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ASYMPTOTIC SHAPE OF SOLUTIONS TO THE PERTURBED
SIMPLE PENDULUM PROBLEMS

TETSUTARO SHIBATA

ABSTRACT. We consider the positive solution of the perturbed simple pendu-
lum problem

N-—-1
ul/(r) _,’_

uw'(r) — g(u(t)) + Asinu(r) = 0,

with 0 < r < R, v/(0) = u(R) = 0. To understand well the shape of the
solution uy when X > 1, we establish the leading and second terms of |juy||q
(1 € g < o) with the estimate of third term as A — co. We also obtain the
asymptotic formula for u) (R) as A — oco.

1. INTRODUCTION

We consider the perturbed simple pendulum problem

u’(r) + N- 1u'(r) —g(u(®)) + Asinu(r) =0, 0<r<R, (1.1)
u(r) >0, 0<r<R, (1.2)
v (0) = u(R) =0, (1.3)

where N > 2, R > 0 is a constant and A > 0 is a parameter. We assume the
following conditions:

(Al) ge C™7(R) (m>1,0 <~y < 1) and g(u) > 0 for u > 0.

(A2) ¢(0) = ¢'(0) = 0.

(A3) g(u)/u is strictly increasing for 0 < u < 7.

A typical example of g(u) is g(u) = |u[™ tu (m > 1) and g(u) is regarded as
the nonlinear self-interaction term of the simple pendulum equation. The following
properties (P1) and (P2) are well-known and easy to show (cf. [IJ 2, [4]).

(P1) For a given A € R, (L.I)—(1.3) has a unique solution uy € C3([0, R]) if and
only if A > Ay, where A; > 0 is the first eigenvalue of —A in B = {|z| <
R} C RY with Dirichlet zero boundary condition.

(P2) |Jux]loo < 7w and uy — 7 uniformly on any compact interval in [0, R) as
A — 00.
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Therefore, we see from (P2) that u) is almost flat inside [0, R). The purpose of this
paper is to understand well the asymptotic behavior of uy as A — oo not from a
local point of view, but from a viewpoint of total shape of uy in [0, R]. To this end,
we establish the precise asymptotic formula for ||ux||, (1 < ¢ < 00) as A — co. Here
lullg == SN fOR rN=Hu(r)|%dr and |SV 1| is the measure of SV~! = {|z| = R}.

Singularly perturbed equations have been investigated by many authors. We re-
fer to [3, 5L 6 [7, @] and the references therein. In particular, one of the main concern
in this area is to investigate asymptotic shapes of the corresponding solutions.

As for the pointwise behavior of the solution u) of f as A — oo, there
are some known results. Let us consider the case N = 1 in the interval (—R, R)
and g = 0. We denote by ug » the unique solution associated with given A > 1.
Then it is known (cf. [§]) that as A — oo

to.rlloe = 7 — 8(1 4 o(1))e~ VAU +NE, (1.4)

We remark that the second term in the righthand side of the equation decays
exponentially as A — oo. Furthermore, when N > 2, g(u) # 0 and satisfies (A.1)—
(A.3), the following asymptotic formula has been obtained in [I1].

Theorem 1.1 ([II]). Let an arbitrary 0 < r < R be fized. Then the following
asymptotic formula for the solution uy of (1.1)—(1.3) holds as A — .

m+1

b 1
n() =7 = 5 +olsm): (15)
k=1
where by = g(7) and by, (k=2,3,...,m+ 1) are constants determined by
{9V (m)} -
In particular, we see from ([1.5) that
m+1
b 1
luslloe =7 = > % + o(5ma7)- (1.6)
k=1

Theorem gives us the precise pointwise information about u) inside [0, R)
as A — oo. However, if we consider the asymptotic behavior of [|uy]l, as A — oo
(1 < ¢ < o) for the better understanding of the total shape of uy in [0, R], then it is
natural that |luyl4 is affected by both the interior behavior of uy and the behavior
near the boundary. Therefore, it is expected that the asymptotic formula for ||ux |4
(1 < ¢ < o0) is different from (L.6).

