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BLOWUP AND LIFE SPAN BOUNDS FOR A
REACTION-DIFFUSION EQUATION WITH A

TIME-DEPENDENT GENERATOR

EKATERINA T. KOLKOVSKA, JOSÉ ALFREDO LÓPEZ-MIMBELA, AROLDO PÉREZ

Abstract. We consider the nonlinear equation

∂

∂t
u(t) = k(t)∆αu(t) + u1+β(t), u(0, x) = λϕ(x), x ∈ Rd,

where ∆α := −(−∆)α/2 denotes the fractional power of the Laplacian; 0 <
α ≤ 2, λ, β > 0 are constants; ϕ is bounded, continuous, nonnegative

function that does not vanish identically; and k is a locally integrable func-

tion. We prove that any combination of positive parameters d, α, ρ, β, obeying
0 < dρβ/α < 1, yields finite time blow up of any nontrivial positive solution.

Also we obtain upper and lower bounds for the life span of the solution, and

show that the life span satisfies Tλϕ ∼ λ−αβ/(α−dρβ) near λ = 0.

1. Introduction

We study positive solutions for the semilinear non-autonomous Cauchy problem

∂u(t, x)
∂t

= k(t)∆αu(t, x) + u1+β(t, x),

u(0, x) = ϕ(x) ≥ 0, x ∈ Rd,

(1.1)

where ∆α := −(−∆)α/2 denotes the fractional power of the Laplacian, 0 < α ≤ 2
and β ∈ (0,∞) are constants, the initial value ϕ is bounded, continuous and not
identically zero, and k : [0,∞) → [0,∞) is a locally integrable function satisfying

ε1t
ρ ≤

∫ t

0

k(r)dr ≤ ε2t
ρ (1.2)

for all t large enough, where ε1, ε2 and ρ are given positive constants. Solutions
are understood in the mild sense, so that (1.1) is meaningful for any bounded
measurable initial value.

Recall (see e.g. [16], Chapter 6) that there exists a number Tϕ ∈ (0,∞] such
that (1.1) has a unique continuous solution u on [0, Tϕ)× Rd, which is given by

u(t, x) = U(t, 0)ϕ(x) +
∫ t

0

(U(t, s)u1+β(s, ·))(x) ds, (1.3)
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and is bounded on [0, T ] × Rd for any 0 < T < Tϕ. Moreover, if Tϕ < ∞, then
‖u(t, ·)‖∞ → ∞ as t ↑ Tϕ. Here {U(t, s), 0 ≤ s ≤ t} denotes the evolution system
corresponding to the family of generators {k(t)∆α, t ≥ 0}. When Tϕ = ∞ we say
that u is a global solution, and when Tϕ < ∞ we say that u blows up in finite time
or that u is nonglobal. The extended real number Tϕ is termed life span of (1.1).

Equations of the form (1.1) arise in fields like statistical physics, hydrodynamics
and molecular biology [19]. Generators of the form k(t)∆α, α ∈ (0, 2], allow for non-
local integro-differential or pseudodifferential terms that have been used in models
of anomalous growth of certain fractal interfaces [14] and in hydrodynamic models
with modified diffusivity [2].

This work can be considered as a continuation of our previous article [12],
to which we refer for more background and additional references. In [12] we
proved that d > α

ρβ implies existence of non-trivial global solutions of (1.1) for
all sufficiently small initial values, and that, under the additional assumption β ∈
{1, 2, . . . , }, the condition d < α

ρβ yields finite time blowup of any positive solution.
Moreover, the case ρ = 0, which under condition (1.2) corresponds to an integrable
k, yields finite time blow up of (1.1) for any non-trivial initial value, regardless
of the spatial dimension and the stability exponent α. Here we consider the case
d < α

ρβ with β ∈ (0,∞), and focus on the asymptotic behavior of the life span of
(1.1) when the initial value is of the form λϕ, where λ > 0 is a parameter.

The life span asymptotics of semilinear parabolic Cauchy problems give insight
on how the “size” of the initial value affects the blowup time of their positive
solutions; see [7, 8, 10, 11, 15, 17] and the references therein. Given two func-
tions f, g : [0,∞) → [0,∞), let us say that f ∼ g near c ∈ {0,∞} if there
exist two positive constants C1, C2 such that C1f(r) ≥ g(r) ≥ C2f(r) for all r
which are sufficiently close to c. In [11] it was proved, initially for k(t) ≡ 1 and
α = 2, that Tλϕ ∼ λ−β near ∞ provided ϕ ≥ 0 is bounded, continuous and
does not vanish identically. Later on, Gui and Wang [7] showed that, in fact,
limλ→∞ Tλϕ ·λβ = β−1‖ϕ‖−β

L∞(Rd)
. The behavior of Tλϕ as λ approaches 0 was also

investigated by Lee and Ni in [11]. One of their results addresses the case of initial
values ϕ ≥ 0 obeying growth conditions of the form 0 < lim inf |x|→∞ |x|aϕ(x) and
lim sup|x|→∞ |x|aϕ(x) < ∞, where a > 0 is a given constant different from d. They
proved that, in this case,

Tλϕ ∼ (1/λ)(1/β − 1
2 min{a,d})−1

as λ → 0. (1.4)

In the present paper we obtain upper and lower bounds for the life span Tλϕ of
(1.1), and provide in this way a description of the behavior of Tλϕ as λ → ∞ and
λ → 0. Here is a brief outline.

First we prove that any combination of positive parameters d, α, ρ, β, obeying
0 < dρβ/α < 1, yields finite time blow up of any nontrivial positive solution
of (1.1). This is carried out by bounding from below the mild solution of (1.1)
by a subsolution which locally grows to ∞. Finite-time blowup of (1.1) is then
inferred from a classical comparison procedure that dates back to [9] (see also [3],
Sect. 3). The construction of our subsolution uses the Feynman-Kac representation
of (1.1), and requires to control the decay of certain conditional probabilities of
W ≡ {W (t), t ≥ 0}, where W is the Rd-valued Markov process corresponding
to the evolution system {U(t, s), t ≥ s ≥ 0}; see [3], [4] and [13] for the time-
homogeneous case.
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A further consequence of the Feynman-Kac representation of (1.1) is the inequal-
ity Tλϕ ≤ Const.λ−

αβ
α−dρβ , which holds for small positive λ when 0 < dρβ/α < 1.

