general framework to prove the existence of a
solution to equations for zero Mach number combustion. Under this framework,
the convergence proof is presented in two steps. In the first step, we prove uniform
boundedness of the approximating sequence of solutions in a high Sobolev norm.
The second step is to prove contraction of the sequence in a low Sobolev norm.
Standard compactness arguments will be used to finish the proof. The key to the
proof lies in using an L2 estimate for the density ρ, and using the smallness of the
initial velocity gradient, to obtain uniqueness for the density.

2. A priori estimates

The main tools utilized in the existence proof are a priori estimates. We will work
with the Sobolev space Hs(Ω) (where s ≥ 0 is an integer) of real-valued functions in
L2(Ω) whose distribution derivatives up to order s are in L2(Ω), with norm given by
‖f‖2s =

∑
|α|≤s

∫
Ω
|Dαf |2dx and inner product (f, g)s =

∑
|α|≤s

∫
Ω
(Dαf)·(Dαg)dx.

Here, we adopt the standard multi-index notation. For convenience, we will denote
derivatives by fα = Dαf . We will let Df denote the gradient of f . Also, we will
denote the L2 inner product by (f, g) =

∫
Ω

f · g dx. We will use standard function
spaces. L∞([0, T ],Hs) is the space of bounded measurable functions from [0, T ] into
Hs(Ω), with the norm ‖f‖2s,T = ess sup0≤t≤T ‖f(t)‖2s. C([0, T ],Hs) is the space of
continuous functions from [0, T ] into Hs(Ω). The following technical lemmas will
be needed for the proof of the existence of a classical solution to the initial-value
problem for the system (1.2), (1.3).

Lemma 2.1 (Standard Calculus Inequalities).
(a) If f ∈ Hs1(Ω), g ∈ Hs2(Ω) and s3 = min{s1, s2, s1 + s2 − s0} ≥ 0, where

s0 = [N
2 ] + 1, then fg ∈ Hs3(Ω), and ‖fg‖s3 ≤ C‖f‖s1‖g‖s2 . We note that

s0 = 2 for N = 2 or N = 3.
(b) If f ∈ Hs(Ω), g ∈ Hs−1(Ω) ∩ L∞(Ω), Df ∈ L∞(Ω), and |α| ≤ s, then

‖Dα(fg)− fDαg‖0 ≤ C(|Df |L∞‖g‖s−1 + |g|L∞‖Df‖s−1).

In (a) the constant C depends on s1, s2, and Ω, while in (b) the constant C
depends on s and Ω. These inequalities are well known. Proofs may be found, for
example, in [9, 11].

Lemma 2.2 (Low-Norm Commutator Estimate). If Df ∈ Hr1(Ω), g ∈ Hr−1(Ω),
where r1 = max{r−1, s0}, s0 = [N

2 ]+1, then for any r ≥ 1, f, g satisfy the estimate
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‖Dα(fg)− fDαg‖0 ≤ C‖Df‖r1‖g‖r−1, where r = |α|, and the constant C depends
on r, Ω.

Proof. The proof is based on the Sobolev calculus inequalities from Lemma 2.1. We
consider separately the cases r−1 < s0 and r−1 ≥ s0, where r ≥ 1. If r−1 < s0, we
expand the term Dα(fg) using the Leibniz rule and then apply inequality (a) from
Lemma 2.1 to obtain the desired estimate. If r − 1 ≥ s0, we apply the inequality
(b) from Lemma 2.1 and the Sobolev inequality |h|L∞ ≤ C‖h‖s0 for s0 = [N

2 ] + 1,
to obtain the estimate for this case. Combining these two results then completes
the proof. �

Lemma 2.3. If u, v, a, f , and ρ are sufficiently smooth in

Du/Dt = −a∇ρ + c∇∆ρ + f ,

∇ · u = 0,

where u(x, 0) = u0(x), ∇ · u0 = 0, Ω = TN , where N = 2, 3, and where c is a
positive constant, D/Dt = ∂/∂t + v·∇, and ∇ · v = 0, then for any r ≥ 1, Du and
u satisfy the estimates

‖Du‖2r−1 ≤ Ce2t(1+te2teβ(t)‖Dv‖2r1,T )(‖Du0‖2r−1+
∫ t

0

(‖f‖2r+‖Da‖2r1
‖∇ρ‖2r−1)dτ)

and

‖u‖2r ≤ e2t‖u0‖20 + Ce2t(1 + te2teβ(t)‖Dv‖2r1,T )(‖Du0‖2r−1

+
∫ t

0

(‖f‖2r + ‖Da‖2r1
‖∇ρ‖2r−1)dτ)

where β(t) = te2t‖Dv‖2r1,T . Here r1 = max{r − 1, s0}, and s0 = [N
2 ] + 1 = 2 for

N = 2, 3. The constant C depends on r, Ω.

Proof. First, we obtain an L2 estimate for u. Let ρ̄ = ρ − 1
|Ω|

∫
Ω

ρdx. We then
compute

1
2

d

dt
‖u‖20 = (ut,u)

= −(v · ∇u,u)− (a∇ρ,u) + c(∇∆ρ,u) + (f ,u)

=
1
2
(u∇ · v,u) + (aρ̄,∇ · u) + (ρ̄∇a,u)− c(∆ρ,∇ · u) + (f ,u)

≤ |Da|L∞‖u‖0‖ρ̄‖0 + ‖f‖0‖u‖0

≤ ‖u‖20 +
1
2
|Da|2L∞‖ρ̄‖20 +

1
2
‖f‖20

(2.1)

where we used the facts that ∇ · u = 0, and ∇ · v = 0. And we used Cauchy’s
inequality. After applying Gronwall’s inequality, we obtain the estimate

‖u‖20 ≤ e2t‖u0‖20 + e2t

∫ t

0

C(|Da|2L∞‖ρ̄‖20 + ‖f‖20)dτ, (2.2)

Next, we obtain an estimate for ‖Du‖2r−1. After applying the operator Dγ+α to
the equation for u, where 0 ≤ |α| ≤ r − 1 and |γ| = 1, we obtain

Duγ+α

Dt
= −a∇ργ+α + c∇∆ργ+α + Fγ+α (2.3)
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where Fγ+α = fγ+α− [(v ·∇u)γ+α−v ·∇uγ+α]− [(a∇ρ)γ+α−a∇ργ+α]. For (2.3),
estimate (2.1) becomes

1
2

d

dt
‖uγ+α‖20 ≤ ‖uγ+α‖20 +

1
2
|Da|2L∞‖ρ̄γ+α‖20 +

1
2
‖Fγ+α‖20 (2.4)

Next, we estimate ‖Fγ+α‖20. Using the commutator estimate from Lemma 2.2, we
obtain

‖Fγ+α‖20 ≤ C‖fγ+α‖20 + C‖(v · ∇u)γ+α − v · ∇uγ+α‖20
+ C‖(a∇ρ)γ+α − a∇ργ+α‖20

≤ C‖f‖2k + C‖Dv‖2k1
‖Du‖2k−1 + C‖Da‖2k1

‖∇ρ‖2k−1

(2.5)

where k = |γ + α|, k1 = max{k − 1, s0}, and s0 = [N
2 ] + 1. Here, we used the

triangle inequality and Cauchy’s inequality. Substituting estimate (2.5) into (2.4)
yields

1
2

d

dt
‖uγ+α‖20 ≤ ‖uγ+α‖20 +

1
2
|Da|2L∞‖ρ̄γ+α‖20 + C‖f‖2k

+ C‖Dv‖2k1
‖Du‖2k−1 + C‖Da‖2k1

‖∇ρ‖2k−1

Applying Gronwall’s inequality yields the following:

‖uγ+α‖20 ≤ e2t‖(u0)γ+α‖20 + Ce2t

∫ t

0

(
|Da|2L∞‖ρ̄γ+α‖20 + ‖f‖2k

+ ‖Dv‖2k1
‖Du‖2k−1 + ‖Da‖2k1

‖∇ρ‖2k−1

)
dτ

≤ Ce2t‖Du0‖2k−1 + Ce2t

∫ t

0

(
|Da|2L∞‖ρ̄‖2k + ‖f‖2k

+ ‖Dv‖2k1
‖Du‖2k−1 + ‖Da‖2k1

‖∇ρ‖2k−1

)
dτ,

(2.6)

where |γ| = 1, and |γ + α| = k ≥ 1, and k1 = max{k − 1, s0}, with s0 = [N
2 ] + 1.

