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ASYMPTOTIC SHAPE OF SOLUTIONS TO THE PERTURBED
SIMPLE PENDULUM PROBLEMS

TETSUTARO SHIBATA

Abstract. We consider the positive solution of the perturbed simple pendu-

lum problem

u′′(r) +
N − 1

r
u′(r)− g(u(t)) + λ sin u(r) = 0,

with 0 < r < R, u′(0) = u(R) = 0. To understand well the shape of the

solution uλ when λ � 1, we establish the leading and second terms of ‖uλ‖q
(1 ≤ q < ∞) with the estimate of third term as λ → ∞. We also obtain the

asymptotic formula for u′
λ(R) as λ→∞.

1. Introduction

We consider the perturbed simple pendulum problem

u′′(r) +
N − 1

r
u′(r)− g(u(t)) + λ sinu(r) = 0, 0 < r < R, (1.1)

u(r) > 0, 0 ≤ r < R, (1.2)

u′(0) = u(R) = 0, (1.3)

where N ≥ 2, R > 0 is a constant and λ > 0 is a parameter. We assume the
following conditions:

(A1) g ∈ Cm,γ(R) (m ≥ 1, 0 < γ < 1) and g(u) > 0 for u > 0.
(A2) g(0) = g′(0) = 0.
(A3) g(u)/u is strictly increasing for 0 < u < π.

A typical example of g(u) is g(u) = |u|m−1u (m > 1) and g(u) is regarded as
the nonlinear self-interaction term of the simple pendulum equation. The following
properties (P1) and (P2) are well-known and easy to show (cf. [1, 2, 4]).

(P1) For a given λ ∈ R, (1.1)–(1.3) has a unique solution uλ ∈ C3([0, R]) if and
only if λ > λ1, where λ1 > 0 is the first eigenvalue of −∆ in BR = {|x| <
R} ⊂ RN with Dirichlet zero boundary condition.

(P2) ‖uλ‖∞ < π and uλ → π uniformly on any compact interval in [0, R) as
λ →∞.
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Therefore, we see from (P2) that uλ is almost flat inside [0, R). The purpose of this
paper is to understand well the asymptotic behavior of uλ as λ → ∞ not from a
local point of view, but from a viewpoint of total shape of uλ in [0, R]. To this end,
we establish the precise asymptotic formula for ‖uλ‖q (1 ≤ q < ∞) as λ →∞. Here
‖u‖q := |SN−1|

∫ R

0
rN−1|u(r)|qdr and |SN−1| is the measure of SN−1 = {|x| = R}.

Singularly perturbed equations have been investigated by many authors. We re-
fer to [3, 5, 6, 7, 9] and the references therein. In particular, one of the main concern
in this area is to investigate asymptotic shapes of the corresponding solutions.

As for the pointwise behavior of the solution uλ of (1.1)–(1.3) as λ →∞, there
are some known results. Let us consider the case N = 1 in the interval (−R,R)
and g ≡ 0. We denote by u0,λ the unique solution associated with given λ � 1.
Then it is known (cf. [8]) that as λ →∞

‖u0,λ‖∞ = π − 8(1 + o(1))e−
√

λ(1+o(1))R. (1.4)

We remark that the second term in the righthand side of the equation decays
exponentially as λ → ∞. Furthermore, when N ≥ 2, g(u) 6≡ 0 and satisfies (A.1)–
(A.3), the following asymptotic formula has been obtained in [11].

Theorem 1.1 ([11]). Let an arbitrary 0 ≤ r < R be fixed. Then the following
asymptotic formula for the solution uλ of (1.1)–(1.3) holds as λ →∞.

uλ(r) = π −
m+1∑
k=1

bk

λk
+ o

( 1
λm+1

)
, (1.5)

where b1 = g(π) and bk (k = 2, 3, . . . ,m + 1) are constants determined by

{g(j)(π)}k−1
j=0 .

In particular, we see from (1.5) that

‖uλ‖∞ = π −
m+1∑
k=1

bk

λk
+ o

( 1
λm+1

)
. (1.6)

Theorem 1.1 gives us the precise pointwise information about uλ inside [0, R)
as λ → ∞. However, if we consider the asymptotic behavior of ‖uλ‖q as λ → ∞
(1 ≤ q < ∞) for the better understanding of the total shape of uλ in [0, R], then it is
natural that ‖uλ‖q is affected by both the interior behavior of uλ and the behavior
near the boundary. Therefore, it is expected that the asymptotic formula for ‖uλ‖q

(1 ≤ q < ∞) is different from (1.6).
Now we state our main results. Let G(u) :=

∫ u

0
g(s)ds.

