
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 164, pp. 1–20.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

THEORETICAL ANALYSIS AND CONTROL RESULTS FOR THE
FITZHUGH-NAGUMO EQUATION

ADILSON J. V. BRANDÃO, ENRIQUE FERNÁNDEZ-CARA,
PAULO M. D. MAGALHÃES, MARKO ANTONIO ROJAS-MEDAR

Abstract. In this paper we are concerned with some theoretical questions for

the FitzHugh-Nagumo equation. First, we recall the system, we briefly explain
the meaning of the variables and we present a simple proof of the existence and

uniqueness of strong solution. We also consider an optimal control problem
for this system. In this context, the goal is to determine how can we act

on the system in order to get good properties. We prove the existence of

optimal state-control pairs and, as an application of the Dubovitski-Milyoutin
formalism, we deduce the corresponding optimality system. We also connect

the optimal control problem with a controllability question and we construct

a sequence of controls that produce solutions that converge strongly to desired
states. This provides a strategy to make the system behave as desired. Finally,

we present some open questions related to the control of this equation.

1. Introduction and main results

Let Ω ⊂ RN be a bounded open set with smooth boundary ∂Ω (N = 1, 2 or 3)
and let T > 0 be a finite number. We will set Q = Ω× (0, T ) and Σ = ∂Ω× (0, T )
and we will denote by | · | (resp. (· , ·)) the usual norm (resp. scalar product) in
L2(Ω). In the sequel, C denotes a generic positive constant.

Let ψ1, ψ2 and ψ3 be three given functions in L∞(Q). We will consider the
FitzHugh-Nagumo equation

ut −∆u+ v + F0(x, t;u) = g,

vt − σu+ γv = 0,

u(x, t)|Σ = 0,

u(x, 0) = u0(x), v(x, 0) = 0,

(1.1)

where g ∈ L2(Q), σ > 0 and γ ≥ 0 are constants, u0 ∈ L2(Ω) (at least) and
F0(x, t;u) is given by

F0(x, t, u) = (u+ ψ1(x, t))(u+ ψ2(x, t))(u+ ψ3(x, t)).

In this system, g is the control, which is constraint to belong to a nonempty
closed convex set Gad ⊂ L2(Q) and u and v are the state variables.
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The FitzHugh-Nagumo system is a simplified version of the Hodgkin-Huxley
model, which seems to reproduce most of its qualitative features. The variable u
is the electrical potential across the axonal membrane; v is a recovery variable,
associated to the permeability of the membrane to the principal ionic components
of the transmembrane current; g is the medicine actuator (the control variable),
see [13, 14] for more details. Taking into account the role that can be played by
actuators in this context (by inhibiting in the case of calmant medicines and by
exciting in the case of anti-depressive products), it is natural to consider control
questions for this model.

This system has attracted a lot of interest, since it is relatively simple and,
at the same time, describes appropriately excitability and bistability phenomena.
For instance, it has also been used as the starting point for models of cardiac
excitation [1, 17], labyrinth pattern formation in an activatorinhibitor system [10],
etc. For more details, see [18] and the references therein.

An equivalent formulation to (1.1) is easily obtained by solving the second equa-
tion, which gives

v(x, t) = σ

∫ t

0

e−γ(t−s)u(x, s) ds. (1.2)

We obtain:

ut −∆u+ σ

∫ t

0

e−γ(t−s)u(s) ds+ F0(x, t;u) = g,

u(x, t)|Σ = 0,

u(x, 0) = u0(x).

(1.3)

We could have started from a system more general than (1.1), including a nonzero
right hand side in the second equation and nonzero initial values for v. It will be
seen later that this does not incorporate any essential difficulty (see remark 2.3
in Section 2).

In the sequel, unless otherwise specified, we will always prefer this shorter for-
mulation of the problem. Accordingly, we will work with couples (u, g) which a
posteriori give the secondary variable v through (1.2).

This paper deals with several questions concerning systems (1.1) and (1.3). First,
we will deal with existence, uniqueness and regularity results. In this context, we
will provide a simple proof of a known result; a previous proof was given in [15].

The main result is the following:

Theorem 1.1. Assume that g ∈ L2(Q) and u0 ∈ H1
0 (Ω). Then (1.1) possesses

exactly one solution (u, v), with

u ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1
0 (Ω)), ut ∈ L2(Q), (1.4)

v ∈ C0([0, T ];H2(Ω)), vt ∈ L2(0, T ;H2(Ω)). (1.5)

In the sequel, H1,2(Q) stands for the Hilbert space

H1,2(Q) = {w ∈ L2(0, T ;H2(Ω)) : w = 0 on Σ, wt ∈ L2(Q)}.

In view of theorem 1.1, the mapping g 7→ u is well-defined from L2(Q) into H1,2(Q).
Among other things, this means that the equations in (1.1) are satisfied a.e. (notice
that g can be discontinuous). Furthermore, the regularity of u and v makes it
possible to derive error estimates for standard numerical approximations.
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Our second goal in this paper is to study an optimal control problem for (1.3).
We will mainly deal with the cost functional

J (u, g) =
1
2

∫∫
Q

|u− ud|2 dx dt+
a

2

∫∫
Q

|g|2 dx dt, (1.6)

where ud is a desired state, a > 0 and the control g is assumed to belong to a closed
convex set Gad ⊂ L2(Q).

The fact that we choose this functional means that g is a “good” control if its
associated state u is not too far from the desired state ud and, furthermore, its
L2(Q) norm is not too large.

We will deduce the optimality system for (1.3), (1.6) following the Dubovistky-
Milyutin formalism (see [11]).