After adding the above inequality (2.6) over all γ, where |γ| = 1, and then adding
over all α, where 0 ≤ |α| ≤ r − 1, we obtain the estimate

‖Du‖2r−1 ≤ Ce2t‖Du0‖2r−1 + Ce2t

∫ t

0

(
|Da|2L∞‖ρ̄‖2r + ‖f‖2r

+ ‖Dv‖2r1,T ‖Du‖2r−1 + ‖Da‖2r1
‖∇ρ‖2r−1

)
dτ,

(2.7)

where r1 = max{r − 1, s0}, and where s0 = [N
2 ] + 1 = 2 for N = 2, 3. Here, we

used the fact that
∑

0≤|α|≤r−1

∑
|γ|=1 ‖uγ+α‖20 =

∑
0≤|α|≤r−1

∑N
i=1

∫
Ω
|∂uα

∂xi
|2dx =∑

0≤|α|≤r−1 ‖Duα‖20 = ‖Du‖2r−1. After applying Gronwall’s inequality to (2.7), we
get

‖Du‖2r−1 ≤ Ce2t(1 + te2teβ(t)‖Dv‖2r1,T )(‖Du0‖2r−1

+
∫ t

0

(|Da|2L∞‖ρ̄‖2r + ‖f‖2r + ‖Da‖2r1
‖∇ρ‖2r−1)dτ),

(2.8)
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with β(t) = te2t‖Dv‖2r1,T . Adding the estimates (2.2), (2.8), we obtain

‖u‖2r ≤ (‖u‖20 + C‖Du‖2r−1)

≤ e2t‖u0‖20 + Ce2t(1 + te2teβ(t)‖Dv‖2r1,T )(‖Du0‖2r−1

+
∫ t

0

(|Da|2L∞‖ρ̄‖2r + ‖f‖2r + ‖Da‖2r1
‖∇ρ‖2r−1)dτ)

≤ e2t‖u0‖20 + Ce2t(1 + te2teβ(t)‖Dv‖2r1,T )(‖Du0‖2r−1

+
∫ t

0

(‖f‖2r + ‖Da‖2r1
‖∇ρ‖2r−1)dτ)

where r1 = max{r−1, s0}, and where s0 = [N
2 ]+1 = 2 for N = 2, 3. Here, we used

Poincaré’s inequality to estimate ‖ρ̄‖20 ≤ C‖∇ρ‖20, and ‖ρ̄‖2r ≤ C(‖∇ρ‖2r−1+‖ρ̄‖20) ≤
C‖∇ρ‖2r−1. We also used Sobolev’s lemma |h|L∞ ≤ C‖h‖s0 where s0 = [N

2 ] + 1.
Using the estimate |Da|2L∞‖ρ̄‖2r ≤ C‖Da‖2r1

‖∇ρ‖2r−1 in the right-hand side of (2.8)
completes the proof. �

Lemma 2.4. Let u, w be C1 functions on a bounded, open, connected, convex
domain Ω. And let u(x0) = w(x0) at a single, fixed point x0 ∈ Ω. Then u−w and
u satisfy the estimates

‖u− w‖20 ≤ C‖∇(u− w)‖22,
‖u‖20 ≤ C0‖w‖20 + C0‖∇w‖22 + C0‖∇u‖22

Here C, C0 are constants which depend only on Ω.

Proof. First, we obtain an estimate for ‖u − w‖20. From the mean value theorem,
and since u− w is sufficiently smooth on the convex domain Ω, we have

(u− w)(x) = (u− w)(x0) +∇(u− w)(x∗) · (x− x0)

where x∗ is a point on the line segment joining the points x0 ∈ Ω and x ∈ Ω.
Since we are given that u(x0) = w(x0), at a single fixed point x0 ∈ Ω, it follows

that

(u− w)(x) = ∇(u− w)(x∗) · (x− x0)

Taking the absolute value of both sides yields

|(u− w)(x)| = |∇(u− w)(x∗) · (x− x0)|
≤ |∇(u− w)|L∞ |x− x0|
≤ C|∇(u− w)|L∞

Here C depends only on Ω. Squaring |(u−w)(x)| and integrating over Ω, and using
the above inequality, yields∫

Ω

|(u− w)(x)|2dx ≤ C

∫
Ω

|∇(u− w)|2L∞dx ≤ C‖∇(u− w)‖22

where we used Sobolev’s inequality |h|L∞ ≤ C‖h‖s0 , where s0 = [N
2 ] + 1 = 2 for

N = 2, 3 and C depends on Ω.
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Next, we obtain an estimate for ‖u‖20. From using the triangle inequality and
Cauchy’s inequality, and from using the previous estimate for ‖u−w‖20, we obtain

‖u‖20 ≤ C‖w‖20 + C‖u− w‖20
≤ C‖w‖20 + C‖∇(u− w)‖22
≤ C0‖w‖20 + C0‖∇w‖22 + C0‖∇u‖22

Here C0 is a constant which depends only on Ω. �

Lemma 2.5. If g is a sufficiently smooth function on the domain Ω = TN , then g
satisfies the estimate ‖∇g‖2r ≤ C‖∆g‖2r−1 where r ≥ 1 and C depends on r.

Proof. First, we integrate −∆g by parts with the function ḡ = g − 1
|Ω|

∫
Ω

g dx over
Ω = TN , to obtain

(∇g,∇g) = −(∆g, ḡ)

≤ C(ε)‖∆g‖20 + ε‖ḡ‖20
≤ C(ε)‖∆g‖20 + εC‖∇g‖20

where we used Cauchy’s inequality with ε. We also used Poincaré’s inequality
to estimate ‖ḡ‖20 ≤ C‖∇g‖20. Then Dα is applied, yielding −∆gα, which is then
integrated by parts with the function gα over Ω = TN , to obtain

(∇gα,∇gα) = −(∆gα, gα)

= (∆gα−γ , gα+γ)

≤ C(ε)‖∆gα−γ‖20 + ε‖gα+γ‖20
≤ C(ε)‖∆g‖2k−1 + εC‖∇g‖2k

where |γ| = 1, and |α| = k ≥ 1. Here, we used Cauchy’s inequality with ε. Adding
these two inequalities, for |α| = k ≤ r, and moving the terms containing ε to the
left-hand side, completes the proof. �

Lemma 2.6. If u, v, a, f , and ρ are sufficiently smooth in the equation

∆2ρ =
1
c
∇ · (a∇ρ) +

1
c
∇ · (v · ∇u)− 1

c
∇ · f (2.9)

where c is a positive constant, ∇ · u = 0, ∇ · v = 0, a(x, t) ≥ c1, with c1 > 0,
and where Ω = TN , N = 2, 3, and r ≥ 1, we obtain the following estimates for
‖∆ρ‖20 + ‖∇ρ‖20 and for ‖∇ρ‖2r+1

‖∆ρ‖20 + ‖∇ρ‖20 ≤ C|Dv|2L∞‖Du‖20 + C‖f‖20,
‖∇ρ‖2r+1 ≤ C(‖∆ρ‖2r + ‖∇ρ‖2r)

≤ C‖Da‖2r1
‖∇ρ‖2r−1 + C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1

where r1 = max{r − 1, s0}, r2 = max{r − 2, s0}, with s0 = [N
2 ] + 1, and N = 2, 3.
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Proof. First, we obtain an L2 estimate. Integrating equation (2.9) by parts with ρ̄,
where ρ̄ = ρ− 1

|Ω|
∫
Ω

ρdx, yields

(∆ρ,∆ρ) = (∆2ρ, ρ̄) =
1
c
(∇ · (a∇ρ), ρ̄) +

1
c
(∇ · (v · ∇u), ρ̄)− 1

c
(∇ · f , ρ̄)

= −1
c
(a∇ρ,∇ρ) +

1
c
(∇vT : ∇u, ρ̄) +

1
c
(f ,∇ρ)

≤ −c1

c
‖∇ρ‖20 + C(ε)|Dv|2L∞‖Du‖20 + ε‖ρ̄‖20 + C(ε)‖f‖20 + ε‖∇ρ‖20

≤ −c1

c
‖∇ρ‖20 + C(ε)|Dv|2L∞‖Du‖20 + ε‖∇ρ‖20 + C(ε)‖f‖20 + ε‖∇ρ‖20

where we used Cauchy’s inequality with ε, and where we used the fact that a(x, t) ≥
c1 where c1 > 0. We also used Poincaré’s inequality to estimate ‖ρ̄‖20 ≤ C‖∇ρ‖20.
And we used the fact that ∇ · (v · ∇u) = ∇vT : ∇u, because ∇ · u = 0. Moving
the ‖∇ρ‖20 terms to the left-hand side yields the estimate

‖∆ρ‖20 + ‖∇ρ‖20 ≤ C|Dv|2L∞‖Du‖20 + C‖f‖20 (2.10)

Next, after applying Dα to the equation (2.9), we obtain the equation:

∆2ρα =
1
c
∇ · (a∇ρα) +

1
c
∇ · (v · ∇u)α + Fα (2.11)

where Fα = − 1
c∇ · fα + 1

c [∇ · (a∇ρ)α −∇ · (a∇ρα)]. Integrating equation (2.11) by
parts with ρα, when |α| ≥ 1, yields

(∆ρα,∆ρα) = (∆2ρα, ρα)

=
1
c
(∇ · (a∇ρα), ρα) +

1
c
(∇ · (v · ∇u)α, ρα) + (Fα, ρα)

= −1
c
(a∇ρα,∇ρα) +

1
c
((∇vT : ∇u)α, ρα) + (Fα, ρα)

= −1
c
(a∇ρα,∇ρα)− 1

c
((∇vT : ∇u)α−γ , ρα+γ) + (Fα, ρα)

≤ −c1

c
(∇ρα,∇ρα) + C‖(∇vT : ∇u)α−γ‖0‖ρα+γ‖0 + |(Fα, ρα)|

≤ −c1

c
(∇ρα,∇ρα) + C(ε)‖(∇vT : ·∇u)α−γ‖20 + ε‖ρα+γ‖20 + |(Fα, ρα)|

(2.12)
where |γ| = 1. Here, we used Cauchy’s inequality with ε, and we used the fact that
a(x, t) ≥ c1 where c1 > 0. Next, we estimate the terms on the right-hand side of
the above inequality. First, we estimate ‖(∇vT : ∇u)α−γ‖20. When |α| = 1, we
choose γ = α and obtain