This, together with the lower bound of Tλϕ given in Section 6, implies (again under
the condition 0 < dρβ/α < 1) that

Tλϕ ∼ λ−
αβ

α−dρβ (1.5)

near 0. Note that (1.5) yields (1.4) when d < a, α = 2 and ρ = 1. We also provide
an upper bound for Tλϕ which is valid for all λ > 0, namely

Tλϕ ≤
(
Cλ−β + [(10ε2/ε1)1/ρθ]

α−dρβ
α

) α
α−dρβ

+ η, (1.6)

where C, θ and η are suitable positive constants.
We remark that many of our arguments rely on the assumption dρβ/α < 1.

Thus, the blowup behavior and life span asymptotics of (1.1) in the “critical” case
dρβ/α = 1 remain to be investigated.

As this paper is partly aimed at the multidisciplinary reader, in the next section
we recall some basic facts regarding the Feynman-Kac formula. In Section 3 we
obtain semigroup and bridge estimates that we shall need in the sequel. Section 4
is devoted to prove that (1.1) does not admit nontrivial global solutions if d < α

ρβ .
In the remaining sections 5 and 6 we prove our bounds for the life span of (1.1).

2. The Feynman-Kac representation and subsolutions

For any T > 0 let us consider the initial-value problem

∂%(t, x)
∂t

= k(t)∆α%(t, x) + ζ(t, x)%(t, x), 0 < t ≤ T,

%(0, x) = ϕ(x), x ∈ Rd,

(2.1)

where k : [0,∞) → [0,∞) is integrable on any bounded interval, and ζ and ϕ are
nonnegative bounded continuous functions on [0, T ] × Rd and Rd, respectively. It
is well known that in the classical setting k ≡ 1, α = 2, ζ(t, x) ≡ ζ(x), the solution
of (2.1) can be expressed via the Feynman-Kac formula, see e.g. [5]. Theorem 2.1
below gives the Feynman-Kac representation corresponding to (2.1).

Let W ≡ {W (t)}t≥0 be the (time-inhomogeneous) càdlàg Feller process cor-
responding to the family of generators {k(t)∆α}t≥0. Note that W can be con-
structed by performing a deterministic time change of the symmetric α-stable pro-
cess Z ≡ {Z(t)}t≥0. We designate Px the distribution of {W (t)}t≥0 such that
Px[W (0) = x] = 1, and write Ex for the expectation with respect to Px, x ∈ Rd.

Theorem 2.1. Let k, ζ and ϕ be as above. Then, the solution of (2.1) admits the
Feynman-Kac representation

%(t, x) = Ex

[
ϕ(W (t)) exp{

∫ t

0

ζ(t− s,W (s)) ds}
]
, (t, x) ∈ [0, T ]× Rd. (2.2)

Proof. The proof is a simple adaptation to our time-inhomogeneous context of the
approach used in [1]. We shall assume that 0 < α < 2; the case α = 2 is simpler
and can be handled in a similar fashion.
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Recall [18] that there exists a Poisson random measure N(dt, dx) on [0,∞) ×
Rd\{0} having expectation EN(dt, dx) = dt ν(dx), with

ν(dx) =
α2α−1Γ((α + d)/2)

πd/2Γ(1− α/2)‖x‖α+d
dx,

and such that the paths of Z admit the Lévy-Itô decomposition

Z(t) =
∫
|x|<1

xÑ(t, dx) +
∫
|x|≥1

xN(t, dx), t ≥ 0, (2.3)

where N(t, dx) :=
∫ t

0
N(dt, dx), and Ñ(t, dx) is the compensated Poisson random

measure

Ñ(t, B) = N(t, B)− tν(B), t ≥ 0, B ∈ B(Rd);

here B(Rd) denotes the Borel σ-algebra in Rd. The process W also admits a Lévy-
Itô decomposition, with corresponding Poisson random measure k(t)N(dt, dx).

Let us write W (p−) for the limit of W from the left of p. From the integration
by parts formula we obtain

d
[
%(t− s,W (s)) exp

{ ∫ s

0

ζ(t− r, W (r))dr
}]

= %(t− s,W (s−))ζ(t− s,W (s−)) exp
{ ∫ s

0

ζ(t− r, W (r−))dr
}

ds

+ exp
{ ∫ s

0

ζ(t− r, W (r−)) dr
}

d%(t− s,W (s)).

Using Itô’s formula [1, Section 4.4], to calculate d%(t− s,W (s)), we obtain

d
[
%(t− s,W (s)) exp

{ ∫ s

0

ζ(t− r, W (r))dr
}]

= exp
{ ∫ s

0

ζ(t− r, W (r−)) dr
}

×
{

%(t− s,W (s−))ζ(t− s,W (s−)) ds− d

ds
%(t− s,W (s−))

+ k(s)
∫
|x|<1

[
%(t− s,W (s−) + x)− %(t− s,W (s−))

]
Ñ(ds, dx)

+ k(s)
∫
|x|≥1

[
%(t− s,W (s−) + x)− %(t− s,W (s−))

]
N(ds, dx)

+ k(s)
∫
|x|<1

[
%(t− s,W (s−) + x)− %(t− s,W (s−))

−
∑

i

xi
d

dxi
%(t− s,W (s−))

]
ν(dx)ds

}
.