Now we state our main results. Let G(u) := [ g(s)ds.

Theorem 1.2. Let 1 < g < oo be fized. Then for any fired 0 < § < 1/4, the
following asymptotic formula holds as A — oo:

%xw‘ +O(N (/). (1.7)

lunlly = 1Br|*/* (7~
where |Bgr| is the volume of Br and
T a4 _ga

= —df.
0 /2(1+ cosb)

Co
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Theorem 1.3. The following asymptotic formula holds as A\ — oo:

(R = 2vA3 - 2D

We see from Theorems that the second term of |Juy|, as A — oo
is mainly affected by the slope of the boundary layer u)(R). It should also be
mentioned that for the case N = 1, the exact third term of ||uy||; has been obtained
in [10].

We briefly explain the difficulty to treat the case N > 2. To prove Theorem
we calculate |luy ||, which is affected both the behavior of wy inside [0, R) and near
the boundary. Moreover, contains the term (N — 1)u)\(r)/r, which is quite
difficult to treat and does not appear when N = 1. Therefore, the calculation to
obtain the remainder estimate in is quite delicate and complicated. This is
the reason why we need the restriction 0 < ¢ < 1/4.

+o(1). (1.8)

2. PROOF OF THEOREM

In what follows, C' denotes various positive constants independent of A > 1. We
begin with the fundamental properties of uy. It is well known that

ux(0) = [Jurlloo, uh(r) <0 (0<r<R). (2.1)
Multiply by u4. Then for r € [0, R],

{ul(r) + ul\(r) + Asinu (r) — g(u(r)) juj (r) = 0.
By (2.1)), this implies that for r € [0, R],

1 "N-1
WA+ / —u)\(s)°ds = Acosun(r) — G(ur(r) = constant
0

= —Acos [[ur[oc = G([lurllec)  (put 7 =0) (2.2)

1 AN -1
= iu’)\(R)Q +/0 uh(s)%ds — X (put r = R).

S

Let M)y :=inf{f > 0: Asinf = ¢(0)}. It is clear that My < 7 and Asinf > g(0)
for 0 < @ < M. We know from [1] that ||ux|lcc < M. Therefore, for 0 < r < R,
we have

Asinuy(r) > glux(r)). (2.3)
In particular,
& = Asin|lualloo — g(lurlloc) > 0. (2.4)
Furthermore, for [0, R], we put
IN(r) := Acos ux(r) — cos [[uxlloc) + G(ua(r)) — G(lluallso), (2.5)
"N-1
II(r) ::/ uh (s)?ds. (2.6)
0 S
Then for r € [0, R], by (2.2), we obtain
1
iﬁﬁV:AU%Jh&) (2.7)

We explain the basic idea of the proof of Theorem[I.2] The main part of the proof
of Theorem is to show the following Proposition [2.1
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Proposition 2.1. Let an arbitrary 0 < § < 1/4 be fized. Then for A > 1

N|Bg|Co
R
Once Proposition [2.1]is proved, then we obtain Theorem easily as follows.

|Brllluall& — lluallg = ATV2 o), (2.8)

Proof of Theorem[I.3 By Proposition 2.1} Theorem [I.I] and Taylor expansion, for
A>1,

N|B C 1/q
HUA||q:(|BR|||U)\”gOf |£| 0 1/2+O()\ 1/2+6))>
1/
:IBRll/qHu)\HOO(l_ﬁ\[C’q)\ 1/2—1—0()\ (1/2+5))) q
NC
= Va(m— -t -1 _ 0 42 —(1/245)
| Br] (77 g(m)A™ +o(A )) (1 quq)\ +0(A ))
NC
= Vg _ _2*~0 y—1/2 —(1/2+46)
| Br] (7r ﬂq_lqRA +O0(A )>'
Thus the proof is complete. O

The basic idea to obtain Proposition [2.1] is as follows. In what follows, let an
arbitrary 0 < § < 1/4 be fixed. Let 0 < Ry s < R satisfy ux(Rxs) = |[ualloo — A7°.