‖(∇vT : ∇u)α−γ‖20 = ‖(∇vT : ∇u)‖20 ≤ C|Dv|2L∞‖Du‖20 (2.13)

Next, we use the triangle inequality and the commutator estimate from Lemma 2.2
to estimate ‖(∇vT : ∇u)α−γ‖20, when |α| > |γ| = 1, obtaining

‖(∇vT : ∇u)α−γ‖20 ≤ C(‖∇vT : ∇uα−γ‖20 + ‖(∇vT : ∇u)α−γ −∇vT : ∇uα−γ‖20)
≤ C|Dv|2L∞‖Duα−γ‖20 + C‖D2v‖2k2

‖Du‖2k−2

≤ C‖Dv‖2k2+1‖Du‖2k−1,

(2.14)
Here |γ| = 1, k = |α|, and k2 = max{k − 2, s0}, with s0 = [N

2 ] + 1. Here, we also
used the Sobolev inequality |h|L∞ ≤ C‖h‖s0 .
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Next, we estimate the following term from the right-hand side of (2.12), obtaining

ε‖ρα+γ‖20 ≤ εC‖∇ρ‖2k (2.15)

where |γ| = 1 and |α| = k.
Next, we use the commutator estimate from Lemma 2.2 to estimate |(Fα, ρα)|

from the right-hand side of (2.12), obtaining

|(Fα, ρα)| ≤ |1
c
(∇ · fα, ρα)|+ |1

c
([∇ · (a∇ρ)α −∇ · (a∇ρα)], ρα)|

= |1
c
(fα−γ ,∇ρα+γ)|+ |1

c
([(a∇ρ)α − a∇ρα],∇ρα)|

≤ C‖f‖k−1‖∇ρ‖k+1 + C‖Da‖k1‖∇ρ‖k−1‖∇ρ‖k

≤ C(ε)‖f‖2k−1 + ε‖∇ρ‖2k+1 + C(ε)‖Da‖2k1
‖∇ρ‖2k−1 + ε‖∇ρ‖2k

(2.16)

where |γ| = 1, k = |α|, and k1 = max{k − 1, s0}, with s0 = [N
2 ] + 1. Again, we

used Cauchy’s inequality with ε. Substituting (2.13)-(2.16) into (2.12), and adding
(2.12) over |α| = k ≤ r, including the L2 estimate (2.10), we obtain for r ≥ 1 the
estimate

‖∆ρ‖2r + ‖∇ρ‖2r ≤ C‖Da‖2r1
‖∇ρ‖2r−1 + C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1

+ εC‖∇ρ‖2r+1 + εC‖∇ρ‖2r,
(2.17)

where r1 = max{r − 1, s0}, r2 = max{r − 2, s0}, with s0 = [N
2 ] + 1. Here, we also

used the Sobolev inequality |h|L∞ ≤ C‖h‖s0 .
From Lemma 2.5, we have ε‖∇ρ‖2r+1 ≤ εC‖∆ρ‖2r. After substituting this esti-

mate into the right-hand side of (2.17), we obtain the estimate

‖∆ρ‖2r + ‖∇ρ‖2r ≤ C‖Da‖2r1
‖∇ρ‖2r−1 + C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1, (2.18)

where we have moved the terms εC‖∆ρ‖2r and εC‖∇ρ‖2r to the left-hand side.
Finally, using the estimate for ‖∇ρ‖2r+1 from Lemma 2.5, we obtain from (2.18) the
estimate

‖∇ρ‖2r+1 ≤ C(‖∆ρ‖2r + ‖∇ρ‖2r)
≤ C‖Da‖2r1

‖∇ρ‖2r−1 + C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1

�

Lemma 2.7. If u, v, a, f , and ρ are sufficiently smooth in

∆2ρ =
1
c
∇ · (a∇ρ) +

1
c
∇ · (v · ∇u)− 1

c
∇ · f (2.19)

where c is a positive constant, ∇ · u = 0, ∇ · v = 0, a(x, t) ≥ c1, with c1 > 0, and
Ω = TN , N = 2, 3, then for r ≥ 1 , ρ satisfies the following estimate

‖∇ρ‖2r+1 ≤ C
(
‖∆ρ‖2r + ‖∇ρ‖2r

)
≤ C

[
1 +

r∑
j=1

‖Da‖2j
r1

]
(‖f‖2r−1 + ‖Dv‖2r2+1‖Du‖2r−1)

where r1 = max{r− 1, s0}, r2 = max{r− 2, s0}, with s0 = [N
2 ] + 1, and C depends

on r.
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Proof. From Lemma 2.6 applied to equation (2.19), we have the estimate

‖∆ρ‖2s + ‖∇ρ‖2s ≤ C‖Da‖2s1
‖∇ρ‖2s−1 + C‖f‖2s−1 + C‖Dv‖2s2+1‖Du‖2s−1 (2.20)

where s ≥ 1, and where s1 = max{s−1, s0}, s2 = max{s−2, s0}, with s0 = [N
2 ]+1.

Letting s = r in the estimate (2.20) yields

‖∆ρ‖2r + ‖∇ρ‖2r ≤ C‖Da‖2r1
‖∇ρ‖2r−1 + C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1 (2.21)

Applying the estimate (2.20), letting s = r−1, to the term C‖Da‖2r1
‖∇ρ‖2r−1 which

appears on the right-hand side of (2.21) yields

‖∆ρ‖2r + ‖∇ρ‖2r ≤ C‖Da‖2r1

[
‖Da‖2r2

‖∇ρ‖2r−2 + ‖f‖2r−2 + ‖Dv‖2r3+1‖Du‖2r−2

]
+ C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1

≤ C‖Da‖4r1
‖∇ρ‖2r−2 + C‖Da‖2r1

(
‖f‖2r−2 + ‖Dv‖2r2+1‖Du‖2r−2

)
+ C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1

(2.22)
where r1 = max{r − 1, s0}, r2 = max{r − 2, s0}, and r3 = max{r − 3, s0}, r3 ≤
r2 ≤ r1, with s0 = [N

2 ] + 1 = 2 for N = 2, 3. Similarly, by repeatedly applying
the estimate (2.20), letting s = r − j, to the term C‖Da‖2j

r1
‖∇ρ‖2r−j , for j =

2, 3, . . . , r − 1, which will appear on the right-hand side of (2.22) yields

‖∆ρ‖2r + ‖∇ρ‖2r ≤ C
r−1∑
j=1

‖Da‖2j
r1

(
‖f‖2r−1−j + ‖Dv‖2r2+1‖Du‖2r−1−j

)
+ C‖Da‖2r

r1
‖∇ρ‖20 + C‖f‖2r−1 + C‖Dv‖2r2+1‖Du‖2r−1

≤ C
[
1 +

r−1∑
j=1

‖Da‖2j
r1

](
‖f‖2r−1 + ‖Dv‖2r2+1‖Du‖2r−1

)
+ C‖Da‖2r

r1
‖∇ρ‖20

(2.23)

Substituting the estimate for ‖∇ρ‖20 from Lemma 2.6 into the right-hand side of
(2.23) yields

‖∆ρ‖2r + ‖∇ρ‖2r ≤ C
[
1 +

r−1∑
j=1

‖Da‖2j
r1

](
‖f‖2r−1 + ‖Dv‖2r2+1‖Du‖2r−1

)
+ C‖Da‖2r

r1

(
‖f‖20 + |Dv|2L∞‖Du‖20

)
≤ C

[
1 +

r∑
j=1

‖Da‖2j
r1

](
‖f‖2r−1 + ‖Dv‖2r2+1‖Du‖2r−1

)
This completes the proof. �

3. Existence theorem

In this section, we prove the existence of a unique classical solution to the initial-
value problem for equations (1.2), (1.3), on any given time interval 0 ≤ t ≤ T , with
periodic boundary conditions, for sufficiently small initial velocity gradient.
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Theorem 3.1. Suppose s > N
2 + 3 and Ω = TN , N = 2, 3. For any given time

interval 0 ≤ t ≤ T , equations (1.2), (1.3) have a unique classical solution ρ, v,
for initial data v0(x) ∈ Hs(Ω), ∇ · v0 = 0, and for given data ρ0(x, t) and x0,
provided Dv0 is sufficiently small. Here ρ0(x, t) is a given positive function with
sufficiently small gradient ∇ρ0, and x0 is a point in the domain Ω. The regularity
of the solution is

ρ ∈ C([0, T ], C5) ∩ L∞([0, T ],Hs+2),

v ∈ C([0, T ], C3) ∩ L∞([0, T ],Hs),
∂v
∂t

∈ C([0, T ], C2) ∩ L∞([0, T ],Hs−1).

and ρ(x, t) ≥ c1, and ρ−1p̂′(ρ)(x, t) ≥ c1, for some positive constant c1, for x ∈ Ω,
and 0 ≤ t ≤ T .