Integrating from 0 to t, and taking expectation with respect to Px, yields
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Ex

[
ϕ(W (t)) exp

{ ∫ t

0

ζ(t− s,W (s)) ds
}]

− %(t, x)

= Ex

∫ t

0

exp
{ ∫ s

0

ζ(t− r, W (r−)) dr
}

×
{

%(t− s,W (s−))ζ(t− s,W (s−))− d

ds
%(t− s,W (s−))

+ k(s)
∫
|x|<1

[
%(t− s,W (s−) + x)− %(t− s,W (s−))

−
∑

i

xi
d

dxi
%(t− s,W (s−))

]
ν(dx)

+ k(s)
∫
|x|≥1

[
%(t− s,W (s−) + x)− %(t− s,W (s−))

]
ν(dx)

}
ds

= 0,

where in the first equality we used the identity Ñ(ds, dx) = N(ds, dx) − ds ν(dx),
and the fact that the stochastic integrals with respect to Ñ(ds, dx) are martingales,
and therefore have expectation 0. �

The Feynman-Kac representation is suitable for constructing subsolutions of
reaction-diffusion equations of the type

∂w(t, y)
∂t

= k(t)∆αw(t, y) + w1+β(t, y), w(0, y) = ϕ(y), y ∈ Rd, (2.4)

where β > 0 is a constant, and k, ϕ are as in (2.1). From Theorem 2.1 we know
that

w(t, y) = Ey

[
ϕ(W (t)) exp

( ∫ t

0

wβ(t− s,W (s)) ds
)]

, (t, y) ∈ [0, T ]× Rd,

for every positive T < Tϕ. Hence, for every y ∈ Rd,

w(t, y) ≥ Ey[ϕ(W (t))] =: v0(t, y), t ≥ 0,

so that v0 is a subsolution of (2.4); i.e., w(0, ·) = v0(0, ·) and w(t, ·) ≥ v0(t, ·) for
every t > 0. The next lemma, which we will need in the following section, is a
direct consequence of the Feynman-Kac representation.

Lemma 2.2. Let k, ϕ be as in (2.1), and let ζ(·, ·) be a nonnegative, bounded and
continuous subsolution of (2.4). Then, any solution of

∂%(t, y)
∂t

= k(t)∆α%(t, y) + ζβ(t, y)%(t, y), %(0, ·) = ϕ,

remains a subsolution of (2.4).

3. Bridge and semigroup bounds

Let us denote by p(t, x), t ≥ 0, x ∈ Rd, the transition densities of the d-
dimensional symmetric α-stable process {Z(t)}t≥0. Recall that p(t, ·), t > 0, are
strictly positive, radially symmetric continuous functions that satisfy the following
properties.

Lemma 3.1. For any s, t > 0, and x, y ∈ Rd, p(t, x) satisfies
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(i) p(ts, x) = t−
d
α p(s, t−

1
α x),

(ii) p(t, x) ≤ p(t, y) when |x| ≥ |y|,
(iii) p(t, x) ≥ ( s

t )
d/αp(s, x) for t ≥ s,

(iv) p(t, 1
τ (x− y)) ≥ p(t, x)p(t, y) if p(t, 0) ≤ 1 and τ ≥ 2.

For a proof of the above lemma, see [6, page 493] or [20, pages 46 and 47].
Let ϕ : Rd → [0,∞) be bounded and measurable, and let k : [0,∞) → [0,∞) be

locally integrable. Notice that the transition probabilities of the Markov process
{W (t), t ≥ 0} are given by

P (W (t) ∈ dy|W (s) = x) = p(
∫ t

s
k(r) dr, y − x) dy, 0 ≤ s ≤ t, x ∈ Rd. (3.1)

We define the function

v0(t, x) = Ex [ϕ(W (t))] = Ex [ϕ(Z(K(t, 0)))] =
∫

p(K(t, 0), y − x)ϕ(y) dy, (3.2)

where t ≥ 0, x ∈ Rd, K(t, s) :=
∫ t

s
k(r)dr, 0 ≤ s ≤ t, and write B(r) ≡ Br ⊂ Rd

for the ball of radius r, centered at the origin.

Lemma 3.2. There exists a constant c0 > 0 satisfying

v0(t, x) ≥ c0K
−d/α(t, 0)1B1

(
K−1/α(t, 0)x

)
(3.3)

for all x ∈ Rd, and all t > 0 such that K(t, 0) ≥ 1.

Proof. From Lemma 3.1 (i), (ii) and the radial symmetry of p(t, ·) we have, for
K1/α(t, 0) ≥ 1, x ∈ BK1/α(t,0) and z ∈ ∂B2, that

v0(t, x) = E0[ϕ(Z(K(t, 0)) + x)]

= E0

[
ϕ(K1/α(t, 0)(Z(1) + K−1/α(t, 0)x))

]
≥

∫
B1

ϕ(K1/α(t, 0)y)P
[
Z(1) ∈ dy −K−1/α(t, 0)x

]
=

∫
B1

ϕ(K1/α(t, 0)y)p(1, y −K−1/α(t, 0)x)dy

≥ p(1, z)
∫

B1

ϕ(K1/α(t, 0)y) dy

= p(1, z)K−d/α(t, 0)
∫

B
K1/α(t,0)

ϕ(y)dy

≥ p(1, z)K−d/α(t, 0)1B1(K
−1/α(t, 0)x)

∫
B1

ϕ(y)dy.

Letting c0 = p(1, z)
∫

B1
ϕ(y)dy yields (3.3). �

Fix θ > 0 such that (1.2) holds for all t ≥ θ and such that K(θ, 0) ≥ 1. Define
δ0 = min{( ε1

2ε2
)1/ρ, 1− ( ε1

2ε2
)1/ρ}.