By , we have

|Brllluallds = lluallg

_ |aN-1 RTN—l e — s ()4 —uf\(r) .
=197 [ s~ a(r) Ny
N-1 g w e —u q —U&(’/‘) r
=1 [ e~ ua)) T 2
N—-1 . — s (r)? _ul)\(r) r
+1s |/H (e, w0~ A

= AN +

Therefore, to show Proposition we have only to estimate A(X) and B()).
For 0 < 0 < |Jux||oo, We put

Vo :=2A(cos 6 + 1), (2.10)
V1 := 2\ (cos 8 — cos ||ur]|oo)s (2.11)
w0 N
Vo :=2(G(0) — G(JJluxlleo)) — 2/ ul (s)%ds. (2.12)
0
By putting 6 = ux(r), we have
llualloo “ligyN-1 q _ ga
l[ualloo—A~" VVi+ Vs
sl =27 )N g 1, — 09
= |-t / A d. 2.14
| Vs .

We estimate Ay first by using the following Lemma.
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Lemma 2.2 ([II]). Assume that 0 < ry < R satisfies ux(ry) — m as A — oo.
Then for 0 <r <ry and A > 1

Ix(r) = Ex([[urlloo = ua(r)) + %()\ +g' (@)1 +0(1))(lurlloc — ur(r))?,  (2.15)

110) < 222 (lu oo = 1r (1)
N-1 (2.16)
o @I+ o) (lurllee = ur(r)*

Furthermore, &) = 0()\6_ % 2’\(1+0(1))/(N+1)T°) as A — 0.

Lemma 2.3. A(\) = O(A~(1/249) for X > 1.

Proof. By Lemma for 0<r<Rysand A>1

%u&(r)z = I\(r) — II1\(r)

(1)) + 5 (1 + o) (' (7) + N (ea e — a(1))?

> CA([lulloo — ua(r)).

1
> N@\(HUAHOO —ux(r

(2.17)
This implies that for [[uxllee — A7 < 0 < [Jux]]oo,

Vi+ V2 2 CA(JJuallo — 0)*. (2.18)
By this and (2.13)), we obtain

A(\) < |SN-L RN /lmlm lulld, — 67
B lulloe =25 V/A([[talloc — 6)?
HUAHOC q _ A4
_C Jusllz, — 07
VA juslle—r—s ualloo — 0
— O(Af(1/2+5)).
Thus the proof is complete. ([l

We next estimate B(A). We put

lualloo=A"%  =1/g\N—1 q _ g4
Kl — |SN71‘/ Uy (9) (Hu/\”oo 0 )d9 (219)
0 V/2A(cos 0 — cos [[ux]oo)

and K5 := B(\) — K;. Once we obtain the estimates of Ky and K5, then the proof
of Proposition [2.1] is complete.
To calculate K5, we need the following lemma.

Lemma 2.4. For A > 1,

AN -1 )
/ uh(s)%ds < CV/A. (2.20)
0
Proof. Let an arbitrary 0 < € < 1 be fixed. Then

R R—e R

N -1 N -1 N -1

/ uh (r)2dr = / uh (r)2dr + uh\ (r)2dr. (2.21)
0 r 0 r R—e T
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By Lemma [2.2] and Theorem [[1]

R—e¢ o
/ N 1u;(r)2dr =1II\(R—¢)
0 T

< Cé(luallse — ua(R — €)) + CA([urlloo — ur(R — €))?

<CAx
(2.22)
By (2.7) and putting 6 = ux(r), for A > 1, we have

R R
/ VLl (r)2dr < RN / (=uA (1)) v/2A(cos ux (1) = cos [[ux[|oc)dr
0 0

lleexlloo
< C/ V2 (cos 0 — cos |[ux o )d8 < CV/A.
0

By this, for A > 1, we obtain

R R
N-—-1 N -1

uj (r)Pdr < ———= / N7l (r)2dr

R—e r (R - 6) R—e¢ (2 23)
R :
< C/ NIl (r)2dr < CV).
0

By this and (2.22]), we obtain our conclusion. O

Lemma 2.5. Ky = O\~ (/249 for X > 1.