Definition 1.2. Let

Q = {(u, g) ∈ H1,2(Q)× L2(Q) : (1.3) is satisfied}. (1.7)

Let Gad ⊂ L2(Q) be a closed convex set. Then the associated admissibility set for
(1.3), (1.6) is

Uad = {(u, g) : (u, g) ∈ Q, g ∈ Gad}. (1.8)

It will be said that (û, ĝ) is a (global) optimal state-control if (û, ĝ) ∈ Uad and

J (û, ĝ) ≤ J (u, g) ∀(u, g) ∈ Uad.

It will be said that (û, ĝ) is a local optimal state-control if (û, ĝ) ∈ Uad and there
exists ε > 0 such that, whenever (u, g) ∈ Uad and ‖u− û‖H1,2(Q) +‖g− ĝ‖L2(Q) ≤ ε,
one has

J (û, ĝ) ≤ J (u, g).

Several particular choices of Gad of practical interest are the following:

• Gad = L2(ω × (0, T )), where ω ⊂ Ω is a given non-empty open set. This is
a non-realistic case in which it is assumed that we can act on the system
(only on ω × (0, T )) with no restriction.

• Gad = {g ∈ L2(Q) : 0 ≤ g ≤ M a.e.}. Now, we assume that the medicine
actuator cannot exceed a fixed level M .

• Gad = {g : g =
∑I

i=1 gi(x)δ(t=ti), gi ∈ L2(Ω)}, for some ti with 0 < t1 <
· · · < tI < T . In fact, this choice is not covered by the previous definition
(it will be out of the scope of the next result as well).

• Gad = {g : g =
∑I

i=1 gi(x)1(ti−ε,ti+ε)(t), gi ∈ L2(Ω)}. Obviously, this can
be regarded as an approximation of the previous choice.

• Gad = B(Zad) = {B(f) : f ∈ Zad}, where Zad = {f ∈ L2(0, T ) : 0 ≤ f ≤
K a.e.} and B : L2(0, T ) 7→ L2(Q) is a (nonlinear) C1 mapping. This is
an example of non-convex Gad.

The second main result in this paper is the following:

Theorem 1.3. Assume that u0 ∈ H1
0 (Ω) and Gad ⊂ L2(Q) is a nonempty closed

convex set. Then there exists at least one global optimal state-control (û, ĝ). Fur-
thermore, if (û, ĝ) is a local optimal state-control of (1.3), (1.6) and J ′(û, ĝ) does
not vanish, there exists p̂ ∈ H1,2(Q) such that the triplet (û, p̂, ĝ) satisfies (1.3) with
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g replaced by ĝ, the linear backwards system

−p̂t −∆p̂+ σ

∫ T

t

e−γ(s−t)p̂(s) ds+DuF0(x, t; û) p̂ = û− ud,

p̂(x, t)|Σ = 0,

p̂(x, T ) = 0

(1.9)

and the additional inequalities∫∫
Q

(p̂+ aĝ)(g − ĝ) dx dt ≥ 0 ∀g ∈ Gad, ĝ ∈ Gad. (1.10)

To apply the Dubovistky-Milyutin formalism, we first reformulate the control
problem in the form

Minimize J (u, g)

subject to (u, g) ∈ Q, g ∈ Gad,
(1.11)

where Gad is (as before) a nonempty closed convex subset of L2(Q) (the control
constraint set) and Q is given by an equality constraint:

Q = {(u, g) ∈ H1,2(Q)× L2(Q) : M(u, g) = 0}

for a suitable operator M .
Assume that (û, ĝ) is a local minimizer of (1.11). Then we associate to (û, ĝ) the

cone K0 of decreasing directions of J , the cone K1 of feasible directions of Gad and
the tangent subspace K2 to the constraint set Q. These cones are respectively given
by (3.2), (3.4) and (3.6). We have the following (geometrical) necessary condition
of optimality:

K0 ∩K1 ∩K2 = ∅.
Accordingly, there must exist continuous linear functionals Φ0, Φ1 and Φ2, not
simultaneously zero, such that Φi ∈ K∗

i for i = 1, 2, 3 and

Φ0 + Φ1 + Φ2 = 0

(this is the Euler-Lagrange equation for the previous extremal problem). From this
equation we obtain the optimality system (1.3) (with g replaced by ĝ), (1.9), (1.10).

A large family of control problems involving partial differential equations can
be solved by this method. In particular, several interesting generalizations and
modified versions of (1.3), (1.6) can be considered: other non-quadratic functionals,
control problems with constraints on the state, multi-objective control problems,
etc.

Remark 1.4. When J ′(û, ĝ) = (0, 0), it is natural to look for second-order opti-
mality conditions. This can be made for this and many other problems following
the results in [2]. An analysis of this situation will be given in a next paper.

Let us apply theorem 1.3 to some specific choices of Gad we have made before:
• When Gad = L2(ω × (0, T )), (1.10) is equivalent to∫∫

ω×(0,T )

(p̂+ aĝ)h dx dt = 0 ∀h ∈ L2(ω × (0, T )), ĝ ∈ L2(ω × (0, T )),

that is to say,

ĝ = −1
a
p̂|ω×(0,T ).



EJDE-2008/164 THE FITZHUGH-NAGUMO EQUATION 5

• When Gad = {g ∈ L2(Q) : 0 ≤ g ≤M a.e.}, (1.10) is equivalent to

ĝ = P[0,M ](−
1
a
p̂),

where P[0,M ] is the usual (pointwise) projector on the closed interval [0,M ].
• Finally, when Gad = {g : g =

∑I
i=1 gi(x)1(ti−ε,ti+ε)(t), gi ∈ L2(Ω)}, we see

that

ĝ(x, t) = − 1
2aε

I∑
i=1

( ∫ ti+ε

ti−ε

p̂(x, s) ds
)
1(ti−ε,ti+ε)(t) a.e.