Lemma 3.3. There exists c > 0 such that for all x, y ∈ B1 and t ≥ θ/δ0,

Px

[
W (s) ∈ BK1/α(t−s,0) : W (t) = y

]
≥ c

for s ∈ [θ, δ0t].
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Proof. Using (1.2) and Lemma 3.1 (i), we obtain

Px

[
W (s) ∈ BK1/α(t−s,0) : W (t) = y

]
=

∫
B

K1/α(t−s,0)

p(K(s, 0), x− z)p(K(t, s), z − y)
p(K(t, 0), x− y)

dz

≥
∫

B
rsρ/α

K−d/α(s, 0)
K−d/α(t, 0)

× p(1,K−1/α(s, 0)(x− z))K−d/α(t, s)p(1,K−1/α(t, s)(z − y))
p(1,K−1/α(t, 0)(x− y))

dz,

(3.4)

with r = ε
1/α
1 ( 1

δ0
− 1)ρ/α. It is straightforward to verify that K−1/α(s, 0)(x− z) ∈

Br1 , where r1 = 2( ε2
ε1

)1/αδ
ρ
α with δ = max{1, 1

δ0
− 1}, hence Lemma 3.1 (ii) and

radial symmetry of p(t, ·) imply

p(1,K−1/α(s, 0)(x− z)) ≥ p(1, ς) ≡ c1

for any ς ∈ ∂Br1 .
Thus, the term in the right-hand side of (3.4) is bounded from below by∫

B
rsρ/α

c1K
−d/α(s, 0)K−d/α(t, s)p(1,K− 1

α (t, s)(z − y))
K−d/α(t, 0)p(1,K−1/α(t, 0)(x− y))

dz.

Using (1.2), and the facts that K(t, 0) ≥ K(t, s) and p(t, x) ≤ p(t, 0) for all t > 0
and x ∈ Rd, it follows that

Px

[
W (s) ∈ BK1/α(t−s,0) : W (t) = y

]
≥

∫
B

rsρ/α

c2s
−dρ/αp(1,K−1/α(t, s)(z − y))dz,

(3.5)

where c2 = c1ε
−d/α
2

p(1,0) . Since θ ≤ s ≤ δ0t, we have from (1.2) and the definition of δ0

that

K−1/α(t, s) = [K(t, 0)−K(s, 0)]−1/α ≤ (ε1t
ρ − ε2δ

ρ
0tρ)−1/α ≤ c3t

−ρ/α,

where c3 = ( 2
ε1

)1/α. Since y ∈ B1, z ∈ Brsρ/α and θ ≤ s ≤ δ0t, we deduce that, for

t ≥ 1, y ∈ Btρ/α and z ∈ B
rδ

ρ/α
0 tρ/α . Letting γ = max{1, rδ

ρ/α
0 }, it follows that

z − y ∈ B2γtρ/α , and thus K−1/α(t, s)(z − y) ∈ B2γc3 . Therefore,

p(1,K−1/α(t, s)(z − y)) ≥ p(1, ς) ≡ c4

for any ς ∈ ∂B2γc3 . From (3.5) we conclude that

Px

[
W (s) ∈ BK1/α(t−s,0) : W (t) = y

]
≥

∫
B

rsρ/α

c5s
−dρ/αdz ≡ c.

�

4. Nonexistence of positive global solutions

In this section we shall use the Feynman-Kac representation to construct a sub-
solution of (1.1) which grows to infinity uniformly on the unit ball. As we are going
to prove afterward, this guarantees nonexistence of nontrivial positive solutions of
(1.1).
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Let v solve the semilinear nonautonomous equation

∂v(t, x)
∂t

= k(t)∆αv(t, x) + vβ
0 (t, x)v(t, x),

v(0, x) = ϕ(x), x ∈ Rd,

(4.1)

where k and ϕ are as in (1.1), and v0 is defined in (3.2). Since v0 ≤ u, where u is
the solution of (1.1), it follows from Lemma 2.2 that v ≤ u as well. Without loss
of generality we shall assume that ϕ does not a.e. vanish on the unit ball.

Proposition 4.1. There exist c′, c′′ > 0 such that, for all x ∈ B1 and all t > 0
large enough,

v(t, x) ≥ c′t−dρ/α exp(c′′t1−
dρβ

α ).

Proof. In the sequel, c0, c1, . . . , c8 denote suitable positive constants, c0, . . . , c5 be-
ing defined in Lemma 3.3. From Theorem 2.1 we know that

v(t, x) =
∫

Rd

ϕ(y)p(K(t, 0), x− y)Ex

[
exp

∫ t

0

vβ
0 (t− s,W (s))ds

∣∣∣ W (t) = y
]
dy.

Let θ and δ0 be as in Lemma 3.3. For any θ ≤ s ≤ δ0t, we have t − s ≥ t − δ0t =
(1 − δ0)t ≥ δ0t ≥ θ, and therefore K

1
α (t − s, 0) ≥ 1. From here, using (3.3) and

Jensen’s inequality, we get

v(t, x) ≥
∫

Rd

ϕ(y)p(K(t, 0), x− y)

× Ex

[
exp

∫ δ0t

θ

cβ
0K−dβ/α(t− s, 0)1B

K
1
α (t−s,0)

(W (s)) ds
∣∣∣ W (t) = y

]
dy

≥
∫

B1

ϕ(y)p(K(t, 0), x− y)

× exp
{∫ δ0t

θ

cβ
0K− dβ

α (t− s, 0)Px

[
W (s) ∈ B

K
1
α (t−s,0)

∣∣∣ W (t) = y
]
ds

}
dy.

It follows from Lemma 3.1 and Lemma 3.3 that

v(t, x) ≥
∫

B1

ϕ(y)p(K(t, 0), x− y) exp
∫ δ0t

θ

c6K
−dβ/α(t− s, 0) ds dy

=
∫

B1

ϕ(y)K−d/α(t, 0)p(1,K−1/α(t, 0)(x− y))dy

× exp
∫ δ0t

θ

c6K
−dβ/α(t− s, 0) ds.