Theorem 1.2. Let 1 ≤ q < ∞ be fixed. Then for any fixed 0 < δ < 1/4, the
following asymptotic formula holds as λ →∞:

‖uλ‖q = |BR|1/q
(
π − NC0

πq−1qR
λ−1/2 + O

(
λ−(1/2+δ)

))
, (1.7)

where |BR| is the volume of BR and

C0 =
∫ π

0

πq − θq√
2(1 + cos θ)

dθ.
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Theorem 1.3. The following asymptotic formula holds as λ →∞:

|u′λ(R)| = 2
√

λ− 2(N − 1)
R

+ o(1). (1.8)

We see from Theorems 1.1, 1.2, 1.3 that the second term of ‖uλ‖q as λ → ∞
is mainly affected by the slope of the boundary layer u′λ(R). It should also be
mentioned that for the case N = 1, the exact third term of ‖uλ‖1 has been obtained
in [10].

We briefly explain the difficulty to treat the case N ≥ 2. To prove Theorem 1.2,
we calculate ‖uλ‖q which is affected both the behavior of uλ inside [0, R) and near
the boundary. Moreover, (1.1) contains the term (N − 1)u′λ(r)/r, which is quite
difficult to treat and does not appear when N = 1. Therefore, the calculation to
obtain the remainder estimate in (1.7) is quite delicate and complicated. This is
the reason why we need the restriction 0 < δ < 1/4.

2. Proof of Theorem 1.2

In what follows, C denotes various positive constants independent of λ � 1. We
begin with the fundamental properties of uλ. It is well known that

uλ(0) = ‖uλ‖∞, u′λ(r) < 0 (0 < r ≤ R). (2.1)

Multiply (1.1) by u′λ. Then for r ∈ [0, R],{
u′′λ(r) +

N − 1
r

u′λ(r) + λ sinuλ(r)− g(uλ(r))
}
u′λ(r) = 0.

By (2.1), this implies that for r ∈ [0, R],

1
2
u′λ(r)2 +

∫ r

0

N − 1
s

u′λ(s)2ds− λ cos uλ(r)−G(uλ(r)) ≡ constant

= −λ cos ‖uλ‖∞ −G(‖uλ‖∞) (put r = 0)

=
1
2
u′λ(R)2 +

∫ R

0

N − 1
s

u′λ(s)2ds− λ (put r = R).

(2.2)

Let Mλ := inf{θ > 0 : λ sin θ = g(θ)}. It is clear that Mλ < π and λ sin θ > g(θ)
for 0 < θ < Mλ. We know from [1] that ‖uλ‖∞ < Mλ. Therefore, for 0 ≤ r ≤ R,
we have

λ sinuλ(r) > g(uλ(r)). (2.3)

In particular,
ξλ := λ sin ‖uλ‖∞ − g(‖uλ‖∞) > 0. (2.4)

Furthermore, for [0, R], we put

Iλ(r) := λ(cos uλ(r)− cos ‖uλ‖∞) + G(uλ(r))−G(‖uλ‖∞), (2.5)

IIλ(r) :=
∫ r

0

N − 1
s

u′λ(s)2ds. (2.6)

Then for r ∈ [0, R], by (2.2), we obtain

1
2
u′λ(r)2 = Iλ(r)− IIλ(r). (2.7)

We explain the basic idea of the proof of Theorem 1.2. The main part of the proof
of Theorem 1.2 is to show the following Proposition 2.1.
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Proposition 2.1. Let an arbitrary 0 < δ < 1/4 be fixed. Then for λ � 1

|BR|‖uλ‖q
∞ − ‖uλ‖q

q =
N |BR|C0

R
λ−1/2 + O(λ−(1/2+δ)). (2.8)

Once Proposition 2.1 is proved, then we obtain Theorem 1.2 easily as follows.

Proof of Theorem 1.2. By Proposition 2.1, Theorem 1.1 and Taylor expansion, for
λ � 1,

‖uλ‖q =
(
|BR|‖uλ‖q

∞ − N |BR|C0

R
λ−1/2 + O(λ−(1/2+δ))

)1/q

= |BR|1/q‖uλ‖∞
(
1− NC0

R‖uλ‖q
∞

λ−1/2 + O(λ−(1/2+δ))
)1/q

= |BR|1/q
(
π − g(π)λ−1 + o(λ−1)

)(
1− NC0

qRπq
λ−1/2 + O(λ−(1/2+δ))

)
= |BR|1/q

(
π − NC0

πq−1qR
λ−1/2 + O(λ−(1/2+δ))

)
.