Our third goal in this paper is related to the behavior of the solutions to problems
of the kind (1.3), (1.6) as a→ 0+. It is well known that this is a way to pass from
the optimal control to a controllability approach. More precisely, if Gad = L2(Ω),
it is expected that the solutions (û, ĝ) of (1.3), (1.6) satisfy û→ ud as a→ 0+.

A result of this kind is established in our next theorem. In order to give the
statement, we have to introduce a new function:

H0(x, t; s) =

{
F0(x,t;s)−F0(x,t;0)

s if s 6= 0,

DuF0(x, t; 0) otherwise.

Then we have the following result.

Theorem 1.5. Assume that u0 = 0 and ud ∈ Lr(Q), where r ∈ [4,+∞). For each
n = 1, 2, . . . , let (un, pn, gn) be a solution of the coupled problem

un
t −∆un + σ

∫ t

0

e−γ(t−s)un(s) ds+ F0(x, t;un) = gn,

−pn
t −∆pn + σ

∫ T

t

e−γ(s−t)pn(s) ds+H0(x, t;un) pn = |un − ud|r−2(un − ud),

un(x, t)|Σ = pn(x, t)|Σ = 0,

un(x, 0) = 0, pn(x, T ) = 0,

pn +
1
n
gn = 0.

(1.12)
Then un → ud strongly in Lr(Q) as n→∞.

In this way, for any target ud ∈ Lr(Q) we can construct a sequence of (possibly
unbounded) controls gn and associated states un that converge to ud. For each n,
the task is reduced to solve the coupled system (1.12), where the genuine unknowns
are the state un and the adjoint state pn.

The proof of this theorem will be given below. It relies on some estimates of the
functions un in Lr(Q) and the functions pn in L2(Q).

Remark 1.6. This result is inspired by the ideas of J.-L. Lions in the context of
the approximate controllability of linear parabolic equations; see [16, 12].

Remark 1.7. The equation satisfied by pn in (1.12) is not exactly the same satisfied
by p̂ in (1.9). First, we have a different right hand side. This is motivated by the
search of a good estimate for un. Indeed, it will be seen in Section 4 that the term
|un−ud|r−2(un−ud) with r ≥ 4 is needed to bound un in Lr(Q) and then H0(·;un)
in L2(Q). The second difference is that the coefficient of pn in (1.12) is H0(x, t;un)
and not DuF0(x, t;un). This is also needed to estimate un.
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This paper is organized as follows. Sections 2, 3 and 4 are respectively devoted
to the proofs of theorems 1.1, 1.3 and 1.5. Then, we present in Section 5 several
additional remarks and open questions. Among other things, we will address some
controllability questions. It will be seen there that, unfortunately, very few is known
on the subject.

2. Existence, uniqueness and regularity results

Assume that g ∈ L2(Q) and u0 ∈ H1
0 (Ω) in (1.3). Notice that (1.3) can be

written in the form
ut −∆u+G(u) + F (u) = g,

u(x, t)|Σ = 0,

u(x, 0) = u0(x),

(2.1)

where we have set

G(u)(x, t) = σ

∫ t

0

e−γ(t−s)u(x, s) ds , (2.2)

F (u)(x, t) = F0(x, t;u(x, t)). (2.3)

We will first prove that (2.1) possesses at least one solution u ∈ H1,2(Q) with the
help of the Leray-Schauder’s principle.

Thus, let us consider for each λ ∈ [0, 1] the auxiliary problem

ut −∆u = λ(g −G(u)− F (u)),

u(x, t)|Σ = 0,

u(x, 0) = u0(x).

(2.4)

Also, let us introduce the mapping Λ : L6(Q)× [0, 1] 7→ L6(Q), with u = Λ(w, λ) if
and only if u is the unique solution to

ut −∆u = λ(g −G(w)− F (w)),

u(x, t)|Σ = 0,

u(x, 0) = u0(x).

(2.5)

We will prove the following results.

Lemma 2.1. The mapping Λ : L6(Q)× [0, 1] 7→ L6(Q) is well-defined, continuous
and compact.

Lemma 2.2. All functions u such that Λ(u, λ) = u for some λ are uniformly
bounded in L6(Q).

In view of the Leray-Schauder’s principle, this will suffice to affirm that (1.3)
possesses at least one solution.

Proof of lemma 2.1. First, notice that for any w ∈ L6(Q) we have F (w) ∈ L2(Q)
and G(w) ∈ L∞(0, T ;L6(Ω)). Furthermore, the mappings w 7→ F (w) and w 7→
G(w) are continuous. Consequently, it is obvious that (w, λ) 7→ Λ(w, λ) is well-
defined and continuous from L6(Q)× [0, 1] into L6(Q).

The compactness of Λ is a consequence of parabolic regularity. Indeed, if (w, λ) ∈
L6(Q)× [0, 1] and u = Λ(w, λ), we have

u ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1
0 (Ω)), ut ∈ L2(Q),
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i.e. u ∈ H1,2(Q) (we are using here that u0 ∈ H1
0 (Ω)).