Proof. We will construct the solution of the problem for (1.2), (1.3), with Ω = TN ,
through an iteration scheme. To define the iteration scheme, we will let the sequence
of approximate solutions be vk and ρk. Set v0(x, t) = v0(x), the initial velocity
data, and set ρ0(x, t) ∈ C([0, T ], C5) ∩ L∞([0, T ],Hs+2) to be a positive function
satisfying ‖∇ρ0‖s+1,T ≤ ‖Dv0‖s−1. For k = 0, 1, 2, . . . , construct vk+1, ρk+1 from
the previous iterates vk, ρk by solving the linear system of equations

Dkvk+1

Dt
+ (ρk)−1p̂′(ρk)∇ρk+1 = c∇∆ρk+1, (3.1)

∇ · vk+1 = 0, (3.2)

where Dk/Dt = ∂/∂t + vk · ∇, and with initial data vk+1(x, 0) = v0(x). Since the
solution ρk+1 is unique up to an arbitrary function of t, we specify that the solution
ρk+1 satisfy ρk+1(x0, t) = ρk(x0, t) at a single, fixed point x0 ∈ Ω, for all k ≥ 0.
Hence ρk+1(x0, t) = ρ0(x0, t).

Existence of a sufficiently smooth solution to equations (3.1), (3.2) for fixed k
follows from the results stated in Section 4. We proceed now to prove convergence
of the iterates as k → ∞ to a unique classical solution of (1.2), (1.3). We assume
that p is a sufficiently smooth function of the thermodynamic state variable ρ in an
open interval G ⊂ R. We fix connected, bounded open sets G0 and G1 such that
Ḡ0 ⊂ G1 and Ḡ1 ⊂ G, and we require that the initial iterate ρ0 satisfies ρ0 ∈ G0.
We fix δ = δ̂(G0, G1) so that 0 < δ < dist(Ḡ0, ∂G1); therefore if |ρk − ρ0|L∞ ≤ δ,
then ρk(x, t) ∈ G1 for all x ∈ TN , and for t ∈ [0, T ]. The values of ρk ∈ G1 are
assumed to be strictly positive, bounded, and bounded away from zero. And the
values of (ρk)−1p̂′(ρk) for ρk ∈ G1 are also assumed to be strictly positive, bounded,
and bounded away from zero. Using a proof by induction on k, we assume that
ρk ∈ G1, and then later we will show that ρk+1 ∈ G1. First, we proceed with
the proof of uniform boundedness of the approximating sequence in a high Sobolev
norm.

Proposition 3.2. Assume that the hypotheses of Theorem 3.1 hold. Let ρ0, v0

satisfy C0‖ρ0‖20 + C0‖∇ρ0‖22 ≤ L2
0 and e2T ‖v0‖20 ≤ L2

0, where L0 is a constant and
where C0 is the constant from Lemma 2.4. There are constants ε0, L1, L2, L3,
where 0 < ε0 < 1, such that the following estimates hold for k = 1, 2, 3 . . . , provided
‖Dv0‖s−1 is sufficiently small:

(a) ‖∇ρk‖2s+1,T ≤ ε0, ‖ρk‖s+2,T ≤ L1,
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(b) ‖Dvk‖2s−1,T ≤ ε0, ‖vk‖s,T ≤ L2,
(c) ‖∂vk/∂t‖2s−1,T ≤ ε0L3.

Proof. The proof is by induction on k. We show only the inductive step. We will
derive estimates for ρk+1 and vk+1, and then use these estimates to prescribe ε0,
L1, L2, L3 a priori, independent of k, so that if ρk and vk satisfy the estimates in
(a)-(c), then ρk+1 and vk+1 also satisfy the same estimates. And we will show that
ε0 will be small if ‖Dv0‖s−1 is sufficiently small. In the estimates below, we use
C to denote a generic constant whose value may change from one instance to the
next, but is independent of ε0, L1, L2, and L3.

Estimate for ∇ρk+1: Applying the divergence operator to equation (3.1), we
obtain

c∆2ρk+1 −∇ · ((ρk)−1p̂′(ρk)∇ρk+1) = ∇ · (vk · ∇vk+1) (3.3)

where we used the fact that ∇ · vk+1 = 0, and where c is a positive constant.
Applying Lemma 2.7 we obtain from the above equation the following estimate for
∇ρk+1, for s > N

2 + 3

‖∇ρk+1‖2s+1 ≤ C(‖∆ρk+1‖2s + ‖∇ρk+1‖2s)

≤ C[1 +
s∑

j=1

‖D((ρk)−1p̂′(ρk))‖2j
s1

]‖Dvk‖2s2+1‖Dvk+1‖2s−1

≤ C1‖Dvk‖2s−1‖Dvk+1‖2s−1

(3.4)

where C1 = Ĉ1(L1). Here, s1 = max{s−1, s0} = s−1, s2 = max{s−2, s0} = s−2,
where s0 = [N

2 ] + 1 = 2, and s > N
2 + 3, so s ≥ 5 for N = 2, 3. And we used the

induction hypothesis for ρk, vk.

Estimate for ρk+1: To obtain an L2 estimate for ρk+1, we apply Lemma 2.4,
where we define u = ρk+1 and we define w = ρ0 , to be used for the functions
u, w appearing in Lemma 2.4. Note that since by hypothesis we have ρk+1(x0, t) =
ρ0(x0, t) at a single fixed point x0 ∈ Ω, the hypotheses of Lemma 2.4 are satisfied,
and so we obtain the estimate

‖ρk+1‖20 ≤ C0‖ρ0‖20 + C0‖∇ρ0‖22 + C0‖∇ρk+1‖22
≤ L2

0 + C2‖Dvk‖2s0+1‖Dvk+1‖21
≤ L2

0 + C2‖Dvk‖2s−1‖Dvk+1‖21

(3.5)

where C0 is the constant from Lemma 2.4 (recall C0 depends only on Ω), and where
C2 = Ĉ2(L1). Here we used the estimate for ‖∆ρk+1‖22 + ‖∇ρk+1‖22 from applying
Lemma 2.7 to (3.3) with r = 2. We also used the hypothesis that C0‖ρ0‖20 +
C0‖∇ρ0‖22 ≤ L2

0. Adding the estimates (3.4), (3.5) yields the following estimate for
ρk+1,

‖ρk+1‖2s+2 ≤ ‖ρk+1‖20 + C‖∇ρk+1‖2s+1

≤ L2
0 + C3‖Dvk‖2s−1‖Dvk+1‖2s−1

(3.6)

where C3 = Ĉ3(L1).
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Estimate for vk+1: Applying Lemma 2.3 to equations (3.1), (3.2), we obtain for
Dvk+1 the estimate

‖Dvk+1‖2s−1 ≤ Ce2T (1 + Te2T eβ(T )‖Dvk‖2s−1,T )(‖Dv0‖2s−1

+
∫ t

0

(‖D((ρk)−1p̂′(ρk))‖2s1
‖∇ρk+1‖2s−1)dτ)

≤ Ce2T (1 + Te2T eTe2T

)(‖Dv0‖2s−1 + C4

∫ t

0

‖∇ρk+1‖2s−1dτ)

≤ C5‖Dv0‖2s−1 + C5

∫ t

0

‖Dvk‖2s−1,T ‖Dvk+1‖2s−1dτ

≤ C5‖Dv0‖2s−1 + C5

∫ t

0

‖Dvk+1‖2s−1dτ

(3.7)

where β(T ) = Te2T ‖Dvk‖2s−1,T . Here, we used (3.4) to estimate ‖∇ρk+1‖2s−1,
and we used the fact that by the induction hypothesis, ‖Dvk‖2s−1,T ≤ ε0, where
0 < ε0 < 1. And here C4 = Ĉ4(L1, T ), C5 = Ĉ5(L1, T ).

Applying Gronwall’s inequality yields the estimate

‖Dvk+1‖2s−1 ≤ C6‖Dv0‖2s−1 (3.8)

where C6 = Ĉ6(L1, T ). We now choose ε0 to satisfy ε0 = C6‖Dv0‖2s−1. It follows
that ‖Dvk+1‖2s−1,T ≤ ε0.

Substituting the estimate (3.8) for ‖Dvk+1‖2s−1 into the right-hand side of (3.4),
(3.6) yields the following estimates for ‖∇ρk+1‖2s+1 and ‖ρk+1‖2s+2:

‖∇ρk+1‖2s+1 ≤ C1‖Dvk‖2s−1‖Dvk+1‖2s−1 ≤ ε0C1C6‖Dv0‖2s−1,

‖ρk+1‖2s+2 ≤ L2
0 + C3‖Dvk‖2s−1‖Dvk+1‖2s−1 ≤ L2

0 + ε0C3C6‖Dv0‖2s−1

Therefore, we have ‖ρk+1‖s+2,T ≤ L1 and we have ‖∇ρk+1‖2s+1,T ≤ ε0, pro-
vided that we choose L1 large enough so that 1

2L2
1 > L2

0, and provided that we
choose ‖Dv0‖s−1 small enough so that ε0C3C6‖Dv0‖2s−1 < 1

2L2
1, and provided that

we choose ‖Dv0‖s−1 small enough so that C1C6‖Dv0‖2s−1 < 1. We also choose
‖Dv0‖s−1 small enough so that C6‖Dv0‖2s−1 < 1; therefore, we have 0 < ε0 < 1,
since ε0 = C6‖Dv0‖2s−1. (Note that ε0 will be small if ‖Dv0‖s−1 is sufficiently
small.) This completes the proof of part (a).