Let x, y ∈ B1. Then K−1/α(t, 0)(x− y) ∈ B2. Radial symmetry of p(t, ·) implies

p
(
1,K−1/α(t, 0)(x− y)

)
≥ p(1, ς) ≡ c7

for any ς ∈ ∂B2. Therefore,

v(t, x) ≥
∫

B1

c7ϕ(y)K−d/α(t, 0)dy exp
∫ δ0t

θ

c6K
−dβ/α(t− s, 0)ds. (4.2)
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Let c8 = c7

∫
B1

ϕ(y)dy. Using (1.2) and the fact that K(t, 0) ≥ K(t − s, 0), the
term in the right of (4.2) is bounded below by

c8K
−d/α(t, 0) exp

(
c6

∫ δ0t

θ

K− dβ
α (t, 0)ds

)
≥ c8ε

−d/α
2 t−dρ/α exp

[
c6ε

−dβ/α
2 (δ0t

1− dβρ
α − θt−

dβρ
α )

]
if t > 0 is large. It follows that

v(t, x) ≥ c′t−
dρ
α exp(c′′t1−

dβρ
α ) (4.3)

for sufficiently large t, where c′ = c8ε
−d/α
2 exp

(
− c6θε

−dβ/α
2

)
and c′′ = c6δ0ε

−dβ/α
2 .

�

As a consequence of Proposition 4.1, if 0 < dβρ
α < 1, then infx∈B1 v(t, x) → ∞

when t →∞. As v is subsolution of Equation (1.1), this implies that

C(t) := inf
x∈B1

u(t, x) →∞ as t →∞. (4.4)

We need the following lemma.

Lemma 4.2. Let

ξ1 := min
x∈B1

min
0≤r≤1

Px[Z(r) ∈ B1],

where {Z(t), t ≥ 0} denotes the symmetric α-stable process. Then

(i) ξ1 > 0
(ii) For any 0 ≤ s ≤ t,

ξ :=
∫

B1

p(K(t0+t, t0), y−x) dy ≥
∫

B1

p(K(t+t0, s+t0), y−x) dv ≥ ξ
bK(t+t0,s+t0)c
1 ,

where bxc denotes the least integer no smaller than x ∈ [0,∞).

Proof. Let ε > 0, and let fε : Rd → R+ be a continuous function bounded by 1
such that fε = 1 on B1, and fε = 0 on the complement of the ball B1+ε. Because
of strong continuity of the semigroup {S(t)}t≥0 corresponding to {Z(t), t ≥ 0},
limt→0 S(t)fε = fε uniformly on Rd. Moreover, uniformly on B1,

1B1 = lim
ε↓0

fε = lim
ε↓0

lim
t→0

S(t)fε = lim
t→0

lim
ε↓0

S(t)fε = lim
t→0

S(t)1B1 ,

where the last equality follows from the bounded convergence theorem. Hence,
there exists ε ≡ ε1/2 > 0 such that supx∈B1

|S(t)1B1(x)− 1B1(x)| < 1
2 for all t < ε,

which implies

Px[Z(r) ∈ B1] = S(r)1B1(x) ≥ 1
2

for all r < ε and x ∈ B1. Therefore, in order to prove (i) it suffices to show that

inf
ε≤r≤1

Px[Z(r) ∈ B1] > A (4.5)
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for all x ∈ B1, where the constant A > 0 does not depend on x. Using Lemma 3.1
(i) we get

Px[Z(r) ∈ B1] =
∫

B1

p(r, z − x) dz

= r−d/α

∫
B1

p(1, r−1/α(z − x)) dz

≥ inf
y∈B

2ε−1/α

p(1, y)
∫

B1

dz,

which yields (4.5).
The assertion in part (ii) is deduced from the Chapman-Kolmogorov equation

as follows. If l := K(t0 + t, t0 + s) ≤ 1, the statement follows directly from part (i).
If l > 1, then

Px[Z(l) ∈ B1] =
∫

B1

∫
Rd

p(l − 1, y − x)p(1, z − y) dy dz

≥
∫

B1

∫
B1

p(l − 1, y − x)p(1, z − y) dy dz

= S(l − 1)((S(1)1B1)1B1)

≥ ξ1Px[Z(l − 1) ∈ B1].

Thus, applying the above procedure bl − 1c times we obtain the assertion. �

Now we are ready to prove that (4.4) is sufficient to guarantee finite-time blow
up of (1.1).

Theorem 4.3. If 0 < dρβ
α < 1, then all nontrivial positive solutions of (1.1) are

nonglobal.

Proof. Let u be the solution of (1.1), and let t0 > 0 be such that ‖u(t0, ·)‖∞ < ∞.
Then

u(t + t0, x) =
∫

Rd

p(K(t + t0, t0), y − x)u(t0, y)dy

+
∫ t

0

∫
Rd

p(K(t + t0, s + t0), y − x)u1+β(s + t0, y) dy ds

≥
∫

B1

p(K(t + t0, t0), y − x)u(t0, y)dy

+
∫ t

0

∫
B1

p(K(t + t0, s + t0), y − x)u1+β(s + t0, y) dy ds.

Therefore, w(t, ·) := u(t0 + t, ·) satisfies

w(t, x) ≥ C(t0)
∫

B1

p(K(t + t0, t0), y − x) dy

+
∫ t

0

∫
B1

p(K(t + t0, s + t0), y − x)
(

min
z∈B1

w(s, z)
)1+β

dy ds.

It follows from Lemma 4.2 that for all t ∈ [0, 1],

min
x∈B1

w(t, x) ≥ ξC(t0) + ξ

∫ t

0

(
min
z∈B1

w(s, z)
)1+β

ds.
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We put w(t) ≡ minz∈B1 w(t, z), t ≥ 0, and consider the integral equation

v(t) = ξC(t0) + ξ

∫ t

0

v1+β(s) ds,

whose solution satisfies

vβ(t) =
[ξC(t0)]

β

1− βξ1+βCβ(t0)t
. (4.6)

Choosing t0 large enough that the blow up time of v is smaller than one, renders

w(1) = min
x∈B1

w(1, x) ≥ v(1) = ∞,

which proves blow up of u at time t0 + 1. �

5. Upper estimates for the life span

In this section we obtain two upper bounds for the life span of the solution to
(1.1) with initial value u(0, ·) = λϕ(·), where λ is a positive parameter. We first
consider the case of small and positive λ.