Thus the proof is complete. �

The basic idea to obtain Proposition 2.1 is as follows. In what follows, let an
arbitrary 0 < δ < 1/4 be fixed. Let 0 < Rλ,δ < R satisfy uλ(Rλ,δ) = ‖uλ‖∞− λ−δ.
By (2.7), we have

|BR|‖uλ‖q
∞ − ‖uλ‖q

q

= |SN−1|
∫ R

0

rN−1(‖uλ‖q
∞ − uλ(r)q)

−u′λ(r)√
2(Iλ(r)− IIλ(r))

dr

= |SN−1|
∫ Rλ,δ

0

rN−1(‖uλ‖q
∞ − uλ(r)q)

−u′λ(r)√
2(Iλ(r)− IIλ(r))

dr

+ |SN−1|
∫ R

Rλ,δ

rN−1(‖uλ‖q
∞ − uλ(r)q)

−u′λ(r)√
2(Iλ(r)− IIλ(r))

dr

:= A(λ) + B(λ).

(2.9)

Therefore, to show Proposition 2.1, we have only to estimate A(λ) and B(λ).
For 0 ≤ θ ≤ ‖uλ‖∞, we put

V0 := 2λ(cos θ + 1), (2.10)

V1 := 2λ(cos θ − cos ‖uλ‖∞), (2.11)

V2 := 2(G(θ)−G(‖uλ‖∞))− 2
∫ u−1

λ (θ)

0

N − 1
s

u′λ(s)2ds. (2.12)

By putting θ = uλ(r), we have

Aλ = |SN−1|
∫ ‖uλ‖∞

‖uλ‖∞−λ−δ

u−1
λ (θ)N−1(‖uλ‖q

∞ − θq)√
V1 + V2

dθ, (2.13)

Bλ = |SN−1|
∫ ‖uλ‖∞−λ−δ

0

u−1
λ (θ)N−1(‖uλ‖q

∞ − θq)√
V1 + V2

dθ. (2.14)

We estimate Aλ first by using the following Lemma.
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Lemma 2.2 ([11]). Assume that 0 < rλ < R satisfies uλ(rλ) → π as λ → ∞.
Then for 0 ≤ r ≤ rλ and λ � 1

Iλ(r) = ξλ(‖uλ‖∞ − uλ(r)) +
1
2
(λ + g′(π))(1 + o(1))(‖uλ‖∞ − uλ(r))2, (2.15)

IIλ(r) ≤ N − 1
N

ξλ(‖uλ‖∞ − uλ(r))

+
N − 1

2(N + 1)
(λ + g′(π))(1 + o(1))(‖uλ‖∞ − uλ(r))2.

(2.16)

Furthermore, ξλ = o
(
λe−

√
2λ(1+o(1))/(N+1)r0

)
as λ →∞.

Lemma 2.3. A(λ) = O(λ−(1/2+δ)) for λ � 1.

Proof. By Lemma 2.2, for 0 ≤ r ≤ Rλ,δ and λ � 1

1
2
u′λ(r)2 = Iλ(r)− IIλ(r)

≥ 1
N

ξλ(‖uλ‖∞ − uλ(r)) +
1

N + 1
(1 + o(1))(g′(π) + λ)(‖uλ‖∞ − uλ(r))2

≥ Cλ(‖uλ‖∞ − uλ(r))2.
(2.17)

This implies that for ‖uλ‖∞ − λ−δ ≤ θ ≤ ‖uλ‖∞,

V1 + V2 ≥ Cλ(‖uλ‖∞ − θ)2. (2.18)

By this and (2.13), we obtain

A(λ) ≤ |SN−1|RN−1

∫ ‖uλ‖∞

‖uλ‖∞−λ−δ

‖uλ‖q
∞ − θq√

λ(‖uλ‖∞ − θ)2
dθ

≤ C√
λ

∫ ‖uλ‖∞

‖uλ‖∞−λ−δ

‖uλ‖q
∞ − θq

‖uλ‖∞ − θ
dθ

= O
(
λ−(1/2+δ)

)
.