Proof. Let an arbitrary 0 < € < 1 be fixed. Since V5 <0, by (2.11)), (2.12)), (2.14)
and (2.19)), for A > 1,

llunlloo—A"°
K= 5% [ w3 O (07
0

1 1 }d9
Vit Ve VWi

8

luslloo—A |V|
< ORN*/ up||2, — 6 2 de
; Ul =) e = v e v
UN | — -4
<omr [ ST P S L R
lullso—e (Vi +V3)%/2
v

HuAHoo_e
+CRN—1/O (Jlur |l — 6%) do

=Ko1+ K.

(Vi + V2)3/?

(2.24)
We know from Lemma that V3| < CvV/A. By this, Lemma and the same
estimate as ([2.18]), we obtain

ualloc=2"°

- Va
Ky1 < CRN 1/ 7 _ pa |7d9
o [ ]| oo —e (sl )(Vl + V3)3/2
lualloo—2"° X
SO/ (luxllze = 6) VA 252 %
lluxlloo—e (VA(lurllso — 0)2) (2.25)
-5
<COA / IS S
[[ux|loo—e (Hu)\Hoo _9)2

<0 ()\—H-(S) _ 0()\—(1/24-5))_
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We note that 0 < § < 1/4. By (2.11)), (2.12) and Lemmal[2.4] for 0 < 6 < [lux||oo —¢,

Vi4Va>CA—C—CVA>CA (2.26)
By this, Lemma [2.4] and (2.24), we obtain
lualloo—e /X
N—1 -1
Ky2 <CR /0 Wd@ <CA . (2.27)
By (2.24]), (2.25)) and (2.27)), we obtain our conclusion. Thus the proof is complete.
O
We next calculate K. We put K; := Ly + Lo, where
709 N|B
Ly :=|SNYRN! w6 g — NIBrICo -1y (2.28)

0 v2M\(cosf+1) - R
and Ly := Ky — Ly. All we have to do is to calculate Ly. To do this, we put
L2 = D1 + DQ + D3 + D4, where

Drim i [ B O Dl e
B 0 V2 (cos 0 — cos [Jux | oo)

pyrmory [T Rl ),
2 0 V22X (cos 0 — cos [[un o) 7 '

l[ualloo=A~° N=1(za — ga
D3 := |SN_1|/ e a0
0 V2 (cos 0 — cos [Juy o)

g, (2.29)

luallomA=? pN_1 (2.31)
_ |5N71|/ M w
0 2\(cosf+1)
™ N-1(rqa _ 9
Dy = —|SVY R (xt—6%) (2.32)

luxlloo—A=3 1/ 2A(cOS 0 + 1)

The most essential term in Lo is Dy. Therefore, we treat D; after the estimates of
DQ, D3 and D4.

Lemma 2.6. |Dy| < CA~/249) for X > 1.

Proof. Since (w7 — 07)/+/1 + cos € is bounded for 0 < § < 7, by Theorem and
(2.32),

D |<CA—1/2/7T ™ 0"
4| < 7
[N veosf +1

< COATY2(m — Jlualloo + A7%) < CATU/2H0),
Thus the proof is complete. O
Lemma 2.7. |Dy| < CA73/2log A for A > 1.

Proof. Let an arbitrary 0 < € < 1 be fixed. By Taylor expansion, we see that for
[ulloc — € <0 < furfloo = A7°

c0s 0 — cos [|ufloo > C(Jlurlloe — 0)2. (2.33)
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By this and Theorem [T.1]

lluxlloo—A"° 1

| Dy gC)\‘lf deo
lusllo—e  v/2A(cos 8 — cos [[uxloo)

luxlloo—e 1

+ X! do
0 V2 (cos 0 — cos [[ux][oo) (2.34)

llunlloo =272 1
< o3 / ———df+ ONT/?
luxloo—e€ [urlloc — 0

< O\ —3/2 log .

Thus the proof is complete. (I

Lemma 2.8. |Ds| < CAX77/2+20 for X > 1.