Moreover, the estimates we will prove in lemma 2.2 show that, whenever (w, λ)
belongs to a bounded set of L6(Q) × [0, 1], the associated u belongs to a bounded
set in H1,2(Q). Since this space is compactly embedded in L6(Q) for N = 1, 2 or
3, we deduce that Λ : L6(Q)× [0, 1] 7→ L6(Q) is compact. �

Proof of lemma 2.2. Let us assume that λ ∈ [0, 1], u ∈ L6(Q) and Λ(u, λ) = u,
i.e. u solves (2.4). We will prove that, for some constant C > 0 independent of λ
and u, one has

‖u‖L6(Q) ≤ C. (2.6)

In fact, we will directly prove more: that u is uniformly bounded in H1,2(Q). Let
us rewrite (2.4) in the form

ut −∆u+ λv + λF (u) = λg,

vt + γv − σu = 0,

u(x, t)|Σ = 0,

u(x, 0) = u0(x), v(x, 0) = 0.

(2.7)

Then, by multiplying by u (resp. λ
σv) the first equation (resp. the second equation),

integrating in Ω and adding the resulting identities, we get:

1
2
d

dt
|u|2 +

λ

2σ
d

dt
|v|2 + |∇u|2 +

λγ

σ
|v|2 + λ(F (u), u) = λ(g, u) in (0, T ). (2.8)

in (0, T ). Notice that, for any ε > 0, there exists Cε such that

(F (u), u) ≥ (1− ε)‖u‖4
L4 − Cε. (2.9)

Indeed, we have for instance∣∣ ∫
Ω

ψj u
3 dx

∣∣ ≤ C‖ψj‖L∞‖u‖3
L4 ≤

ε

8
‖u‖4

L4 + Cε

for any j = 1, 2, 3. In view of (2.8) and (2.9), we have

1
2
d

dt
|u|2 +

λ

2σ
d

dt
|v|2 + |∇u|2 +

λγ

σ
|v|2 + λ(1− ε)‖u‖4

L4 ≤
1
2
|∇u|2 + λCε.

Since λ ∈ [0, 1], γ ≥ 0 and σ > 0, from Gronwall’s lemma the following is obtained:

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1
0 (Ω)) ≤ C,

λ‖v‖L∞(0,T ;H1
0 (Ω)) + λ‖u‖L4(Q) ≤ C.

(2.10)

Let us now multiply by ut the first equation in (2.7) and let us integrate in Ω. We
get

1
2
|ut|2 +

1
2
d

dt
|∇u|2 + λ(v, ut) + λ(F (u), ut) = λ(g, ut) in (0, T ). (2.11)

Now, we have

(F (u), ut) ≥
1
4
d

dt
‖u‖4

L4 − ε|ut|2 − Cε(1 + |∇u|2)− Cε‖u‖4
L4 (2.12)

since, for instance,∣∣ ∫
Ω

ψj u
2ut dx

∣∣ ≤ C‖ψj‖L∞‖u‖2
L4 |ut| ≤

ε

8
|ut|4 + Cε‖u‖4

L4
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for any j = 1, 2, 3. On the other hand,

|(v, ut)| ≤ ε|ut|2 + Cε|v|2 ≤ ε|ut|2 + Cε. (2.13)

From (2.11)–(2.13), we obtain the inequality

(1− 2ε)|ut|2 +
1
2
d

dt
|∇u|2 +

λ

4
d

dt
‖u‖4

L4 ≤ Cε(1 + |∇u|2) + λCε‖u‖4
L4

and, from Gronwall’s lemma and (2.10), we find:

‖ut‖L2(Q) + ‖u‖L∞(0,T ;H1
0 (Ω)) + λ‖u‖L∞(0,T ;L4(Ω)) ≤ C. (2.14)

Note that we have used here again the fact that u0 ∈ H1
0 (Ω).

In view of the first estimate in (2.10), u is uniformly bounded in L2(0, T ;L6(Ω))
and F (u) is uniformly bounded in L2(Q). Therefore, taking into account (2.10),
(2.14) and the identity

∆u = ut + λv + λF (u)− λg,

we see that ∆u is uniformly bounded in L2(Q), that is,

‖u‖L2(0,T ;H2(Ω)) ≤ C.

This completes the proof. �

Let us now see that the solution we have found is unique. Thus, let u1 and u2 be
two solutions (in H1,2(Q)) of (1.3) and let us set u = u1−u2. Let us also introduce

v = v1 − v2 = σ

∫ t

0

e−γ(t−s)(u1(s)− u2(s)) ds.

Then the following holds:

ut −∆u+ v + F (u1)− F (u2) = 0,
vt + γv − σu = 0,

u(x, t)|Σ = 0,

u(x, 0) = 0, v(x, 0) = 0.

Consequently, by multiplying the first and second equations respectively by u and
1
σv and integrating in Ω, we get

1
2
d

dt
|u|2 +

1
2σ

d

dt
|v|2 + |∇u|2 +

γ

σ
|v|2 + (F (u1)− F (u2), u) = 0. (2.15)

We have

(F (u1)− F (u2), u)

=
∫

Ω

[
(u1 + ψ1)(u1 + ψ2)(u1 + ψ3)− (u2 + ψ1)(u2 + ψ2)(u2 + ψ3)

]
u dx

= I0 +
3∑

j=1

Ij +
∑

1≤j<k≤3

Ij,k,

where

I0 =
∫

Ω

(
(u1)3 − (u2)3

)
(u1 − u2) dx, Ij =

∫
Ω

ψj(u1 + u2)|u1 − u2|2 dx

for 1 ≤ j ≤ 3 and

Ij,k =
∫

Ω

ψjψk|u1 − u2|2 dx
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for 1 ≤ j < k ≤ 3. Since I0 ≥ 0, we find that

1
2
d

dt
|u|2 +

1
2σ

d

dt
|v|2 + |∇u|2 +

γ

σ
|v|2

≤ C

∫
Ω

(1 + |u1|+ |u2|) |u|2 dx ≤ ‖β(t)‖L∞ |u|2,

where the function β belongs to L2(0, T ;L∞(Ω)). Since u(x, 0) ≡ 0 and v(x, 0) ≡ 0,
we deduce that u vanishes identically, whence u1 = u2. Hence, (1.3) possesses
exactly one solution in H1,2(Q).