Next, by applying Lemma 2.3 to (3.1), (3.2), and using the estimates (3.4), (3.7),
(3.8), we have the estimate

‖vk+1‖2s ≤ e2T ‖v0‖20 + Ce2T (1 + Te2T eβ(T )‖Dvk‖2s−1,T )(‖Dv0‖2s−1

+
∫ t

0

(‖D((ρk)−1p̂′(ρk))‖2s1
‖∇ρk+1‖2s−1)dτ)

≤ L2
0 + C7‖Dv0‖2s−1 + C7

∫ t

0

‖Dvk+1‖2s−1dτ

≤ L2
0 + C7‖Dv0‖2s−1 + C8‖Dv0‖2s−1

with β(T ) = Te2T ‖Dvk‖2s−1,T . Here s1 = max{s− 1, s0} = s− 1, s > N
2 + 3, and

s0 = [N
2 ] + 1 = 2 for N = 2, 3. We also used the hypothesis that e2T ‖v0‖20 ≤ L2

0,
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and that ‖Dvk‖2s−1,T ≤ ε0, where 0 < ε0 < 1. And here C7 = Ĉ7(L1, T ), C8 =
Ĉ8(L1, T ).

Therefore, we have ‖vk+1‖s,T ≤ L2 provided that we choose L2 large enough so
that 1

2L2
2 > L2

0, and so that 1
2L2

2 > (C7 + C8)‖Dv0‖2s−1. This completes the proof
of part (b). We next consider part (c).

Estimate for vk+1
t : Directly from equation (3.1) for vk+1

t , and the estimates
already derived for ρk+1 and vk+1, we deduce that ‖vk+1

t ‖2s−1 ≤ C9(‖Dvk+1‖2s−1 +
‖∇ρk+1‖2s+1) ≤ 2ε0C9, where C9 = Ĉ9(L1, L2, T ). Thus ‖vk+1

t ‖2s−1,T ≤ ε0L3

provided we choose L3 sufficiently large so that L3 ≥ 2C9.
Summarizing, if we choose ‖Dv0‖s−1 to be sufficiently small, then ρk and vk

satisfy the estimates in (a)-(c) for all k ≥ 1. This completes the proof of Proposition
3.2. �

Next, we give the proof of contraction in low Sobolev norm.

Proposition 3.3. Assume that the hypotheses of Theorem 3.1 hold. Then we have

‖ρk+1 − ρk‖22,T + ‖vk+1 − vk‖22,T ≤ ζ
(
‖ρk − ρk−1‖22,T + ‖vk − vk−1‖22,T

)
for k = 1, 2, 3 . . . . Here ζ is a constant such that 0 < ζ < 1. And |ρk+1−ρ0|L∞ ≤ δ;
hence, ρk ∈ G1, for all k.

Proof. Subtracting the equations (3.1), (3.2) for ρk and vk from the equations (3.1),
(3.2) for ρk+1 and vk+1 yields equations which we write in the form

Dk(vk+1 − vk)
Dt

+ (ρk)−1p̂′(ρk)∇(ρk+1 − ρk)

= c∇∆(ρk+1 − ρk)− (vk − vk−1) · ∇vk

− (
(
(ρk)−1p̂′(ρk)− (ρk−1)−1p̂′(ρk−1)

)
∇ρk,

(3.9)

∇ · (vk+1 − vk) = 0, (3.10)

where Dk/Dt = ∂/∂t + vk · ∇, and where (vk+1 − vk)(x, 0) = 0. Using a proof by
induction on k, we assume that ρk ∈ G1, and then we will show that ρk+1 ∈ G1.
First, we obtain estimates for ρk+1 − ρk and vk+1 − vk.
Estimate for ρk+1 − ρk: Applying the divergence operator to (3.9) yields

c∆2(ρk+1 − ρk)−∇ · ((ρk)−1p′(ρk)∇(ρk+1 − ρk))

= ∇ · (vk · ∇(vk+1 − vk)) +∇ · ((vk − vk−1) · ∇vk)

+∇ · (((ρk)−1p′(ρk)− (ρk−1)−1p′(ρk−1))∇ρk)

(3.11)

Applying Lemma 2.7 to equation (3.11) with r = 2 yields the estimate

‖∆(ρk+1 − ρk)‖22 + ‖∇(ρk+1 − ρk‖22

≤ C[1 +
2∑

j=1

‖D((ρk)−1p′(ρk))‖2j
2 ](‖Dvk‖23‖D(vk+1 − vk)‖21

+ ‖(vk − vk−1) · ∇vk‖21 + ‖((ρk)−1p′(ρk)− (ρk−1)−1p′(ρk−1))∇ρk‖21)

≤ C1‖Dvk‖23‖vk+1 − vk‖22 + C1‖Dvk‖22‖vk − vk−1‖22 + C1‖∇ρk‖22‖ρk − ρk−1‖22
(3.12)
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where C1 = Ĉ1(L1) from Proposition 3.2. Here we used the Sobolev calculus
inequality ‖fg‖r ≤ C‖f‖r‖g‖r for r = 2 > N

2 .
To obtain an L2 estimate for ρk+1, we apply Lemma 2.4, where we define u =

ρk+1 and we define w = ρk , to be used for the functions u, w appearing in Lemma
2.4. Note that since by hypothesis we have ρk+1(x0, t) = ρk(x0, t) for all k ≥ 0, at
a single fixed point x0 ∈ Ω, the hypotheses of Lemma 2.4 are satisfied, and so we
obtain the estimate

‖ρk+1 − ρk‖20 ≤ C‖∇(ρk+1 − ρk)‖22
≤ C2‖Dvk‖23‖vk+1 − vk‖22 + C2‖Dvk‖22‖vk − vk−1‖22

+ C2‖∇ρk‖22‖ρk − ρk−1‖22

(3.13)

where we used the estimate for ‖∆(ρk+1 − ρk)‖22 + ‖∇(ρk+1 − ρk)‖22 from (3.12).
Here C2 = Ĉ2(L1) from Proposition 3.2.

Now, adding (3.12), (3.13), we obtain the estimate

‖ρk+1 − ρk‖22 ≤ ‖ρk+1 − ρk‖20 + C‖∇(ρk+1 − ρk)‖21
≤ ‖ρk+1 − ρk‖20 + C(‖∇(ρk+1 − ρk)‖22 + ‖∆(ρk+1 − ρk)‖22)

≤ C3‖Dvk‖23‖vk+1 − vk‖22 + C3‖Dvk‖22‖vk − vk−1‖22
+ C3‖∇ρk‖22‖ρk − ρk−1‖22

≤ C3

(
‖vk+1 − vk‖22 + ε0‖vk − vk−1‖22 + ε0‖ρk − ρk−1‖22

)
(3.14)

where C3 = Ĉ3(L1). Here, we used the Proposition 3.2 estimates ‖Dvk‖22 ≤
‖Dvk‖23 ≤ ‖Dvk‖2s−1,T ≤ ε0, and ‖∇ρk‖22 ≤ ‖∇ρk‖2s+1,T ≤ ε0, where 0 < ε0 < 1,
and where ε0 is as small as we like if ‖Dv0‖s−1 is sufficiently small.
Estimate for vk+1−vk: After applying Lemma 2.3 to (3.9), using r = 2, we obtain

‖vk+1 − vk‖22 ≤ C4

∫ t

0

‖Dvk‖22‖vk − vk−1‖22dτ + C4

∫ t

0

‖∇(ρk+1 − ρk)‖21dτ

+ C4

∫ t

0

‖∇ρk‖22‖(ρk)−1p′(ρk)− (ρk−1)−1p′(ρk−1)‖22dτ

≤ C5

∫ t

0

(
‖vk+1 − vk‖22 + ε0‖vk − vk−1‖22 + ε0‖ρk − ρk−1‖22

)
dτ

(3.15)
with C4 = Ĉ4(L1, L2, T ) and C5 = Ĉ5(L1, L2, T ), and where we substituted the
estimate for ‖∇(ρk+1 − ρk)‖21 from (3.14). Here, we used the estimates ‖Dvk‖22 ≤
‖Dvk‖2s−1,T ≤ ε0, and ‖∇ρk‖22 ≤ ‖∇ρk‖2s+1,T ≤ ε0 from Proposition 3.2.

Next, we apply Gronwall’s inequality to (3.15), which yields

‖vk+1 − vk‖22 ≤ C6

∫ t

0

(ε0‖vk − vk−1‖22 + ε0‖ρk − ρk−1‖22)dτ

≤ C7

(
ε0‖vk − vk−1‖22,T + ε0‖ρk − ρk−1‖22,T

) (3.16)

where C6 = Ĉ6(L1, L2, T ), C7 = Ĉ7(L1, L2, T ).
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Substituting (3.16) into the right-hand side of (3.14) yields

‖ρk+1 − ρk‖22 ≤ C3C7

(
ε0‖vk − vk−1‖22,T + ε0‖ρk − ρk−1‖22,T

)
+ C3

(
ε0‖vk − vk−1‖22 + ε0‖ρk − ρk−1‖22

)
Adding the above estimate for ‖ρk+1 − ρk‖22 to the estimate (3.16) yields

‖ρk+1 − ρk‖22 + ‖vk+1 − vk‖22 ≤ C3C7

(
ε0‖vk − vk−1‖22,T + ε0‖ρk − ρk−1‖22,T

)
+ C3

(
ε0‖vk − vk−1‖22 + ε0‖ρk − ρk−1‖22

)
+ C7(ε0‖vk − vk−1‖22,T + ε0‖ρk − ρk−1‖22,T )

Finally, after choosing ε0 sufficiently small, we get

‖ρk+1 − ρk‖22,T + ‖vk+1 − vk‖22,T ≤ ζ
(
‖ρk − ρk−1‖22,T + ‖vk − vk−1‖22,T

)
(3.17)

where 0 < ζ < 1. This completes the proof of the first part of Proposition 3.3. It
only remains to prove that |ρk+1 − ρ0|L∞ ≤ δ, so that ρk+1 ∈ G1.
Proof that |ρk+1−ρ0|L∞ ≤ δ: Repeated application of the estimate (3.17) yields