Proposition 5.1. If 0 < dρβ/α ≤ n/(n + 1) with n ∈ N, then there exists a
constant Cn > 0 such that for all sufficiently small λ > 0,

Tλϕ ≤ Cnλ−
αβ

α−dβρ .

Proof. From (4.3) and (4.4) it follows that

C(t) ≥ λc′t−dρ/α exp
(
c′′t1−

dβρ
α

)
for all t ≥ θ

δ0
; here we require t ≥ θ/δ0 in order to have an interval [θ, δ0t] so that

K−1/α(t, s) ≤ Const.t−ρ/α for s ∈ [θ, δ0t], and then to use (3.5).
Recall from (4.6) that v(1) = ∞ provided βξ1+βCβ(t0) = 1. Note that t0 ≤ t1,

where t1 is such that t1 ≥ θ
δ0

and

βξ1+βλβ(c′)βt
−dβρ/α
1 exp

(
βc′′t

1− dβρ
α

1

)
= 1.

Choosing θ ≥ δ0, from the inequality ex ≥ xn+1

(n+1)! and the fact that the condition

0 < dρβ
α ≤ n

n+1 implies dρβ
nα ≤ 1− dρβ

α , we have that t1 ≤ t2, where t2 is such that

t2 ≥
θ

δ0
and

1
(n + 1)!

βn+2ξ1+β(c′)β(c′′)n+1λβt
1− dβρ

α
2 = 1,

which is the same as

t2 =
[ (n + 1)!
βn+2ξ1+β(c′)β(c′′)n+1

] α
α−dβρ λ−

αβ
α−dβρ .

Choosing

Cn =
[ (n + 1)!
βn+2ξ1+β(c′)β(c′′)n+1

] α
α−dβρ

renders t0 ≤ t1 ≤ t2 = Cnλ−
αβ

α−dβρ . Hence Tλϕ ≤ Cnλ−
αβ

α−dβρ for all λ > 0 such that
Cnλ−

αβ
α−dβρ ≥ θ

δ0
. �
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Let us define
υ(t) =

∫
Rd

p(K(t, 0), x)u(t, x)dx,

where u is the solution of (1.1), and let θ > 0 be such that (1.2) holds for all t ≥ θ.

Lemma 5.2. If there exist τ0 ≥ θ such that υ(t) = ∞ for t ≥ τ0, then the solution
to (1.1) blows up in finite time.

Proof. Since p(K(t, 0), 0) = K(t, 0)−d/αp(1, 0) and K(t, 0) ≥ ε1t
ρ for all t ≥ θ, we

can assume, by taking τ0 bigger if necessary, that p(K(t, 0), 0) ≤ 1 for all t ≥ τ0.
If τ0 ≤ ε

1/ρ
1 t and ε

1/ρ
1 t ≤ r ≤ (2ε1)1/ρt, we have, from the conditions on k(t),

that

τ ≡
[K((10ε2)1/ρt, r)

K(r, 0)
]1/α =

[K((10ε2)1/ρt, 0)−K(r, 0)
K(r, 0)

]1/α

≥
[K((10ε2)1/ρt, 0)

K((2ε1)1/ρt, 0)
− 1

]1/α

≥
[ε1(10ε2)tρ

ε2(2ε1)tρ
− 1

]1/α = 41/α ≥ 2.

Using properties (i) and (iv) in Lemma 3.1, with τ =
[K((10ε2)

1/ρt,r)
K(r,0)

]1/α, yields

p
(
K

(
(10ε2)1/ρt, r

)
, x− y

)
= p

(
K(r, 0)

[K((10ε2)1/ρt, r)
K(r, 0)

]
, x− y

)
=

[ K(r, 0)
K((10ε2)1/ρt, r)

]d/α
p(K(r, 0),

[ K(r, 0)
K((10ε2)1/ρt, r)

]1/α(x− y))

≥
[ K(r, 0)
K((10ε2)1/ρt, r)

]d/α
p(K(r, 0), x)p(K(r, 0), y).

Since υ(t) = ∞ for all t ≥ τ0, it follows that∫
Rd

p
(
K((10ε2)1/ρt, r), x− y

)
u(r, y)dy

≥
[ K(r, 0)
K((10ε2)1/ρt, r)

]d/α
p(K(r, 0), x)υ(r) = ∞.

The solution u(t, x) of (1.1) satisfies

u(t, x) = λ

∫
Rd

p(K(t, 0), x− y)ϕ(y)dy +
∫ t

0

( ∫
Rd

p(K(t, r), x− y)u1+β(r, y)dy
)
dr

≥
∫ t

0

( ∫
Rd

p(K(t, r), x− y)u1+β(r, y)dy
)
dr.

Thus,

u
(
(10ε2)1/ρt, x

)
≥

∫ (10ε2)
1/ρt

0

( ∫
Rd

p(K((10ε2)1/ρt, r), x− y)u1+β(r, y)dy
)

dr.

Jensen’s inequality renders

u
(
(10ε2)1/ρt, x

)
≥

∫ (2ε1)
1/ρt

ε
1/ρ
1 t

( ∫
Rd

p(K((10ε2)1/ρt, r), x− y)u(r, y)dy
)1+β

dr = ∞,
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so that u(t, x) = ∞ for any t ≥ (10 ε2
ε1

)1/ρτ0 and x ∈ Rd. �

Proposition 5.3. Let 0 < dρβ
α < 1. There exists a constant C > 0 depending on

α, β, d, ε1, ε2, θ, ρ and ϕ, such that

Tλϕ ≤
{
Cλ−β + [(10

ε2

ε1
)1/ρθ]

α−dρβ
α

} α
α−dρβ + η, λ > 0, (5.1)

where η is any positive real number satisfying p(K(η, 0), 0) ≤ 1.

Proof. From Lemma 3.1 we obtain

p(K(η, 0), x− y) = p
(
K(η, 0),

1
2
(2x− 2y)

)
≥ p

(
K(η, 0), 2x

)
p(K(η, 0), 2y)

= 2−dp(2−αK(η, 0), x)p(K(η, 0), 2y).