Remark 2.3. Instead of (1.1), we could have started from the more general system

ut −∆u+ v + F0(x, t;u) = g,

vt − σu+ γv = g̃,

u(x, t)|Σ = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

(2.16)

where g̃ ∈ L1(0, T ;L2(Ω)), v0 ∈ L2(Ω). Then, the problem is reduced again to a
system of the form (1.3), with g replaced by

g = g − v0(x)e−γt −
∫ t

0

e−γ(t−s)g̃(s) ds

(which again belongs to L2(Q)). Indeed, the unique solution of (2.16) is (u, v),
where u is the solution of (1.3) with g replaced by g (this is furnished by theorem 1.1)
and

v = v0(x)e−γt +
∫ t

0

e−γ(t−s)g̃(s) ds+ σ

∫ t

0

e−γ(t−s)u(s) ds.

3. An optimal control problem. The Dubovitski-Milyoutin formalism

Let us consider the optimal control problem

Minimize J (u, g)

subject to g ∈ Gad, (u, g) ∈ Q,
(3.1)

where Gad ⊂ L2(Q) is a nonempty closed convex set and Q is given by (1.7).
The proof of the existence of at least one (global) optimal state-control (û, ĝ) is

completely standard. For completeness, let us sketch the argument.
Let {(un, gn)} be a minimizing sequence for (1.3), (1.6). This means that

(un, gn) ∈ Uad for all n and

lim
n→∞

J (un, gn) = J∗ := inf
Uad

J

(Uad is given by (1.8)). Then, it is immediate that gn is uniformly bounded in L2(Q).
Taking into account the estimates in Section 2, we see that un is uniformly bounded
in H1,2(Q) and the sequence {un} is relatively compact in L6(Q). Therefore, at
least for a subsequence, we have

gn → ĝ weakly in L2(Q)

and
un → û weakly in H1,2(Q) and strongly in L6(Q),
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for some (û, ĝ) ∈ H1,2(Q) × L2(Q). Obviously, ĝ ∈ Gad. Furthermore, in view of
the strong convergence of un in L6(Q), we can take limits in the equation satisfied
by un and deduce that û is the state associated to ĝ. This shows that (û, ĝ) ∈ Uad.

On the other hand,

J (û, ĝ) ≤ lim inf
n→∞

J (un, gn) = J∗,

whence (û, ĝ) is an optimal state-control.
To our knowledge, the uniqueness of optimal control is an open question.
Now, let (û, ĝ) be a local optimal state-control. Let us prove that the optimality

system (1.3), (1.9), (1.10) holds. For simplicity, we will assume that Gad has non-
empty interior; otherwise, it would suffice to argue as in [9].

As mentioned above, our approach will rely on the Dubovitskii-Milyoutin for-
malism. Thus let us introduce the cone K0 of decreasing directions of J at (û, ĝ):

K0 = {(w, h) ∈ L2(Q)× L2(Q) : ∃δ0 > 0 such that

J ((û, ĝ) + δ(w, h)) < J (û, ĝ) for 0 < δ ≤ δ0}.
(3.2)

Since J is Fréchet-differentiable at any point, it is immediate that

K0 = {(w, h) ∈ L2(Q)× L2(Q) : 〈J ′(û, ĝ), (w, h)〉 < 0}. (3.3)

Let us also introduce the cone of feasible directions of Gad at ĝ. This is the set

K1 = {(w, h) ∈ L2(Q)× L2(Q) : ∃δ1 > 0 such that

ĝ + δh ∈ Gad for 0 < δ ≤ δ1}.
(3.4)

Since Gad has nonempty interior, it is clear that

K1 = {(w, λ(g − ĝ)) : w ∈ L2(Q), λ > 0, g ∈ int Gad}. (3.5)

Finally, let us consider the cone K2 of tangent directions of Q at (û, ĝ). This is
given as follows:

K2 = {(w, h) ∈ H1,2(Q)× L2(Q) : ∃θn, (un, gn) for n = 1, 2, . . .

with θn → 0, (un, gn) ∈ Q and

lim
n→∞

1
θn

[(un, gn)− (û, ĝ)] = (w, h)}.
(3.6)

To give a more explicit description of K2, it is convenient to introduce the spaces

E1 = H1,2(Q)× L2(Q), E2 = L2(Q)×H1
0 (Ω)

and the nonlinear mapping M : E1 7→ E2, with

M(u, g) = (ut −∆u+G(u) + F (u)− g, u|t=0 − u0) ∀(u, g) ∈ E1. (3.7)

Let us also set
F ′(u)(x, t) ≡ DuF0(x, t;u(x, t)).

Then we have the following result.

Lemma 3.1. The mapping M is continuously differentiable in E1 and

M ′(u, g)(w, h) = (wt −∆w +G(w) + F ′(u)w − h,w|t=0)

∀(u, g) ∈ E1, (w, h) ∈ E1.
(3.8)

Furthermore, for each (u, g) ∈ E1 the linear operator M ′(u, g) : E1 7→ E2 is onto.
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Proof. There is only one nontrivial step in the proof of this lemma. Indeed, it is
clear that M : E1 7→ E2 is well-defined and continuously differentiable. It is also
clear that its F-derivative is given by (3.8).

