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ASYMPTOTIC EXPANSION FORMULAS FOR THE MAXIMUM
OF SOLUTIONS TO DIFFUSIVE LOGISTIC EQUATIONS

TETSUTARO SHIBATA

Abstract. We consider the nonlinear eigenvalue problems

−u′′(t) + u(t)p = λu(t),

u(t) > 0, t ∈ I := (0, 1), u(0) = u(1) = 0,

where p > 1 is a constant and λ > 0 is a parameter. This equation is well
known as the original logistic equation of population dynamics when p = 2.

We establish the precise asymptotic formula for L∞-norm of the solution uλ

as λ→∞ when p = 2 and p = 5.

1. Introduction

We consider the nonlinear eigenvalue problem

−u′′(t) + up(t) = λu(t), t ∈ I := (0, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(0) = u(1) = 0, (1.3)

where p > 1 is a constant and λ > 0 is a parameter. The equation (1.1)–(1.3) is
well known as the original logistic equation of population dynamics when p = 2. In
this case, the equation (1.1)–(1.3) describes the behavior of a species in I, where u
and λ imply the population density and the growth rate, respectively. Therefore,
many authors has been investigated the properties of solutions to (1.1)–(1.3) from
not only pure mathematical point of view but also an application to the field of
biology by computational analysis.

For the existence and uniqueness of the solutions, we know from [1] that for
a given λ > π2, there exists a unique solution u = uλ ∈ C2(I) to (1.1)–(1.3).
Furthermore, the set of solutions {λ, uλ} ⊂ R+ × C2(I) of (1.1)–(1.3) gives the
clear picture of so called bifurcation diagram. Therefore, there are many works
which treated the problem (1.1)–(1.3) by bifurcation theory of L∞-framework.

The purpose of this paper is to study more precisely the asymptotic behavior
of ‖uλ‖∞ as λ → ∞, which is certainly one of the most important asymptotic
properties of uλ to know the global structure of the bifurcation curve. In spite of
the simplicity of the equation, however, a few information of global structure of
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bifurcation diagram in L∞-framework have been known. Therefore, the problem
here is worth considering.

It is known that for general p > 1, the following asymptotic formula for ‖uλ‖∞
holds as λ →∞ [5].

‖uλ‖∞ = λ1/(p−1)(1− e−
√

(p−1)λ(1+o(1))/2). (1.4)

In particular, if p = 3, then the following asymptotic formula has been obtained in
[4].

Theorem 1.1 ([4]). Assume p = 3 in (1.1). Then as λ →∞,

‖uλ‖∞ =
√

λ(1− 4e−
√

λ/
√

2 − 8e−2
√

λ/
√

2 − 24
√

2
√

λe−3
√

λ/
√

2 + o(
√

λe−3
√

λ/
√

2)).
(1.5)

The main tool in the proof of Theorem 1.1 is an asymptotic expansion formula for
the complete elliptic integral of the first kind. However, unfortunately, this approach
can not be applied to the general p > 1, in particular, to the most important case
p = 2. We overcome this difficulty by using the asymptotic expansion formula of
the first elliptic integral in [2] and obtain the following results.

Theorem 1.2. Assume p = 2 in (1.1). Then as λ →∞,

‖uλ‖∞ = λ
{
(1− 6(

√
3− 1)2e−

√
λ/2 − 12(

√
3− 1)4e−

√
λ + O(

√
λe−3

√
λ/2)

}
. (1.6)

We find that almost the same idea, as that to prove Theorem 1.2, can be applied
to the case p = 5.

Theorem 1.3. Assume p = 5 in (1.1). Then as λ →∞,

‖uλ‖∞ = λ1/4
{
1− 6e−

√
λ − 30e−2

√
λ + O(

√
λe−3

√
λ)

}
. (1.7)

The proofs of Theorems 1.2 and 1.3 are quite simple and straightforward. The
future direction of this study will be to give the approach which can be applied to
general p > 1.