Thus the proof is complete. �

We next estimate B(λ). We put

K1 := |SN−1|
∫ ‖uλ‖∞−λ−δ

0

u−1
λ (θ)N−1(‖uλ‖q

∞ − θq)√
2λ(cos θ − cos ‖uλ‖∞)

dθ (2.19)

and K2 := B(λ)−K1. Once we obtain the estimates of K1 and K2, then the proof
of Proposition 2.1 is complete.

To calculate K2, we need the following lemma.

Lemma 2.4. For λ � 1, ∫ R

0

N − 1
s

u′λ(s)2ds ≤ C
√

λ. (2.20)

Proof. Let an arbitrary 0 < ε � 1 be fixed. Then∫ R

0

N − 1
r

u′λ(r)2dr =
∫ R−ε

0

N − 1
r

u′λ(r)2dr +
∫ R

R−ε

N − 1
r

u′λ(r)2dr. (2.21)
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By Lemma 2.2 and Theorem 1.1,∫ R−ε

0

N − 1
r

u′λ(r)2dr = IIλ(R− ε)

≤ Cξλ(‖uλ‖∞ − uλ(R− ε)) + Cλ(‖uλ‖∞ − uλ(R− ε))2

≤ Cλ−1.

(2.22)
By (2.7) and putting θ = uλ(r), for λ � 1, we have∫ R

0

rN−1u′λ(r)2dr ≤ RN−1

∫ R

0

(−u′λ(r))
√

2λ(cos uλ(r)− cos ‖uλ‖∞)dr

≤ C

∫ ‖uλ‖∞

0

√
2λ(cos θ − cos ‖uλ‖∞)dθ ≤ C

√
λ.

By this, for λ � 1, we obtain∫ R

R−ε

N − 1
r

u′λ(r)2dr ≤ N − 1
(R− ε)N

∫ R

R−ε

rN−1u′λ(r)2dr

≤ C

∫ R

0

rN−1u′λ(r)2dr ≤ C
√

λ.

(2.23)

By this and (2.22), we obtain our conclusion. �

Lemma 2.5. K2 = O(λ−(1/2+δ)) for λ � 1.

Proof. Let an arbitrary 0 < ε � 1 be fixed. Since V2 ≤ 0, by (2.11), (2.12), (2.14)
and (2.19), for λ � 1,

K2 = |SN−1|
∫ ‖uλ‖∞−λ−δ

0

u−1
λ (θ)N−1(‖uλ‖q

∞ − θq)
{ 1√

V1 + V2

− 1√
V1

}
dθ

≤ CRN−1

∫ ‖uλ‖∞−λ−δ

0

(‖uλ‖q
∞ − θq)

|V2|√
V1

√
V1 + V2(

√
V1 + V2 +

√
V1)

dθ

≤ CRN−1

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

(‖uλ‖q
∞ − θq)

|V2|
(V1 + V2)3/2

dθ

+ CRN−1

∫ ‖uλ‖∞−ε

0

(‖uλ‖q
∞ − θq)

|V2|
(V1 + V2)3/2

dθ

= K2,1 + K2,2.

(2.24)
We know from Lemma 2.4 that |V2| ≤ C

√
λ. By this, Lemma 2.2 and the same

estimate as (2.18), we obtain

K2,1 ≤ CRN−1

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

(‖uλ‖q
∞ − θq)

|V2|
(V1 + V2)3/2

dθ

≤ C

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

(‖uλ‖q
∞ − θq)

√
λ

(
√

λ(‖uλ‖∞ − θ)2)3/2
dθ

≤ Cλ−1

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

1
(‖uλ‖∞ − θ)2

dθ

≤ O
(
λ−1+δ

)
= o

(
λ−(1/2+δ)

)
.

