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A NOTE ON EXTREMAL FUNCTIONS FOR SHARP SOBOLEV
INEQUALITIES

EZEQUIEL R. BARBOSA, MARCOS MONTENEGRO

ABSTRACT. In this note we prove that any compact Riemannian manifold
of dimension n > 4 which is non-conformal to the standard n-sphere and
has positive Yamabe invariant admits infinitely many conformal metrics with
nonconstant positive scalar curvature on which the classical sharp Sobolev
inequalities admit extremal functions. In particular we show the existence of
compact Riemannian manifolds with nonconstant positive scalar curvature for
which extremal functions exist. Our proof is simple and bases on results of the
best constants theory and Yamabe problem.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let (M, g) be a compact Riemannian manifold of dimension n > 2. We denote by
HZ2(M) the standard first-order Sobolev space defined as the completion of C°*° (M)

under the norm
1/2
lwll 2 (ar) = </ |V yul® dv, +/ |u|2dvg> i
M M

The Sobolev embedding theorem ensures that the inclusion HZ (M) C L* (M) is
continuous for 2* = % So, there exist constants A, B € R such that, for any
u € HZ (M),

2/2*
(/ ul? dvg> gA/ |vgu\2dvg+3/ lu|? du, . (12)
M M M

In this case, we say simply that (I7) is valid. The first Sobolev best constant
associated to (I7) is

Ao(2,9) = inf{A € R: there exists B € R such that (I?) is valid }
and, by Aubin [I], its value is given by K (n,2)?, where

Q*d 1/2*
K(n,2) =  sup Upn " da) 172
weD 2R ( [o, |Vul? dz)
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and DY2?(R™) is the completion of C§°(R™) under the norm

1/2
fullosgany = ([ 190 dz) "
Rn

Moreover, Aubin [I] and Talenti [9] found the explicit value of K (n,2). The optimal
L?-Riemannain Sobolev inequality on H?(M) states that

. 2/2"
() o)™ <K@2? [ (VpuPdo,+B [ a3,
u . e . » .
We say that (I7 ;) is valid if there exists a constant B € R such that (17, ;) holds

for all uw € Hf(M). A first question is the validity or not of (I7,;). The optimal
inequality was proved to be valid by Hebey and Vaugon [6]. Thus, consider the
second Sobolev best constant

By(2,9) =inf{BeR: (I7,,;

) is valid} .

Clearly, for any u € H?(M), one has

« 2/2"
(/M [uf*" do ) gK(n,2)2/M|vgu\2dvg+30(2,g)/ a2 dvg. (T2

A function ug € HY (M), ug # 0, is said to be extremal for (J7

) if

. 2/2*
(/ o2 dv, ) :K(n,2)2/ |Vgu0|2dvg+Bo(2,g)/ o2 dug -
M M M

Two important questions are the existence of extremal functions for (Jg,opt) and
the explicit value of By(2,g). These questions were completely solved on compact
manifolds (M, g) conformal to the canonical n-sphere (S",gg). Indeed, on such
manifolds, Hebey proved in [5] that there exists an extremal function for (Jiopt) if,
and only if, h is isometric to ¢ and, in this case, the scalar curvature of the metric
h is constant. Djadli and Druet [3] showed that on compact Riemannian manifolds

of dimension n > 4, at least, one of the following assertions holds:

(a) an extremal function for (JgQ,Opt) exists, or

(b) Bo(2,9) = D) 21)K(n 2)% max s Scal,

where Scal, stands for the scalar curvature of g. Hebey and Vaugon [7], introduced
the notion of critical function in order to study the dichotomy between (a) and
(b). In particular, they showed that it is not exclusive, see [4] for an overview of
this subject. Combining the assertion (b) with the solution of Yamabe problem
given by Aubin [2] and Schoen [§], one easily concludes that there exist extremal
functions for (JZ2,,,) when either Scal, < 0 or Scal, is constant. However, the
existence of extremal functions is an open question in the nonconstant positive
scalar curvature case. In this note we are interested in discussing this case. This
discussion is motivated by the fact of existing examples of compact Riemannian
manifolds (M, g) for which (J7 ;) possesses no extremal function.

To state our main result, we recall the definition of the Yamabe invariant. Con-
sider the functional I,(u) on HZ(M) \ {0} given by

Jor IV gul® dvg + 15735 [, Scaly u dvg
Ig(u> - fM "LL|2 dvg)Q/Q*
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The Yamabe invariant on (M, g) is defined by

Hg Iy(u).