2. Proof of Theorem 1.2

In what follows, we assume that λ � 1. We put

ξ = ξλ = 1− ‖uλ‖∞
λ

. (2.1)

By (1.4), we know that ξλ → 0 as λ →∞. To prove Theorem 1.2, we establish the
asymptotic formula for ξλ. We know from [1] the fundamental properties of uλ.

uλ(t) = uλ(1− t), t ∈ I, (2.2)

u′λ(t) > 0, t ∈ [0, 1/2), (2.3)

‖uλ‖∞ = uλ(1/2). (2.4)

Multiply (1.1) by u′λ(t) to obtain

{u′′λ(t) + λuλ(t)− u2
λ(t)}u′λ(t) = 0.

This implies that
d

dt

(1
2
u′λ(t)2 +

1
2
λuλ(t)2 − 1

3
uλ(t)3

)
= 0.
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Namely, for t ∈ Ī,

1
2
u′λ(t)2 +

1
2
λuλ(t)2 − 1

3
uλ(t)3 ≡ constant =

1
2
λ‖uλ‖2∞ − 1

3
‖uλ‖3∞. (2.5)

By this and (2.3), for 0 ≤ t ≤ 1/2,

u′λ(t) =
√

Sλ(uλ(t)), (2.6)

where

Sλ(w) = λ(‖uλ‖2∞ − w2)− 2
3
(‖uλ‖3∞ − w3). (2.7)

By this, we obtain

1
2

=
∫ 1/2

0

dt =
∫ 1/2

0

u′λ(t)√
Sλ(uλ(t))

dt =
1√
λ

∫ 1

0

1√
Rλ(s)

ds. (2.8)

Here

Rλ(s) = 1− s2 − ηλ(1− s3), (2.9)

η = ηλ =
2‖uλ‖∞

3λ
=

2
3
(1− ξ). (2.10)

Furthermore, put θ = 1− s. Then we obtain

Rλ(s) = Uλ(θ) := θη(Aλ + Bλθ − θ2) = θη(aλ − θ)(θ − cλ), (2.11)

where

A = Aλ =
2− 3η

η
=

3ξ

1− ξ
= 3ξ(1 + ξ + O(ξ2)), (2.12)

B = Bλ =
3η − 1

η
=

3(1− 2ξ)
2(1− ξ)

=
3
2
(1− ξ − ξ2 + O(ξ3)), (2.13)

a = aλ =
B +

√
B2 + 4A

2
=

3
2

+
1
2
ξ − 1

6
ξ2 + O(ξ3), (2.14)

c = cλ =
B −

√
B2 + 4A

2
= −2ξ − 4

3
ξ2 + O(ξ3). (2.15)

We obtain (2.12)–(2.15) by Taylor expansion. By (2.8) and (2.11), we obtain
√

λ

2
=

1
√

η

∫ 1

0

1√
θ(a− θ)(θ − c)

dθ. (2.16)

We set

φ = sin−1

√
a− c

a(1− c)
, k =

√
a

a− c
. (2.17)

By [3, pp. 266], we know∫ 1

0

1√
θ(a− θ)(θ − c)

dθ =
2√

a− c
F (φ, k) =

2√
a− c

∫ φ

0

1√
1− k2 sin2 t

dt. (2.18)

By this, (2.10) and (2.16), we obtain
√

λ

2
=

1
√

η

2√
a− c

F (φ, k) =

√
6

(1− ξ)

√
1

a− c
F (φ, k). (2.19)
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Therefore, to prove Theorem 1.2, we calculate F (φ, k) precisely. By [2, Eq. (1.16)],
we know that as k → 1− 0 and φ → π/2− 0,

F (φ, k) =
sinφ

1− β

[(
1 +

ζ2 + cos2 φ

4
)
log

4
ζ + cos φ

− ζ2 + cos2 φ− ζ cos φ

4
]
, (2.20)

where
ζ = (1− k2 sin2 φ)1/2, 0 < β <

3
8
ζ4. (2.21)

Lemma 2.1. For λ � 1,

log(ζ + cos φ) =
1
2

log ξ +
1
2

log 2− 1
2

log 3 + log(
√

3 + 1) (2.22)

−
√

3
1 +

√
3

(2
3

+
√

3
9

)
ξ + O(ξ2).