‖vk+1 − vk‖22,T + ||ρk+1 − ρk‖22,T ≤ ζk
(
‖v1 − v0‖22,T + ‖ρ1 − ρ0‖22,T

)
(3.18)

where 0 < ζ < 1. Next, we estimate

|ρk+1 − ρ0|2 ≤ C
k∑

j=0

|ρj+1 − ρj |2L∞

≤ C

k∑
j=0

‖ρj+1 − ρj‖2s0
≤ C

k∑
j=0

‖ρj+1 − ρj‖22,T

≤ C
k∑

j=0

ζj
(
‖ρ1 − ρ0‖22,T + ‖v1 − v0‖22,T

)
(3.19)

where we used (3.18) in the last step. We also used the triangle inequality and
Cauchy’s inequality and Sobolev’s inequality |h|L∞ ≤ C‖h‖s0 . Here s0 = [N

2 ]+1 =
2 for N = 2, 3. Thus, we have |ρk+1 − ρ0| ≤ δ, provided that ‖ρ1 − ρ0‖2,T and
‖v1−v0‖2,T are sufficiently small. We now proceed to show that ‖ρ1− ρ0‖2,T and
‖v1 − v0‖2,T can be made sufficiently small.

From equations (3.1), (3.2), we obtain the following equations for v1 − v0 and
ρ1 − ρ0,

D0(v1 − v0)
Dt

+ (ρ0)−1p̂′(ρ0)∇(ρ1 − ρ0)

= c∇∆(ρ1 − ρ0)− v0 · ∇v0 − (ρ0)−1p̂′(ρ0)∇ρ0 + c∇∆ρ0,

∇ · (v1 − v0) = 0,

(3.20)

where D0/Dt = ∂/∂t + v0 · ∇, and where (v1 − v0)(x, 0) = 0. Here, we used the
fact that v0(x, t) = v0(x). Now we obtain estimates for ρ1 − ρ0 and v1 − v0.

Estimate for ρ1 − ρ0: Applying the divergence operator to (3.20), we obtain

c∆2(ρ1 − ρ0)−∇ · ((ρ0)−1p̂′(ρ0)∇(ρ1 − ρ0))

= ∇ · (v0 · ∇(v1 − v0)) +∇ · (v0 · ∇v0)

+∇ · ((ρ0)−1p̂′(ρ0)∇ρ0)− c∆2ρ0

(3.21)
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Applying Lemma 2.7 to (3.21) with r = 2, we obtain the estimate

‖∆(ρ1 − ρ0)‖22 + ‖∇(ρ1 − ρ0)‖22 ≤ C8(‖Dv0‖23‖D(v1 − v0)‖21 + ‖v0 · ∇v0‖21
+ ‖(ρ0)−1p̂′(ρ0)∇ρ0‖21 + ‖∇∆ρ0‖21)

(3.22)
where C8 = Ĉ8(L1). Next, we apply Lemma 2.4 and obtain the L2 estimate

‖ρ1 − ρ0‖20 ≤ C‖∇(ρ1 − ρ0)‖22
≤ C9(‖Dv0‖23‖D(v1 − v0)‖21 + ‖v0 · ∇v0‖21

+ ‖(ρ0)−1p̂′(ρ0)∇ρ0‖21 + ‖∇∆ρ0‖21)
(3.23)

where C9 = Ĉ9(L1). And we used estimate (3.22) for ‖∇(ρ1 − ρ0)‖22.
Adding the estimates (3.22), (3.23) yields the following estimate for ρ1 − ρ0:

‖ρ1 − ρ0‖22 ≤ C
(
‖ρ1 − ρ0‖20 + ‖∇(ρ1 − ρ0)‖21

)
≤ C10(‖Dv0‖23‖D(v1 − v0)‖21 + ‖v0 · ∇v0‖22

+ ‖(ρ0)−1p̂′(ρ0)∇ρ0‖22 + ‖∇∆ρ0‖21)
≤ C11(‖Dv0‖23‖v1 − v0‖22 + ‖v0‖22‖Dv0‖22

+ ‖(ρ0)−1p̂′(ρ0)‖22‖∇ρ0‖22 + ‖∇ρ0‖23)

(3.24)

where C10 = Ĉ10(L1), C11 = Ĉ11(L1). Here we used the Sobolev calculus inequality
‖fg‖r ≤ C‖f‖r‖g‖r for r = 2 > N

2 .

Estimate for v1−v0: After applying Lemma 2.3 to (3.20), using r = 2, we
obtain

‖v1 − v0‖22 ≤ C12

∫ t

0

(
‖v0 · ∇v0‖22 + ‖(ρ0)−1p̂′(ρ0)∇ρ0‖22

)
dτ

+ C12

∫ t

0

(
‖∇∆ρ0‖22 + ‖∇(ρ1 − ρ0)‖21

)
dτ

≤ C13

∫ t

0

(
‖v0‖22‖Dv0‖22 + ‖(ρ0)−1p̂′(ρ0)‖22‖∇ρ0‖22

)
dτ

+ C13

∫ t

0

(
‖∇ρ0‖24 + ‖Dv0‖23‖v1 − v0‖22

)
dτ

(3.25)

where C12 = Ĉ12(L1, L2), C13 = Ĉ13(L1, L2), and where we substituted the esti-
mate for ‖∇(ρ1−ρ0)‖21 from (3.24). Next, we apply Gronwall’s inequality to (3.25),
which yields

‖v1 − v0‖22 ≤ C14

∫ t

0

(
‖v0‖22‖Dv0‖22 + ‖(ρ0)−1p̂′(ρ0)‖22‖∇ρ0‖22 + ‖∇ρ0‖24

)
dτ

≤ C15

(
‖Dv0‖2s−1 + ‖∇ρ0‖24,T

)
≤ 2C15‖Dv0‖2s−1

(3.26)
where we used the fact that v0(x, t) = v0(x), and we used the fact that ‖∇ρ0‖24,T ≤
‖∇ρ0‖2s+1,T ≤ ‖Dv0‖2s−1, by hypothesis. Here C14 = Ĉ14(L1, L2, T ) and C15 =
Ĉ15(L1, L2, T ). Finally, we substitute the above estimate (3.26) into the right-hand
side of the estimate (3.24) for ‖ρ1 − ρ0‖22, which yields

‖ρ1 − ρ0‖22 ≤ C16‖Dv0‖2s−1 (3.27)
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where C16 = Ĉ16(L1, L2, T ) and where we used the fact that ‖∇ρ0‖22 ≤ ‖∇ρ0‖23 ≤
‖∇ρ0‖2s+1,T ≤ ‖Dv0‖2s−1, by hypothesis. From (3.19), (3.26), and (3.27), we see
that |ρk+1−ρ0|L∞ ≤ δ, for ‖Dv0‖s−1 sufficiently small. And so ρk+1 ∈ G1. It thus
follows from the proof by induction on k that ρk ∈ G1 for all k. This completes the
proof of Proposition 3.3. �

Using Propositions 3.2 and 3.3, we now complete the proof of Theorem 3.1. From
(3.18), it follows that

∞∑
k=1

(
‖vk+1 − vk‖22,T + ‖ρk+1 − ρk‖22,T

)
< ∞.

Hence, ‖vk+1 − vk‖22,T → 0 and ‖ρk+1 − ρk‖22,T → 0 as k → ∞. Therefore, we
conclude that there exist v ∈ C([0, T ],H2(Ω)) and ρ ∈ C([0, T ],H2(Ω)) so that
‖vk−v‖2,T → 0, and ‖ρk−ρ‖2,T → 0, as k →∞. Using the interpolation inequali-
ties ‖f‖r′+2 ≤ C‖f‖α

2 ‖f‖1−α
r+2 , with α = (r− r′)/r, and ‖g‖r′ ≤ C‖g‖β

2‖g‖1−β
r , with

β = (r − r′)/(r − 2), with r′ < r, where r ≥ 5, and using Proposition 3.2, we can
conclude that ‖ρk − ρ‖s′+2,T → 0 and ‖vk − v‖s′,T → 0, as k →∞ for any s′ < s.
For s′ > N

2 + 3, Sobolev’s lemma implies that vk → v in C([0, T ], C3) and ρk → ρ

in C([0, T ], C5). From the linear system of equations (3.1), (3.2) it follows that
‖vk

t − vt‖s′−1,T → 0, as k → ∞, so that vk
t → vt in C([0, T ], C2), and ρ, v, is a

classical solution of the system of equations (1.2), (1.3). The additional facts that
v ∈ L∞([0, T ],Hs), and ρ ∈ L∞([0, T ],Hs+2) can be deduced using boundedness
in high norm and a standard compactness argument (see, for example, [5, 10]).

To prove uniqueness, let ρ1, v1, and let ρ2, v2, be any solutions of (1.2), (1.3)
having the regularity of solutions from Theorem 3.1, and satisfying ρ1(x0, t) =
ρ2(x0, t) = ρ0(x0, t) at a single fixed point x0 ∈ Ω. Here, ρ0 is the initial iterate
from Theorem 3.1. And we assume that ‖Dv0‖s−1 is sufficiently small. We next
show that ρ1 = ρ2 and v1 = v2.