(2.25)
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We note that 0 < δ < 1/4. By (2.11), (2.12) and Lemma 2.4, for 0 ≤ θ ≤ ‖uλ‖∞−ε,

V1 + V2 ≥ Cλ− C − C
√

λ ≥ Cλ. (2.26)

By this, Lemma 2.4 and (2.24), we obtain

K2,2 ≤ CRN−1

∫ ‖uλ‖∞−ε

0

√
λ

λ3/2
dθ ≤ Cλ−1. (2.27)

By (2.24), (2.25) and (2.27), we obtain our conclusion. Thus the proof is complete.
�

We next calculate K1. We put K1 := L1 + L2, where

L1 := |SN−1|RN−1

∫ π

0

πq − θq√
2λ(cos θ + 1)

dθ =
N |BR|C0

R
λ−1/2 (2.28)

and L2 := K1 − L1. All we have to do is to calculate L2. To do this, we put
L2 := D1 + D2 + D3 + D4, where

D1 := −|SN−1|
∫ ‖uλ‖∞−λ−δ

0

(RN−1 − u−1
λ (θ)N−1)(‖uλ‖q

∞ − θq)√
2λ(cos θ − cos ‖uλ‖∞)

dθ, (2.29)

D2 := |SN−1|
∫ ‖uλ‖∞−λ−δ

0

RN−1(‖uλ‖q
∞ − πq)√

2λ(cos θ − cos ‖uλ‖∞)
dθ, (2.30)

D3 := |SN−1|
∫ ‖uλ‖∞−λ−δ

0

RN−1(πq − θq)√
2λ(cos θ − cos ‖uλ‖∞)

dθ

− |SN−1|
∫ ‖uλ‖∞−λ−δ

0

RN−1(πq − θq)√
2λ(cos θ + 1)

dθ,

(2.31)

D4 := −|SN−1|
∫ π

‖uλ‖∞−λ−δ

RN−1(πq − θq)√
2λ(cos θ + 1)

dθ. (2.32)

The most essential term in L2 is D1. Therefore, we treat D1 after the estimates of
D2, D3 and D4.

Lemma 2.6. |D4| ≤ Cλ−(1/2+δ) for λ � 1.

Proof. Since (πq − θq)/
√

1 + cos θ is bounded for 0 ≤ θ ≤ π, by Theorem 1.1 and
(2.32),

|D4| ≤ Cλ−1/2

∫ π

‖uλ‖∞−λ−δ

πq − θq

√
cos θ + 1

dθ

≤ Cλ−1/2(π − ‖uλ‖∞ + λ−δ) ≤ Cλ−(1/2+δ).

Thus the proof is complete. �

Lemma 2.7. |D2| ≤ Cλ−3/2 log λ for λ � 1.

Proof. Let an arbitrary 0 < ε � 1 be fixed. By Taylor expansion, we see that for
‖uλ‖∞ − ε ≤ θ ≤ ‖uλ‖∞ − λ−δ

cos θ − cos ‖uλ‖∞ ≥ C(‖uλ‖∞ − θ)2. (2.33)
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By this and Theorem 1.1,

|D2| ≤ Cλ−1

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

1√
2λ(cos θ − cos ‖uλ‖∞)

dθ

+ Cλ−1

∫ ‖uλ‖∞−ε

0

1√
2λ(cos θ − cos ‖uλ‖∞)

dθ

≤ Cλ−3/2

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

1
‖uλ‖∞ − θ

dθ + Cλ−3/2

≤ Cλ−3/2 log λ.

(2.34)

Thus the proof is complete. �

Lemma 2.8. |D3| ≤ Cλ−7/2+2δ for λ � 1.

Proof. Let an arbitrary 0 < ε � 1 be fixed. By (2.10), (2.11), (2.31), (2.33) and
Theorem 1.1,

|D3| ≤
∫ ‖uλ‖∞−λ−δ

0

(πq − θq)
(

1√
V1

− 1√
V0

)
dθ

≤ C

∫ ‖uλ‖∞−λ−δ

0

1 + cos ‖uλ‖∞√
V0

√
V1(
√

V0 +
√

V1)
dθ

≤ Cλ−2

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

1
(2λ(cos θ − cos ‖uλ‖∞))3/2

dθ

+ Cλ−2

∫ ‖uλ‖∞−ε

0

1
(2λ(cos θ − cos ‖uλ‖∞))3/2

dθ

= Cλ−7/2

∫ ‖uλ‖∞−λ−δ

‖uλ‖∞−ε

1
(‖uλ‖∞ − θ)3

dθ + Cλ−7/2

≤ Cλ−7/2+2δ.

(2.35)

Thus the proof is complete. �

Now we calculate D1. To do this, we need additional two lemmas.

Lemma 2.9. For λ � 1

u′λ(R)2 = 4λ + O(
√

λ). (2.36)

Proof. By (2.2), Theorem 1.1 and Lemma 2.4, we obtain

1
2
u′λ(R)2 = λ(1− cos ‖uλ‖∞)−

∫ R

0

N − 1
s

u′λ(s)2ds−G(‖uλ‖∞)

= 2λ + O(
√

λ).