Proof. By (2.15), (2.17) and Taylor expansion,

k2 sin2 φ =
1

1− c
= 1− 2ξ +

8
3
ξ2 + O(ξ3). (2.23)

By this, (2.21) and Taylor expansion,

ζ = (1− k2 sin2 φ)1/2 =
√

2ξ
(
1− 2

3
ξ + O(ξ2)

)
. (2.24)

By (2.14), (2.15), (2.17) and (2.23),

sin2 φ =
a− c

a

1
1− c

= 1− 2
3
ξ +

4
9
ξ2 + O(ξ3). (2.25)

By this and Taylor expansion,

cos φ =
√

1− sin2 φ =
√

2ξ
( 1√

3
− 1

3
√

3
ξ + O(ξ2)

)
. (2.26)

Then by (2.24) and (2.26),

log(ζ + cos φ) =
1
2

log ξ +
1
2

log 2− 1
2

log 3 + log(
√

3 + 1) (2.27)

−
√

3
1 +

√
3

(2
3

+
√

3
9

)
ξ + O(ξ2).

Thus the proof is complete. �

Proof of Theorem 1.2. By (2.24) and (2.26), we have

ζ2 + cos2 φ

4
=

2
3
ξ + O(ξ2). (2.28)

Further, by (2.24), (2.25) and (2.26),

sinφ = 1− 1
3
ξ + O(ξ2), (2.29)

ζ cos φ =
2√
3
ξ + O(ξ2), (2.30)

ζ4 = O(ξ2). (2.31)

By (2.14) and (2.15),

1√
a− c

=

√
2
3

(
1− 5

6
ξ + O(ξ2)

)
. (2.32)
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Then by (2.20), (2.22) and (2.28)–(2.32),

F (φ, k) = (1 + O(ξ2))(1− 1
3
ξ + O(ξ2))

×
{
(1 +

2
3
ξ + O(ξ2))(log 4− log(ζ + cos φ))− 4−

√
3

6
ξ + O(ξ2))

}
= −1

2
log ξ + D − 1

6
ξ log ξ +

(1
6

+
1
3
D

)
ξ + O(ξ2 log ξ),

(2.33)
where

D =
3
2

log 2 +
1
2

log 3− log(
√

3 + 1) =
1
2

log 6(
√

3− 1)2. (2.34)

By this, (2.19), (2.32) and Lemma 2.1,
√

λ

2
=
√

6(1− ξ)−1/2

√
2
3

(
1− 5

6
ξ + O(ξ2)

)
F (φ, k)

= 2(1− 1
3
ξ + O(ξ2))F (φ, k)

= − log ξ + log 6(
√

3− 1)2 +
1
3
ξ + O(ξ2 log ξ)

= − log ξ + log 6(
√

3− 1)2 +
1
3
ξ + O(

√
λe−

√
λ).

(2.35)

By this and Taylor expansion,

ξ = e−
√

λ/2 · elog 6(
√

3−1)2 · eξ/3 · eO(
√

λe−
√

λ)

= 6(
√

3− 1)2e−
√

λ/2
(
1 +

1
3
ξ + O(ξ2)

) (
1 + O(

√
λe−

√
λ)

)
= 6(

√
3− 1)2e−

√
λ/2(1 + O(

√
λe−

√
λ)) + 2(

√
3− 1)2ξe−

√
λ/2.

(2.36)

By this, we obtain

ξ
(
1− 2(

√
3− 1)2e−

√
λ/2

)
= 6(

√
3− 1)2e−

√
λ/2(1 + O(

√
λe−

√
λ)). (2.37)

This implies

ξ = 6(
√

3− 1)2e−
√

λ/2
(
1 + O(

√
λe−

√
λ)

) (
1 + 2(

√
3− 1)2e−

√
λ/2 + O(e−

√
λ)

)
= 6(

√
3− 1)2e−

√
λ/2 + 12(

√
3− 1)4e−

√
λ + O(

√
λe−3

√
λ/2).