To see that M ′(u, g) is an epimorphism, let (k,w0) be given in L2(Q) ×H1
0 (Ω)

and let us consider the linear problem

wt −∆w +G(w) + F ′(u)w = k,

w(x, t)|Σ = 0,

w(x, 0) = w0(x),

(3.9)

All we have to do is to prove that (3.9) possesses at least one solution w ∈ H1,2(Q).
Note that, in this system, F ′(u) ∈ L∞(0, T ;L3(Ω))∩L1(0, T ;L∞(Ω)) ↪→ L4(Q).

This is sufficient to prove the existence of a weak solution; i.e., a solution in
L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)).
Indeed, to get energy estimates, we multiply the first equation in (3.9) by w and

we integrate in Ω. All the terms can be estimated easily except possibly (F ′(u)w,w).
But this one satisfies

|(F ′(u)w,w)| ≤ C‖F ′(u)‖L4 |w|5/4|∇w|3/4 ≤ ε|∇w|2 + Cε‖F ′(u)‖8/5
L4 |w|2,

which leads to the the usual estimates for w.
Now, observe that w can be regarded as the solution of

wt −∆w = k −G(w)− F ′(u)w,

w(x, t)|Σ = 0,

w(x, 0) = w0(x).

(3.10)

Obviously, G(w) ∈ L∞(0, T ;H1
0 (Ω)).

On the other hand, since F ′(u) ∈ L∞(0, T ;L3(Ω)) and w ∈ L2(0, T ;L6(Ω)), we
also have F ′(u)w ∈ L2(Q). Consequently, the right hand side of (3.10) belongs
to L2(Q) and, from the well known parabolic regularity theory, we deduce that
w ∈ H1,2(Q). This completes the proof. �

Notice that Q can be written in the form

Q = {(u, g) ∈ H1,2(Q)× L2(Q) : M(u, g) = 0}. (3.11)

Therefore, in view of Lemma 3.1 and the results in [11], the tangent cone at (û, ĝ)
is

K2 = {(w, h) ∈ H1,2(Q)× L2(Q) : M ′(û, ĝ)(w, h) = 0}. (3.12)

In view of (3.3), (3.5) and (3.12), it is easy to determine the dual cones K∗
i for

i = 0, 1, 2. Specifically, we have:

K∗
0 = {−λJ ′(û, ĝ) : λ ≥ 0}, (3.13)

K∗
1 = {(0, f) : f ∈ L2(Q) :

∫∫
Q

fg dx dt ≥
∫∫

Q

fĝ dx dt ∀g ∈ Gad},

K∗
2 = {Φ ∈ E′1 : 〈Φ, (w, h)〉 = 0 ∀(w, h) ∈ E1 such that M ′(û, ĝ)(w, h) = 0}.
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We can now apply the main result in [11]. Thus, for some (f01, f02) ∈ K∗
0 , (0, f12) ∈

K∗
1 and Φ2 ∈ K∗

2 not vanishing simultaneously, one has:∫∫
Q

(f01w + f02h) dx dt+
∫∫

Q

f12h dx dt+ 〈Φ2, (w, h)〉 = 0

∀(w, h) ∈ E1 = H1,2(Q)× L2(Q).
(3.14)

Let us now see that (3.14) leads to (1.3), (1.9), (1.10). In view of (3.13), there
exists λ0 ≥ 0 such that

(f01, f02) = −λ0 (û− ud, aĝ).

Let us choose (w, h) ∈ E1 such that M ′(û, ĝ)(w, h) = 0. Then

−λ0

∫∫
Q

((û− ud)w + aĝh) dx dt+
∫∫

Q

f12h dx dt = 0. (3.15)

But this implies that λ0 > 0; otherwise, we would have (f01, f02) = (0, 0), f12 = 0
(by (3.15)) and Φ2 = 0 (by (3.14)). Consequently, we can assume that λ0 = 1 and∫∫

Q

f12h dx dt =
∫∫

Q

((û− ud)w + aĝh) dx dt

∀(w, h) ∈ E1 such that M ′(û, ĝ)(w, h) = 0.
(3.16)

Let us introduce the adjoint system

−p̂t −∆p̂+ σ

∫ T

t

e−γ(s−t)p̂(s) ds+DuF0(x, t; û) p̂ = û− ud,

p̂(x, t)|Σ = 0,

p̂(x, T ) = 0.

(3.17)

Then, for any (w, h) ∈ E1 such that M ′(û, ĝ)(w, h) = 0 one has∫∫
Q

(û− ud)w dxdt

=
∫∫

Q

(
− p̂t −∆p̂+ σ

∫ T

t

e−γ(s−t)p̂(s) ds+DuF0(x, t; û) p̂
)
w dxdt

=
∫∫

Q

p̂
(
wt −∆w + σ

∫ t

0

e−γ(t−s)w(s) ds+DuF0(x, t; û)w
)
dx ds

=
∫∫

Q

p̂h dx dt.

Hence, ∫∫
Q

f12h dx dt =
∫∫

Q

(p̂+ aĝ)h dx dt ∀h ∈ L2(Q).