= inf

HE(M)\{0}
Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n > 4
non-conformal to (S, go) such that pg > 0. Then exist an infinitely many metrics h
conformal to g with nonconstant positive scalar curvature such that (Jiopt) admits
an extremal function.

The following results is a direct consequence of Theorem 1.1.

Corollary 1.2. There exist compact Riemannian manifolds (M, g) of dimension
n > 4 with nonconstant positive scalar curvature such that (J7 ;) possesses an
extremal function.

One easily constructs concrete examples of such manifolds. For instance, S' x
S”~! and the projective space P", with their usual metrics, are non-conformal to
(S™, go) and possesses positive Yamabe invariant.

The proof of Theorem 1.1 is simple and short. The ideas are based on standard
minimization techniques and use a well-known existence result due to Aubin [2].
Results of the works [2] and [8] about the solution of the Yamabe problem and of
the work [3] about the existence of extremal functions play an essential role in the
proof of Theorem 1.1.

2. PROOF OF THEOREM 1.1

Construction of the metric h. Let wg € C>°(M) be a positive solution of the

Yamabe problem on (M, g). The scalar curvature of the metric hy = w2*7zg is a
2
positive constant R, since ug > 0. Moreover, one has u, = 4&7:21)}211,70, so that

1 2% /n 7% 4(77,71) 1 n/(n—2) o _2%/n
K(n,2)? Ho o =\ "n=—2 K0 2°R K(n, 2%,

where vp, = [, dvp, stands for the volume of M on hg. Aubin [2] and Schoen [8]
proved that for any compact Riemannian manifold non-conformal to (S", go), one
has

1
— 2.1
Ng < K(n, 2)27 ( )
so that
1 2% /n
—1 —2%/2
o< (pp)
Combining these relations, one obtains
1 4n—1) 1 n/(n=2) 2/
K(n,2)2u, n—2 K(n,2)?R ho -
Now, let a € C*°(M) be a function satisfying
1
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Using the function a, we find
4(n—1) 1 )n/(n—Q) _2
n—2 K(n,2)2R

- (4(n—1) 1 )n/m—z) 2
“\"n=2 K2R

max a(z) < (

for all x € M, so that

(n-2)/n _ 4(n—1) 1 / (n=2)/n
(mj&xa(x)) - K(n,2)2Rop, ( M a(z) dvh(’) ’

or equivalently,

n—2 1 Joy a(@) dop, \ (n=2)/n
"% Ry, < ( M 0) . 2.3
4(n—1) Vho K(n,2)%2\ maxys a(z) (23)
Consider now the functional J,, (u) on HZ(M) defined by
Jhe (1) —/ |V houl? dv —I—L_QR/ u? dv
T T T A T
The next step is to minimize Jp,(u) on the set
H = {u e H2(M): / a(2)[ul? o, =1} .
M
1
Note that H is non-empty since @ = ([;, a(z) dvp,) *° € H. In addition,
2—n
. . n n—2
117}; The () < Jpo (@) = y a(x) dop, mthU
So, by (2.3),
1
inf Jp, (u) < — .
o K (n,2)?(maxy a(x))(n 2/n
By a classical result due to Aubin [2], it follows that
4(n—1) .
ﬁAhO’U + RU = Cl(l‘)'l}2 1
admits a positive solution vy € C*°(M), where Ap u = —divy, (Vp,u) stands for

the Laplacian on the metric hy. Setting h = vg*_Qho, one has Scal, = a. By (2.1),
there exist an infinitely many functions a satisfying (2.2). Therefore, by the above-
described process, we may construct an infinitely conformal metrics h satisfying
the conclusion of Theorem 1.1.

Existence of extremal functions for (J;,,). Proceeding, by contradiction,
suppose that (JEL opt) @dmits no extremal function. Then, by Djadli and Druet 31,

n—2

Bo(2,h) = -1

K(n,2)? max a(x).

Let ug € C*°(M) be a positive solution of the Yamabe problem

-9 .
n )a(x)u = ppu?® L.

A [
Mt =1
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Clearly, |luol[ 2+ (ary = 1 and pp = py, since h is conformal to g. Then
1 / ) 1 n—2 )

— |V puo|“doy, + 77/ a(z)ujduy, = 1.

Kg J M pg 4(n —1) S 0

Using the inequalities

1 :
0< max a(z) < K270, min a(x)
and
0 -
SH9S Kn,2)2

on the left hand-side above, one obtains

)
Kn,22/ Vol 2dvy, + —— 2
(n,2) M|h0| O TPy

But, this contradicts the value of By(2,h) given above.

K(n,2)? maxa(:z:)/ uddvy, < 1.
M M
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