Thus, the proof is complete. �

3. Proof of Theorem 1.3

In this section, let p = 5. We put

r = rλ = 1− ‖uλ‖4∞
λ

. (3.1)

To prove Theorem 1.3, we calculate r precisely. Let

σ = σλ =
1
3
‖uλ‖4∞

λ
=

1− r

3
(3.2)

and
Yλ(s) := 1− s2 − σ(1− s6) = (1− s2){1− σ(1 + s2 + s4)}. (3.3)
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Then by the same calculation as that to obtain (2.8), we have

1
2

=
1√
λ

∫ 1

0

1√
Yλ(s)

ds. (3.4)

This along with (3.3) implies
√

λ

2
=

∫ 1

0

1√
(1− s2){1− σ(1 + s2 + s4)}

ds

=
1
2

∫ 1

0

2sds√
s2(1− s2){1− σ(1 + s2 + s4)}

ds

=
1
2

∫ 1

0

dt√
t(1− t){1− σ(1 + t + t2)}

ds

=
1

2
√

σ

∫ 1

0

1√
t(1− t)(t− d)(a− t)

dt,

(3.5)

where

a =
−1 +

√
1− 4δ

2
= 1 + r +

2
3
r2 + O(r3), (3.6)

d =
−1−

√
1− 4δ

2
= −2− r − 2

3
r2 + O(r3), (3.7)

δ = 1− 1
σ

= −2− 3r − 3r2 + O(r3). (3.8)

By (3.5) and [3, p. 290], we know
√

λ =
1√
σ

2√
a(1− d)

F
(π

2
, k

)
, (3.9)

where

k =

√
a− d

a(1− d)
. (3.10)

By (2.20), as k → 1− 0,

F
(π

2
, k

)
=

1
1− β

[(
1 +

ζ2

4
)
log

4
ζ
− ζ2

4
]
, (3.11)

where (by (3.6), (3.7) and (3.10),

ζ2 = 1− k2 =
d(1− a)
a(1− d)

=
2
3
r
(
1− 1

6
r + O(r2)

)
, (3.12)

0 < β <
3
8
ζ4 = O(r2). (3.13)

By this, (3.11)–(3.13) and Taylor expansion,

F
(π

2
, k

)
= (1 + O(r2))

[
(1 +

1
6
r + O(r2))(log 4− log ζ)− 1

6
r + O(r2)

]
= −1

2
log r +

1
2

log 24− 1
12

r log r +
( 1
12

log 24− 1
12

)
r + O(r2).

(3.14)
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Further, by (3.2), (3.6), (3.7) and Taylor expansion,
1√
σ

=
√

3
(
1 +

1
2
r +

3
8
r2 + O(r3)

)
, (3.15)

1√
a(1− d)

=
1√
3

(
1− 2

3
r + O(r2)

)
. (3.16)

By (3.9) and (3.14)–(3.16), we obtain
√

λ =
(
1− 1

6
r + O(r2)

)
(− log r + log 24− 1

6
r log r +

1
6
(log 24− 1)r + O(r2))

= − log r + log 24− 1
6
r + O(r2 log r).

(3.17)
By this, we obtain

rer/6 = 24e−
√

λeO(r2 log r). (3.18)
By this and Taylor expansion, we obtain

r = 24
(
1− 1

6
r + O(r2)

)
(1 + O(r2 log r))e−

√
λ

= 24e−
√

λ − 96e−2
√

λ + o(e−2
√

λ).
(3.19)

By substituting this into (3.17) again, we obtain

r = 24e−
√

λ − 96e−2
√

λ + O(
√

λe−3
√

λ).

By this and (3.1), we obtain

‖uλ‖∞ = λ1/4(1− 24e−
√

λ + 96e−2
√

λ + O(
√

λe−3
√

λ))1/4

= λ1/4(1− 6e−
√

λ − 30e−2
√

λ + O(
√

λe−3
√

λ)).

Thus, the proof is complete.
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