From the fact that (0, f12) ∈ K∗
1 , we also have∫∫

Q

(p̂+ aĝ)(g − ĝ) dx dt ≥ 0 ∀g ∈ Gad. (3.18)

Thus, the triplet (û, p̂, ĝ) satisfies (1.3) (with g replaced by ĝ), (3.17) and (3.18)
and this is what we wanted to prove.
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4. A controllability question

In this section we prove theorem 1.5. Let us assume that u0 = 0 and ud ∈ Lr(Q)
with r ≥ 4. For each n ≥ 1, let us consider the coupled system (1.12). Notice that
it can be written in the form

un
t −∆un + σ

∫ t

0

e−γ(t−s)un(s) ds+ F0(x, t;un) = gn,

−pn
t −∆pn + σ

∫ T

t

e−γ(s−t)pn(s) ds+H0(x, t;un)pn = |un − ud|r−2(un − ud),

un(x, t)|Σ = pn(x, t)|Σ = 0,

un(x, 0) = 0, pn(x, T ) = 0,
(4.1)

with gn = −npn.
Let us first show that, for each n ≥ 1, there exists at least one solution of (4.1),

with
un ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1

0 (Ω)), un
t ∈ L2(Q),

pn ∈ Lr′(0, T ;W 2,r′(Ω)), pn
t ∈ Lr′(Q).

(4.2)

For this end, we can argue as in the proof of theorem 1.1. Thus, let us set

H(u)(x, t) ≡ H0(x, t;u(x, t))

and let us introduce the space E = L6(Q) × L2(Q) × L2(Q) and the mapping
Ξ : E × [0, 1] 7→ E, with (u, p, g) = Ξ(w, q, h, λ) if and only if u is the unique
solution to

ut −∆u = λ
(
h− σ

∫ t

0

e−γ(t−s)w(s) ds− F (w)
)
,

u(x, t)|Σ = 0,

u(x, 0) = 0

(4.3)

and g = −np, where p is the unique solution to

−pt −∆p = λ
(
|w − ud|r−2(w − ud)− σ

∫ T

t

e−γ(s−t)q(s) ds−H(w)q
)
,

p(x, t)|Σ = 0,

p(x, T ) = 0

(4.4)

Then we have the following results.

Lemma 4.1. The mapping Ξ : E × [0, 1] 7→ E is well-defined, continuous and
compact.

Lemma 4.2. All (u, p, g) such that Ξ(u, p, g, λ) = (u, p, g) for some λ are uniformly
bounded in E.

In view of the Leray-Schauder’s principle, this yields the desired existence result
for (4.1).

Proof of lemma 4.1. It is very similar to the proof of Lemma 2.1. If (u, p, g) ∈ E
and λ ∈ [0, 1], then the solution of (4.3) is well defined and satisfies

u ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1
0 (Ω)), ut ∈ L2(Q).
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On the other hand, since H(w) ∈ L3(Q) (and consequently H(w)q ∈ L6/5(Q)) and
|w − ud|r−2(w − ud) ∈ Lr′(Q), (4.4) possesses exactly one solution p, with

p ∈ Lm(0, T ;W 2,m(Ω)), pt ∈ Lm(Q), (4.5)

where m = min(r′, 6/5). Notice that the space of functions satisfying (4.5) is
compactly embedded in L2(Q). Therefore, g is also well defined through the equality
g = −np. Obviously, this construction shows that the mapping (w, q, h, λ) 7→
(u, p, g) is continuous and compact. �

Proof of lemma 4.2. Assume λ ∈ [0, 1], (u, p, g) ∈ E and Ξ(u, p, g, λ) = (u, p, g).
This implies that u and p solve the problem

ut −∆u = λ
(
− np− σ

∫ t

0

e−γ(t−s)u(s) ds− F (u)
)
,

−pt −∆p = λ
(
|u− ud|r−2(u− ud)− σ

∫ T

t

e−γ(s−t)p(s) ds−H(u)p
)
,

u(x, t)|Σ = p(x, t)|Σ = 0,

u(x, 0) = 0, p(x, T ) = 0

(4.6)

and g = −np.
Let us prove that u (resp. p) is bounded in L6(Q) (resp. L2(Q)) by a constant

that can depend on n but is independent of λ. This will suffice to prove the lemma.
Obviously, if λ = 0, then u ≡ 0 and p ≡ 0. Consequently, it can be assumed that
λ > 0.

Let us multiply the first (resp. the second) equation in (4.6) by p (resp. u). Let
us sum the resulting identities and let us integrate with respect to x and t in Q.
After some short computations, in view of the definition of H(u), and the fact that
u(x, 0) = p(x, T ) = 0 in Ω, the following is found:

λ

∫∫
Q

|u− ud|r−2(u− ud)u dx dt+ λn

∫∫
Q

|p|2 dx dt = −λ
∫∫

Q

F (0) p dx dt

(note that H(u)pu = F (u)p− F (0)p). Consequently,∫∫
Q

|u− ud|r dx dt+ n

∫∫
Q

|p|2 dx dt

= −
∫∫

Q

|u− ud|r−2(u− ud)ud dx dt−
∫∫

Q

F (0) p dx dt.
(4.7)

Observe that, in view of Hölder’s and Young’s inequalities, the hand side in (4.7)
is bounded by

1
2

∫∫
Q

|u− ud|r dx dt+
n

2

∫∫
Q

|p|2 dx dt+ C
(
‖ud‖r

Lr(Q) + ‖F (0)‖2
L2(Q)

)
.

Hence, ∫∫
Q

|u− ud|r dx dt+ n

∫∫
Q

|p|2 dx dt ≤ C, (4.8)

where the constant C is independent of λ and n.
From (4.8), arguing as in the proof of lemma 2.2, we deduce that u is in fact

bounded in L6(Q) by a constant that can depend on n. Obviously, we also obtain
from (4.8) that the norm of p in L2(Q) is uniformly bounded. Then, arguing as in
the proof of Lemma 3.1, the same is found for p. This completes the proof. �
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Let us now complete the proof of theorem 1.5. For each n, let (un, pn, gn) be a
solution of (1.12). Then, the identity (4.7) and the estimate (4.8) hold for (un, pn):∫∫

Q

|un − ud|r dx dt+ n

∫∫
Q

|pn|2 dx dt

= −
∫∫

Q

|un − ud|r−2(un − ud)ud dx dt−
∫∫

Q

F (0) pn dx dt

(4.9)

and ∫∫
Q

|un − ud|r dx dt+ n

∫∫
Q

|pn|2 dx dt ≤ C. (4.10)

Accordingly, un is uniformly bounded in Lr(Q) and pn → 0 strongly in L2(Q)
as n→ +∞.