Let ρ = limk→∞ ρk+1, v = limk→∞ vk+1, where {ρk+1, vk+1}, k ≥ 0, is a
sequence of solutions to the linear equations (3.1), (3.2), so that ρ, v is a solution
of (1.2), (1.3) from Theorem 3.1. We next show that ρ1 = ρ and v1 = v. It then
follows that the solution to (1.2), (1.3) is unique, because repeating the proof given
below will also show that ρ2 = ρ and v2 = v, and so we will obtain

‖ρ2 − ρ1‖2,T + ‖v2 − v1‖2,T

≤ ‖ρ2 − ρ‖2,T + ‖ρ1 − ρ‖2,T + ‖v2 − v‖2,T + ‖v1 − v‖2,T = 0

Therefore, we now show that ρ1 = ρ and v1 = v.
Subtracting the equations (1.2), (1.3) for ρ1 and v1 from the equations (1.2),

(1.3) for ρ and v yields equations which we write in the form

D1(v − v1)
Dt

+ (ρ1)−1p̂′(ρ1)∇(ρ− ρ1)

= c∇∆(ρ− ρ1)− (v − v1) · ∇v − ((ρ)−1p̂′(ρ)− (ρ1)−1p̂′(ρ1))∇ρ,

∇ · (v − v1) = 0,

where D1/Dt = ∂/∂t + v1 · ∇, where (v − v1)(x, 0) = 0. Repeating the proof of
Proposition 3.3 yields the estimate

‖ρ− ρ1‖22,T + ‖v − v1‖22,T ≤ ζ
(
‖ρ− ρ1‖22,T + ‖v − v1‖22,T

)
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where 0 < ζ < 1. Note that in repeating the proof of the estimates (3.14), (3.15) in
the proof of Proposition 3.3, we use the fact that ‖Dv‖2s−1,T ≤ ε0 and ‖∇ρ‖2s+1,T ≤
ε0, which holds since ρ, v is a solution from Theorem 3.1. Finally, after moving
the right-hand side of the above inequality to the left-hand side, we obtain ‖ρ −
ρ1‖22,T + ‖v − v1‖22,T = 0 and so the solution is unique. �

A Final Remark. We sketch a proof that ∂ρ/∂t is small. Then, since we already
know that ∇ρ is small, it follows that the conservation of mass equation is approx-
imately satisfied. Therefore, the model equations (1.2), (1.3) might be useful as
an approximation in the case of almost constant density, and nearly incompressible
fluid flow with a small velocity gradient.

Proceeding formally, we differentiate equation (1.3) with respect to t, obtaining

∂2v
∂t2

+ v · ∇vt + vt · ∇v + ρ−1p̂′(ρ)∇ρt +
∂

∂ρ
(ρ−1p̂′(ρ))ρt∇ρ = c∇∆ρt

Applying the divergence operator to this equation yields

c∆2ρt−∇·((ρ)−1p̂′(ρ)∇ρt) = ∇·( ∂

∂ρ
(ρ−1p̂′(ρ))ρt∇ρ)+∇·(v ·∇vt)+∇·(vt ·∇v)

where we used the fact that ∇·v = 0, and where c is a positive constant. Applying
Lemma 2.7 we obtain from the above equation the following estimate for ∇ρt,

‖∇ρt‖23 ≤ C(‖∆ρt‖22 + ‖∇ρt‖22)

≤ C[1 +
2∑

j=1

‖D((ρ)−1p̂′(ρ))‖2j
2 ](‖Dv‖23‖Dvt‖21 + ‖vt · ∇v‖21

+ ‖ ∂

∂ρ
(ρ−1p̂′(ρ))ρt∇ρ‖21)

≤ C17(‖Dv‖23‖vt‖22 + ‖ρt‖22‖∇ρ‖22)

(3.28)

where C17 = Ĉ17(L1, T ). Next, by Lemma 2.4 we have the L2 estimate

‖ρt‖20 ≤ C0‖ρ0
t‖20 + C0‖∇ρ0

t‖22 + C0‖∇ρt‖22
≤ C18(‖ρ0

t‖20 + ‖∇ρ0
t‖22 + ‖Dv‖23‖vt‖22 + ‖ρt‖22‖∇ρ‖22)

(3.29)

where C18 = Ĉ18(L1, T ) and where we used the estimate for ‖∆ρt‖22 + ‖∇ρt‖22
from (3.28). Here, ρ0 is the initial iterate as defined in Theorem 3.1. Note that
by definition of ρ0, we have ρt(x0, t) = ρ0

t (x0, t) at the single fixed point x0 ∈ Ω.
Also, we now specify that ‖ρ0

t‖0,T ≤ ‖Dv0‖s−1 and ‖∇ρ0
t‖2,T ≤ ‖Dv0‖s−1, as an

additional hypothesis for ρ0. Recall that ε0 = C6‖Dv0‖2s−1 where C6 = Ĉ6(L1, T ),
from Proposition 3.2. Then adding the estimates (3.28), (3.29) yields the following
estimate for ρt:

‖ρt‖23 ≤ C(‖ρt‖20 + ‖∇ρt‖22) ≤ C19(‖ρ0
t‖20 + ‖∇ρ0

t‖22 + ‖Dv‖23‖vt‖22 + ‖ρt‖22‖∇ρ‖22)
≤ C20(ε0 + ε0‖vt‖22 + ε0‖ρt‖23)

where C19 = Ĉ19(L1, T ), C20 = Ĉ20(L1, T ) and where we used the facts that
‖Dv‖23 ≤ ε0, and ‖∇ρ‖22 ≤ ε0 from Proposition 3.2. After moving the term ε0‖ρt‖23
to the left-hand side, and substituting the estimate for vt from Proposition 3.2, we
then obtain the estimate

‖ρt‖23 ≤ ε0C21
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where C21 = Ĉ21(L1, L3, T ). Therefore, ρt is small, since ε0 will be small if
‖Dv0‖s−1 is sufficiently small.

4. Existence for the linear case

In this section, we sketch the proof of the existence of a solution to the linear
equations (3.1), (3.2). Before going into the existence proof, which appears in
Lemma 4.5, we first collect some preliminary technical facts. We recall that every
vector field u ∈ L2(TN ) admits a unique orthogonal decomposition in terms of a
solenoidal vector field w and a potential ∇φ, so that u = w +∇φ, where w = Pu
and ∇φ = Qu. Moreover, if u ∈ Hs(TN ), with s ≥ 1, then w and φ satisfy ∇·w =0,
∆φ = ∇ · u. The next lemma, due to Embid [5], provides us with an estimate that
will be useful for the existence proof.

Lemma 4.1. If u, v ∈ Hr(Ω), r > N
2 +3, Ω = TN , then Q(v·∇Pu) ∈ Hr(Ω) and

‖Q(v·∇Pu)‖r ≤ C‖v‖r‖u‖r.

For a proof of this lemma, see Embid [5]. To prove existence of a solution to
(3.1), (3.2), we need the following lemmas.

Lemma 4.2. Given a ∈ Hr(Ω), f ∈ Hr(Ω), r > N
2 + 3, Ω = TN , then P (a∇f) ∈

Hr(Ω), and ‖P (a∇f)‖r ≤ C‖Da‖r−1‖∇f‖r−1, where P is the projection onto the
solenoidal vector field.

Proof. First, from the orthogonality property of the projection P , we obtain an L2

estimate as follows:

‖P (a∇f)‖0 = ‖P (f̄∇a)‖0 ≤ ‖f̄∇a‖0 ≤ C|Da|L∞‖f̄‖0 ≤ C|Da|L∞‖∇f‖0.

where f̄ = f − 1
|Ω|

∫
Ω

fdx. Here, we used Poincaré’s inequality to estimate ‖f̄‖0 ≤
C‖∇f‖0.

Next, from the orthogonality property of the projection P , and using the commu-
tator estimate from Lemma 2.2, as well as using the triangle inequality, we obtain
for |α| ≥ 1:

‖P (a∇f)α‖0 ≤ ‖P (a∇fα)‖0 + ‖P
[
(a∇f)α − a∇fα

]
‖0

= ‖P (f̄α∇a)‖0 + ‖P [(a∇f)α − a∇fα]‖0
≤ C|Da|L∞‖f̄‖k + C‖Da‖k1‖∇f‖k−1

≤ C‖Da‖k1‖∇f‖k−1,

where |α| = k, where k1 = max(k − 1, s0), and where s0 = [N
2 ] + 1. And we used

the facts that ‖f̄‖k ≤ C(‖f̄‖0 + ‖∇f‖k−1), and ‖f̄‖0 ≤ C‖∇f‖0, by Poincaré’s
inequality.

Finally, by adding the above estimates over all 0 ≤ |α| ≤ r, we obtain the
estimate ‖P (a∇f)‖r ≤ C‖Da‖r−1‖∇f‖r−1. �

Lemma 4.3. Given v in C([0, T ],H0) ∩ L∞([0, T ],Hr), and f in C([0, T ],H0) ∩
L∞([0, T ],Hr), with r > N

2 + 3, for x ∈ Ω, Ω = TN , 0 ≤ t ≤ T , there is a unique,
classical solution u ∈ C([0, T ], C3) ∩ L∞([0, T ],Hr) of

Du/Dt = f ,
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with u(x, 0) = u0(x) ∈ Hr, where D/Dt = ∂/∂t + v·∇. Moreover, u satisfies the
estimate ‖u‖2r ≤ eα(t)

(
‖u0‖2r +

∫ t

0
C‖f‖2rdτ

)
, where α(t) =

∫ t

0
C(1 + ‖Dv‖r−1)dτ

and C depends on r.