Therefore

u(η, x) ≥ λ

∫
Rd

p(K(η, 0), x− y)ϕ(y)dy

≥ 2−dλp(2−αK(η, 0), x)
∫

Rd

p(K(η, 0), 2y)ϕ(y)dy

= λN0p(2−αK(η, 0), x),

where N0 = 2−d
∫

Rd p(K(η, 0), 2y)ϕ(y)dy. Thus, for any λ > 0 , t ≥ 0 and x ∈ Rd,

u(t + η, x) =
∫

Rd

p(K(t + η, η), x− y)u(η, y) dy

+
∫ t

0

( ∫
Rd

p(K(t + η, r + η), x− y)u1+β(r + η, y) dy
)

dr

≥ λN0

∫
Rd

p(K(t + η, η), x− y)p(2−αK(η, 0), y)dy

+
∫ t

0

( ∫
Rd

p(K(t + η, r + η), x− y)u1+β(r + η, y) dy
)

dr

≥ λN0p(K(t + η, η) + 2−αK(η, 0), x)

+
∫ t

0

( ∫
Rd

p(K(t + η, r + η), x− y)u1+β(r + η, y) dy
)

dr

≥ w(t, x),

where w solves the equation

w(t, x) = λN0p(K(t + η, η) + 2−αK(η, 0), x)

+
∫ t

0

( ∫
Rd

p(K(t + η, r + η), x− y)w1+β(r, y)dy
)
dr, t ≥ 0, x ∈ Rd.

(5.2)
Hence, it is sufficient to prove that w is non-global, and, because of Lemma 5.2, it
suffices to show finite time blowup of

υ(t) =
∫

Rd

p(K(t, 0), x)w(t, x) dx, t ≥ 0.
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Multiplying both sides of (5.2) by p(K(t, 0), x) and integrating, we obtain

v(t) =
∫

Rd

p(K(t, 0), x)w(t, x) dx

= λN0

∫
Rd

p(K(t + η, η) + 2−αK(η, 0), x)p(K(t, 0), x) dx

+
∫

Rd

∫ t

0

∫
Rd

p(K(t + η, r + η), x− y)p(K(t, 0), x)w1+β(r, y) dy dr dx

= λN0p(K(t, 0) + K(t + η, η) + 2−αK(η, 0), 0)

+
∫ t

0

∫
Rd

p(K(t + η, r + η) + K(t, 0), y)w1+β(r, y) dy dr, t ≥ 0.

From Lemma 3.1 (i), we have p(t, 0) ≤ p(s, 0) for all 0 < s ≤ t. Hence

υ(t) ≥ λN0p(2K(t + η, 0) + 2−αK(η, 0), 0)

+
∫ t

0

∫
Rd

p(K(t + η, r + η) + K(t, 0), y)w1+β(r, y) dy dr.

Using now Lemma 3.1 (iii) we obtain,

υ(t) ≥ λN0p(2K(t + η, 0) + 2−αK(η, 0), 0)

+
∫ t

0

( K(r, 0)
K(t + η, r + η) + K(t, 0)

)d/α
∫

Rd

p(K(r, 0), y)w1+β(r, y) dy dr.

Jensen’s inequality together with Lemma 3.1 (i) gives

υ(t) ≥ λN0p(2K(t + η, 0) + 2−αK(η, 0), 0) +
∫ t

0

( K(r, 0)
2K(t + η, 0)

)d/α
υ1+β(r) dr

= λN0[2K(t + η, 0) + 2−αK(η, 0)]−d/αp(1, 0)

+
∫ t

0

( K(r, 0)
2K(t + η, 0)

)d/α
υ1+β(r) dr.

Let f1(t) = Kd/α(t + η, 0)υ(t) and t ≥ θ. We have

f1(t) ≥ λp(1, 0)N0[
K(θ + η, 0)

2K(θ + η, 0) + 2−αK(η, 0)
]d/α

+ 2−d/α

∫ t

θ

K−dβ/α(r, 0)f1+β
1 (r) dr,

and if N := p(1, 0)N0[
K(θ+η,0)

2K(θ+η,0)+2−αK(η,0) ]
d/α, then

f1(t) ≥ λN + 2−d/α

∫ t

θ

K
−dβ/α

(r, 0)f1+β
1 (r)dr, t ≥ θ.

Let f2 be the solution of the integral equation

f2(t) = λN + 2−d/α

∫ t

θ

K−dβ/α(r, 0)f1+β
2 (r)dr, t ≥ θ,

which satisfies

fβ
2 (t) =

(λN)β

1− β(λN)β( 1
2 )d/αH(t)

(5.3)
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with H(t) ≡
∫ t

θ
K−dβ/α(r, 0)dr. From (1.2) and the assumption 0 < dρβ

α < 1, we
get

H(t) ≥ ε
−dβ/α
2

∫ t

θ

r−
dρβ

α dr =
α

α− dρβ
ε
−dβ/α
2 [t

α−dρβ
α −θ

α−dρβ
α ] →∞ as t →∞.

Hence, there exists τ0 ≥ θ such that β( 1
2 )d/α(λN)βH(τ0) = 1, and therefore,∫ τ0

θ

K
−dβ/α

(r, 0)dr =
2d/α

β
N−βλ−β ,

which together with (1.2) gives
∫ τ0

θ
(ε2r

ρ)−
dβ
α dr ≤ 2d/α

β N−βλ−β . Hence

τ
α−dρβ

α
0 ≤ 2d/α[α− dρβ]

αβ
N−βε

dβ
α

2 λ−β + θ
α−dρβ

α ,

or, equivalently,

τ0 ≤
{2d/α [α− dρβ]

αβ
N−βε

dβ
α

2 λ−β + θ
α−dρβ

α

} α
α−dρβ . (5.4)

From (5.3), we deduce that f2(τ0) = ∞. It follows that

Kd/α(τ0 + η, 0)υ(τ0) = f1(τ0) ≥ f2(τ0) = ∞,

which implies (as in the proof of Lemma 5.2) that w(t, x) = ∞ if t ≥ (10 ε2
ε1

)1/ρτ0,
and thus, u(t, x) = ∞ provided t ≥ (10 ε2

ε1
)1/ρτ0 + η. Therefore

Tλϕ ≤
(
10

ε2

ε1

)1/ρ
τ0 + η.