Proof. Let an arbitrary 0 < € < 1 be fixed. By (2.10), (2.11), (2.31)), (2.33) and
Theorem [1.1

-5

U%fSAWHMA Oﬂ—9%<¢%-—j%)d9

. C/||u>\|oo_>‘6 1+COS||U)\H00 do
0

VVovi(VVo + VW)
) lualloe =272 1
< CA” / do
lurllo—e  (2A(c08 0 = cos [ux]|o0))?/2 (2.35)
, [luallee—e 1
CA™ de
* /0 (2A(cos 0 — cos ||ux|o0))3/2
|‘u>\‘|oo_>\76 1
=CO\T? / ——————df + CA"T/?
lurlw—e  (lurlloo =)
< O\-T/2H28
Thus the proof is complete. 0

Now we calculate D;. To do this, we need additional two lemmas.

Lemma 2.9. For A > 1

uh(R)? = 4X + O(VA). (2.36)
Proof. By , Theorem and Lemma we obtain
1 EN-1
SU R = 21— cosfunll) = [ Fui(s)2ds = Gi(fun )
0
=2\ +0(VN\).
Thus the proof is complete. O

Lemma 2.10. For A > 1
R— Ry5 < CA™Y2H°, (2.37)
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Proof. Since uy(r) is decreasing for 0 < r < R by (2.1), for Ry s <7 <R
1
cos ux (1) > cos(||urlloo — A7) = =1+ = (1 +o(1))A"%. (2.38)

By this, (2.2) and Lemmas and for Rys <r <R,

1

BN —
5“1\(7")2

)2ds + M(cosuy(r) — 1) + G(ux(r))

(4)\+O(\f)+>\( 1(1+0( 1))A-26) (2.39)

l\J\H mm—l

= 5A1*25(1 +o(1)).

Note that 0 < § < 1/4. By this, for A > 1, we obtain

R
C/\(1—25)/2(R —Rys) < / —uf\(r)dr <u(Rys) <m
Rxs

This implies our conclusion. (I

Lemma 2.11. |D;| < CA~(/249) for X > 1.

Proof. Tt is easy to see that for 0 < 6 < |luxljec — A 72,

Hu)\Hgo — 01 (2'40)
Vecos —cos lurfleo
By this and Lemma [2.10
p— -6 — —_ —
iy =g [T R O )l s
V2 (cos 0 — cos [ux][oo)
llualloo—2"°
<C(R - RM)A—U?/ do
0

— C}\71+5 < CA7(1/2+5).

We note here that 0 < 6 < 1/4. Thus the proof is complete. O

By Lemmas[2.3] 2.5|2-6] 2.7} [2-8] -11] we obtain Proposition 2.1} Thus the proof

is complete.

3. PROOF OF THEOREM [L.3|

To prove Theorem we have only to improve Lemma

Lemma 3.1. For A > 1

r

ARNlu&(T)QdT— %\f)\+o(\f/\) (31)
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Proof. Let an arbitrary 0 < € < 1 be fixed. We consider (2.21). Then by (2.7) and
Theorem for A>> 1

R R
N-1 N-1
T uh (r)%dr < . /Ri6 uh (r)2dr

. R
< B [ VN Cosun() — cos ua ) ()

N* 1 u,\(Rfe)
= \[\/ V/2(cos  — cos [|ux |00 )dO
0

R—¢

= S IVA(L 4 o(1) /W V2(cos0 + 1)do

4(N - 1)
= —VA(1 1)).
VA +o(1))
(3.2)
By the same argument as that just above, we obtain
R
N -1 4(N -1
— i——l%m+dny (3.3)
R—e T R

Since 0 < e < 1 is arbitrary, by (2.21), (2.22)), (3.2) and (3.3), we obtain (3.1).

Thus the proof is complete. [

Proof of Theorem[1.3 By Theorem Lemma [3.1] and (2.2), for A > 1,

1 EN-1
5U&(R)2:A(I—COSHUAIIOO)—/O —uA(s)°ds — G(|[uall)

uh (r)2dr >

:A(2—7G+0ﬂ»ﬁwaa)—é@%;QV5+oha)

By this, we obtain Theorem [I[.3] Thus the proof is complete. O
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