The proof of the above lemma is standard; see, for example, [5].

Lemma 4.4. Given a in C([0, T ],H0) ∩ L∞([0, T ],Hr) and f in C([0, T ],H0) ∩
L∞([0, T ],Hr−1), where r > N

2 + 3, a(x,t) ≥ c1, with c1 > 0 for x ∈ Ω, Ω = TN ,
0 ≤ t ≤ T , there is a classical solution ρ ∈ C([0, T ],H0) ∩ L∞([0, T ],Hr+2) of

c∆2ρ−∇ · (a∇ρ) = ∇ · f (4.1)

Here, c is a positive constant. And ρ satisfies the estimate

‖∇ρ‖2r+1 ≤ C
(
‖∆ρ‖2r + ‖∇ρ‖2r

)
≤ C

[
1 +

r∑
j=1

‖Da‖2j
r−1

]
‖f‖2r−1 ≤ C‖f‖2r−1

Proof. The operator in (4.1) is linear with a(x,t) ≥ c1, where c1 > 0 for x ∈ Ω,
Ω = TN , and c is a positive constant, and the compatibility condition

∫
Ω
∇·fdx = 0

is satisfied. The existence of a solution ρ follows from the standard theory for elliptic
equations, specifically, the Lax-Milgram Lemma (see, for example, [6]). The a priori
estimate follows from Lemma 2.7. �

Now we prove the existence of a solution to (3.1), (3.2).

Lemma 4.5. Given v in C([0, T ],H0) ∩ L∞([0, T ],Hr) and a in C([0, T ],H0) ∩
L∞([0, T ],Hr), and given r > N

2 + 3, a(x, t) ≥ c1, with c1 > 0 for x ∈ Ω, Ω = TN ,
0 ≤ t ≤ T , there exists a classical solution ρ, w of

Dw
Dt

= −a∇ρ + c∇∆ρ, (4.2)

∇ ·w = 0, (4.3)

w(x, 0) = w0(x), ∇ ·w0 = 0, (4.4)

with w ∈ C([0, T ], C3) ∩ L∞([0, T ],Hr), and ρ ∈ C([0, T ], C5) ∩ L∞([0, T ],Hr+2).
Here, c is a positive constant, and D/Dt = ∂/∂t + v·∇, and ∇ · v = 0.

Proof. First, we reduce the equations to an equivalent system by employing the
projections P and Q = I − P , where P is the orthogonal projection of L2 onto the
solenoidal vector field and Q is the orthogonal projection of L2 onto the gradient
field. Applying the operator P to (4.2), and using the fact that Pw = w, we obtain
the equation

Dw
Dt

= J := Q(v · ∇Pw)− P (a∇ρ). (4.5)

Applying the operator Q to (4.2), we obtain the equation

Q(v · ∇Pw + a∇ρ− c∇∆ρ) = 0. (4.6)

This equation is equivalent to the equation

Q(Q(v · ∇Pw) + a∇ρ− c∇∆ρ) = 0. (4.7)

From the definition of Q, we observe that equation (4.7) is equivalent to

c∆2ρ−∇ · (a∇ρ) = ∇ ·Q(v · ∇Pw). (4.8)

With the given initial data (4.4), the two systems of equations (4.2), (4.3), and
(4.5), (4.8) are equivalent. (The proof is standard; see, for example, [5]).
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Next, we construct the solution of the system (4.5), (4.8) using the method of
successive approximation as follows: Set w0 = w0(x) and set ρ0 to be the initial
iterate from Theorem 3.1. For k = 0, 1, 2, . . . define wk+1, ρk+1 as the solution of
the equations

Dwk+1

Dt
= Jk, (4.9)

c∆ρk+1 −∇ · (a∇ρk+1) = ∇ ·Q(v · ∇(Pwk+1)), (4.10)

where Jk = Q(v ·∇Pwk)−P (a∇ρk). And wk+1(x, 0) = w0 ∈ Hr, with ∇·w0 = 0.
The first step is to solve (4.9) for wk+1. By Lemma 4.1 and by the induc-

tion hypothesis we have Q(v · ∇Pwk) ∈ C([0, T ],H0) ∩ L∞([0, T ],Hr). Fur-
thermore, from Lemma 4.2 and the induction hypothesis we have P (a∇ρk) ∈
C([0, T ],H0) ∩ L∞([0, T ],Hr). Therefore, the existence of a solution wk+1 ∈
C([0, T ],H0) ∩ L∞([0, T ],Hr) to (4.9) follows from Lemma 4.3.

The next step is, given the solution wk+1 just obtained, to solve (4.10) for ρk+1.
From Lemma 4.1 we have Q(v · ∇(Pwk+1)) ∈ C([0, T ],H0) ∩ L∞([0, T ],Hr), and
therefore it follows from Lemma 4.4 that there is a solution ρk+1 ∈ C([0, T ],H0) ∩
L∞([0, T ],Hr+2) to (4.10). And since ρk+1 is unique up to an arbitrary function
of t, we specify that ρk+1(x0, t) = ρk(x0, t) for all k ≥ 0, at the single fixed point
x0 ∈ Ω, so ρk+1(x0, t) = ρ0(x0, t).

Next, we derive estimates for ‖ρk+1−ρk‖r+2,T and ‖wk+1−wk‖r,T . We see that
ρk+1 − ρk and wk+1−wk solve the system of equations

D(wk+1 −wk)
Dt

= Jk − Jk−1, (4.11)

c∆2(ρk+1 − ρk)−∇ · (a∇(ρk+1 − ρk)) = ∇ ·Q(v · ∇(P (wk+1 −wk))), (4.12)

where Jk − Jk−1 = Q(v · ∇P (wk −wk−1)) −P (a∇(ρk − ρk−1)). Initially we have
(wk+1−wk)(0) = 0. First, we derive the estimate for ‖wk+1−wk‖r,T . From (4.11)
and from Lemmas 4.1, 4.2, and 4.3, we obtain the estimate

‖wk+1 −wk‖2r ≤ Ceα(t)

∫ t

0

‖Q(v·∇P (wk −wk−1))‖2r + ‖P (a∇(ρk − ρk−1))‖2rdτ

≤ C1

∫ t

0

‖wk −wk−1‖2r + ‖∇(ρk − ρk−1)‖2r−1dτ

(4.13)
Here α(t) = C

∫ t

0
(1+‖Dv‖r−1)dτ , C depends on r, and C1 depends on r, ‖v‖r,T and

‖a‖r,T . Next, from (4.12), and from Lemmas 4.1 and 4.4, we obtain the estimate

‖∇(ρk+1 − ρk)‖2r+1 ≤ C[1 +
r∑

j=1

‖Da‖2j
r−1]‖Q(v · ∇(P (wk+1 −wk)))‖2r−1

≤ C2‖wk+1 −wk‖2r

≤ C3

∫ t

0

(
‖wk −wk−1‖2r + ‖∇(ρk − ρk−1)‖2r−1

)
dτ

(4.14)
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where C2 and C3 depend on r, ‖a‖r,T , and ‖v‖r,T . Here, we used the estimate
(4.13) in the last step. From Lemma 2.4 and (4.14), we have the estimate

‖ρk+1 − ρk‖20 ≤ C‖∇(ρk+1 − ρk)‖22
≤ C4‖wk+1 −wk‖2r

≤ C5

∫ t

0

(
‖wk −wk−1‖2r + ‖∇(ρk − ρk−1)‖2r−1

)
dτ

(4.15)

where C4 and C5 depend on r, ‖a‖r,T , and ‖v‖r,T , and where ρk+1(x0, t) = ρk(x0, t)
for all k ≥ 0, at the single fixed point x0 ∈ Ω. Adding the estimates (4.13), (4.14),
(4.15), we obtain

‖wk+1 −wk‖2r + ‖ρk+1 − ρk‖2r+2 ≤ C6

∫ t

0

(
‖wk −wk−1‖2r + ‖ρk − ρk−1‖2r+2

)
dτ

(4.16)
where C6 depends on r, ‖v‖r,T , ‖a‖r,T . Repeated application of (4.16) yields

‖wk+1 −wk‖2r,T + ‖ρk+1 − ρk‖2r+2,T ≤ (C6T )k

k!
(
‖w1 −w0‖2r,T + ‖ρ1 − ρ0‖2r+2,T

)
from which it follows that

∞∑
k=1

(
‖wk+1 −wk‖2r,T + ‖ρk+1 − ρk‖2r+2,T

)
< ∞.

Hence, ‖wk+1 − wk‖2r,T → 0 as k → ∞ and ‖ρk+1 − ρk‖2r+2,T → 0 as k → ∞.
Therefore, we deduce that there exist w ∈ C([0, T ],H0)∩L∞([0, T ],Hr) such that
wk → w as k → ∞ strongly in C([0, T ],H0)∩ L∞([0, T ],Hr), and there exists
ρ ∈ C([0, T ],H0) ∩ L∞([0, T ],Hr+2) such that ρk → ρ as k → ∞ strongly in
C([0, T ],H0)∩L∞([0, T ],Hr+2). The fact that w and ρ is a solution to the system
of equations (4.5), (4.8) follows by a standard argument. And therefore w, ρ is a
solution to the equivalent system (4.2), (4.3). �
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