From (5.4) we conclude that there is a positive constant C = C(α, β, d, ε1, ε2, θ, ρ, ϕ)
satisfying (5.1). �

6. A lower estimate for the life span

To bound from below the life span Tλϕ of the initial-value problem (1.1), we
need to assume that (1.2) holds for any t ≥ 0, and that ϕ is integrable.

Let {U(t, s)}t≥s≥0 be the evolution family on Cb(Rd) generated by the family of
operators {k(t)∆α}t≥0, which is given by

U(t, s)ϕ(x) =
∫

Rd

ϕ(y)p(K(t, s), x− y)dy = S(K(t, s))ϕ(x),

where {S(t)}t≥0 is the semigroup with the infinitesimal generator ∆α.

Proposition 6.1. Let 0 < dρβ
α < 1. There exists a constant c > 0, depending on

α, β, d, ε1, ρ and ϕ, such that

Tλϕ ≥ cλ−
αβ

α−dρβ , λ > 0. (6.1)

Proof. The function

u(t, x) :=
[
λ−β − β

∫ t

0

‖U(r, 0)ϕ‖β
∞dr

]−1/β

U(t, 0)ϕ(x), t ≥ 0, x ∈ Rd.
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is a supersolution of (1.1). Indeed, u(0, ·) = λϕ(·) and

∂u(t, x)
∂t

= − 1
β

[
λ−β − β

∫ t

0

‖U(r, 0)ϕ‖β
∞dr

]− 1
β−1[

− β‖U(t, 0)ϕ‖β
∞

]
U(t, 0)ϕ(x)

+
[
λ−β − β

∫ t

0

‖U(r, 0)ϕ‖β
∞dr

]−1/β

k(t)∆αU(t, 0)ϕ(x).

Since − 1
β − 1 = −β+1

β , we get

∂u(t, x)
∂t

=
{[

λ−β − β

∫ t

0

‖U(r, 0)ϕ‖β
∞dr

]−1/β}β+1

‖U(t, 0)ϕ‖β
∞U(t, 0)ϕ(x)

+ k(t)∆α

[
λ−β − β

∫ t

0

‖U(r, 0)ϕ‖β
∞dr

]−1/β

U(t, 0)ϕ(x).

Using the inequality

‖U(t, 0)ϕ‖β
∞U(t, 0)ϕ(x) ≥ [U(t, 0)ϕ(x)]1+β

it follows that
∂u(t, x)

∂t
≥ k(t)∆αu(t, x) + u1+β(t, x),

showing that u is a supersolution of (1.1). Writing L(λ) for the life span of u, it
follows that

L(λ) ≤ Tλϕ, λ ≥ 0.

Now,

u(t, x) =
[
λ−β − β

∫ t

0

‖U(r, 0)ϕ‖β
∞dr

]−1/β

U(t, 0)ϕ(x) = ∞

when λ−β = β
∫ t

0
‖U(r, 0)ϕ‖β

∞ dr. By definition of L(λ),

β−1λ−β =
∫ L(λ)

0

‖U(r, 0)ϕ‖β
∞dr. (6.2)

Note that, by Lemma 3.1 (i), (ii),

U(t, 0)ϕ(x) = S(K(t, 0))ϕ(x)

=
∫

Rd

ϕ(y)p(K(t, 0), x− y)dy

≤ p(1, 0)K−d/α(t, 0)‖ϕ‖1, t > 0, x ∈ Rd.

Since, by assumption, (1.2) holds for any t ≥ 0, we obtain

‖U(t, 0)ϕ‖∞ ≤ p(1, 0)(ε1t
ρ)−d/α‖ϕ‖1.

Inserting this inequality in (6.2) and using that 0 < dρβ
α < 1, we get

β−1λ−β ≤ (p(1, 0)‖ϕ‖1)βε
−dβ/α
1

∫ L(λ)

0

r−dρβ/α dr

=
α

α− dρβ
(p(1, 0)‖ϕ‖1)βε

−dβ/α
1 L(λ)

α−dρβ
α ,

which gives

L(λ)
α−dρβ

α ≥ α− dρβ

αβ
(p(1, 0)‖ϕ‖1)−βε

dβ
α

1 λ−β .
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In this way we obtain the inequality

Tλϕ ≥
[α− dρβ

αβ

] α
α−dρβ

(p(1, 0)‖ϕ‖1)−
αβ

α−dρβ ε
dβ

α−dρβ

1 λ−
αβ

α−dρβ ,

which proves the existence of a constant c ≡ c(α, β, d, ε1, ρ, ϕ) > 0 that satisfies
(6.1). �

Summarizing both, upper and lower bounds for the life span of ( 1.1), we get the
following statement.

Theorem 6.2. Let 0 < dρβ
α < 1, and let Tλϕ be the life span of the nonautonomous

semilinear equation
∂u(t, x)

∂t
= k(t)∆αu(t, x) + u1+β(t, x)

u(0, x) = λϕ(x) ≥ 0, x ∈ Rd,

where λ > 0. Then

lim
λ→0

Tλϕ = ∞, lim
λ→∞

Tλϕ ∈
[
0, (10

ε2

ε1
)1/ρθ + η

]
, (6.3)

where θ and η are any positive numbers such that ε1θ
ρ ≤ K(θ, 0) ≤ ε2θ

ρ and
p(K(η, 0), 0) ≤ 1, respectively.

Proof. Due to (5.1) and (6.1),

cλ−
αβ

α−dρβ ≤ Tλϕ ≤
{
Cλ−β +

[
(10

ε2

ε1
)1/ρθ

]α−dρβ
α

} α
α−dρβ + η,

from which (6.3) follows directly using the fact that 0 < dρβ
α < 1. �
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