Thus the proof is complete. �

Lemma 2.10. For λ � 1

R−Rλ,δ ≤ Cλ−1/2+δ. (2.37)
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Proof. Since uλ(r) is decreasing for 0 ≤ r ≤ R by (2.1), for Rλ,δ ≤ r ≤ R

cos uλ(r) ≥ cos(‖uλ‖∞ − λ−δ) = −1 +
1
2
(1 + o(1))λ−2δ. (2.38)

By this, (2.2) and Lemmas 2.4 and 2.9, for Rλ,δ ≤ r ≤ R,

1
2
u′λ(r)2 =

1
2
u′λ(R)2 +

∫ R

r

N − 1
s

u′λ(s)2ds + λ(cos uλ(r)− 1) + G(uλ(r))

≥ 1
2
(4λ + O(

√
λ)) + λ(−2 +

1
2
(1 + o(1))λ−2δ)

=
1
2
λ1−2δ(1 + o(1)).

(2.39)

Note that 0 < δ < 1/4. By this, for λ � 1, we obtain

Cλ(1−2δ)/2(R−Rλ,δ) ≤
∫ R

Rλ,δ

−u′λ(r)dr ≤ u(Rλ,δ) < π.

This implies our conclusion. �

Lemma 2.11. |D1| ≤ Cλ−(1/2+δ) for λ � 1.

Proof. It is easy to see that for 0 ≤ θ ≤ ‖uλ‖∞ − λ−δ,

‖uλ‖q
∞ − θq√

cos θ − cos ‖uλ‖∞
≤ C. (2.40)

By this and Lemma 2.10,

|D1| = |SN−1|
∫ ‖uλ‖∞−λ−δ

0

(RN−1 − u−1
λ (θ)N−1)(‖uλ‖q

∞ − θq)dθ√
2λ(cos θ − cos ‖uλ‖∞)

≤ C(R−Rλ,δ)λ−1/2

∫ ‖uλ‖∞−λ−δ

0

dθ

= Cλ−1+δ ≤ Cλ−(1/2+δ).

We note here that 0 < δ < 1/4. Thus the proof is complete. �

By Lemmas 2.3, 2.5 2.6, 2.7, 2.8, 2.11, we obtain Proposition 2.1. Thus the proof
is complete.

3. Proof of Theorem 1.3

To prove Theorem 1.3, we have only to improve Lemma 2.4.

Lemma 3.1. For λ � 1∫ R

0

N − 1
r

u′λ(r)2dr =
4(N − 1)

R

√
λ + o(

√
λ). (3.1)
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Proof. Let an arbitrary 0 < ε � 1 be fixed. We consider (2.21). Then by (2.7) and
Theorem 1.1, for λ � 1∫ R

R−ε

N − 1
r

u′λ(r)2dr ≤ N − 1
R− ε

∫ R

R−ε

u′λ(r)2dr

≤ N − 1
R− ε

∫ R

R−ε

√
2λ(cos uλ(r)− cos ‖uλ‖∞)(−u′λ(r))dr

=
N − 1
R− ε

√
λ

∫ uλ(R−ε)

0

√
2(cos θ − cos ‖uλ‖∞)dθ

=
N − 1
R− ε

√
λ(1 + o(1))

∫ π

0

√
2(cos θ + 1)dθ

=
4(N − 1)

R− ε

√
λ(1 + o(1)).

(3.2)
By the same argument as that just above, we obtain∫ R

R−ε

N − 1
r

u′λ(r)2dr ≥ 4(N − 1)
R

√
λ(1 + o(1)). (3.3)

Since 0 < ε � 1 is arbitrary, by (2.21), (2.22), (3.2) and (3.3), we obtain (3.1).
Thus the proof is complete. �

Proof of Theorem 1.3. By Theorem 1.1, Lemma 3.1 and (2.2), for λ � 1,

1
2
u′λ(R)2 = λ(1− cos ‖uλ‖∞)−

∫ R

0

N − 1
s

u′λ(s)2ds−G(‖uλ‖∞)

= λ
(
2− 1

2
(1 + o(1))g(π)2λ−2

)
− 4(N − 1)

R

√
λ + o(

√
λ)

= 2λ− 4(N − 1)
R

√
λ + o(

√
λ).

By this, we obtain Theorem 1.3. Thus the proof is complete. �
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