Let us look at the equation satisfied by pn in Q:

−pn
t −∆pn + σ

∫ T

t

e−γ(s−t)pn(s) ds+H(un) pn = |un − ud|r−2(un − ud).

In the left-hand side, the first three terms converge to zero in the distribution sense.
This is also the case for the fourth one, since H(un) is uniformly bounded in L2(Q)
(it is just at this point where we use that r ≥ 4). Consequently, the right hand
side also converges to zero. Since it is bounded in Lr′(Q), it converges weakly to
zero in this space (r′ is the conjugate exponent of r). But this implies that un

converges strongly to ud in Lr(Q). Indeed, from (4.9), the weak convergence of
|un − ud|r−2(un − ud) and the fact that ud ∈ Lr(Q), we see that∫∫

Q

|un − ud|r dx dt+ n

∫∫
Q

|pn|2 dx dt→ 0.

This completes the proof.

5. Final remarks and open problems

This Section is devoted to discuss some additional facts concerning the control
of (1.3). Some of them lead to open problems that, in our opinion, are of consider-
able interest.

5.1. Other optimal control problems. There are many other optimal control
problems that can be considered for systems of the kind (1.3). Let us mention one
of them. Thus, consider the new cost functional K, where

K(u, g) =
1
2

∫
Ω

|u(x, T )− u1(x)|2 dx+
a

2

∫∫
Q

|g|2 dx dt (5.1)

and u1 ∈ L2(Ω) is a given function. The following result holds.

Theorem 5.1. Assume that u0 ∈ H1
0 (Ω) and Gad ⊂ L2(Q) is a nonempty closed

convex set. Then there exists at least one global optimal state-control (û, ĝ) of (1.3),
(5.1). Furthermore, if (û, ĝ) is a local optimal state-control, Gad has nonempty
interior and K′(û, ĝ) does not vanish, there exists p̂ ∈ H1,2(Q) such that the triplet
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(û, p̂, ĝ) satisfies (1.3) with g replaced by ĝ, the linear backwards system

−p̂t −∆p̂+ σ

∫ T

t

e−γ(s−t)p̂(s) ds+DuF0(x, t; û) p̂ = 0,

p̂(x, t)|Σ = 0,

p̂(x, T ) = û(x, T )− u1(x)

(5.2)

and the additional inequalities∫∫
Q

(p̂+ aĝ)(g − ĝ) dx dt ≥ 0 ∀g ∈ Gad, ĝ ∈ Gad. (5.3)

The optimal control problem (1.3), (5.1) can be viewed as a first step towards the
solution of a controllability problem for (1.3); see the next paragraphs. Contrarily
to what was considered before, we are now accepting g as a “good” control if it
drives the solution u to a final state u(·, T ) reasonably close to u1 and, moreover,
its norm is not too large.

We can get a result similar to theorem 1.5 that provides a sequence of controls
gn and associated states un that converge globally in Q to a desired state ud and,
simultaneously, converge at t = T to a desired final state u1. More precisely, we
have the following result.

Theorem 5.2. Assume that u0 = 0, ud ∈ Lr(Q) with r ∈ [4,+∞) and u1 ∈ L2(Ω).
For each n = 1, 2, . . . , let (un, pn, gn) be a solution of the coupled problem

un
t −∆un + σ

∫ t

0

e−γ(t−s)un(s) ds+ F0(x, t;un) = gn,

−pn
t −∆pn + σ

∫ T

t

e−γ(s−t)pn(s) ds+H0(x, t;un) pn = |un − ud|r−2(un − ud),

un(x, t)|Σ = pn(x, t)|Σ = 0,

un(x, 0) = 0, pn(x, T ) = un(x, T )− u1(x),

pn +
1
n
gn = 0.

(5.4)
Then un → ud strongly in Lr(Q) and un(·, T ) → u1 strongly in L2(Ω)) as n→∞.

The proof is very similar to the proof of theorem 1.5. This time, instead of (4.7),
we find that∫∫

Q

|u− ud|r dx dt+ n

∫∫
Q

|p|2 dx dt+ |u(·, T )− u1|2

= −
∫∫

Q

|u− ud|r−2(u− ud)ud dx dt−
∫∫

Q

F (0) p dx dt− (u(·, T )− u1, u1).

(5.5)
For this it suffices to prove a lemma similar to lemma 4.2. On the other hand, if
(un, pn, gn) solves (5.4), from the identity (5.5) with u and p respectively replaced
by un and pn, we easily deduce that∫∫

Q

|un − ud|r dx dt+ n

∫∫
Q

|pn|2 dx dt+ |un(·, T )− u1|2 ≤ C. (5.6)
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Thus, arguing as in the final part of the proof of theorem 1.5, we find that∫∫
Q

|un − ud|r dx dt+ n

∫∫
Q

|pn|2 dx dt+ |un(·, T )− u1|2 → 0.

5.2. Further comments on controllability. In general terms, the controllability
problem for an evolution partial differential equation or system consists in trying
to drive the system from a prescribed initial state at time t = 0 (u0 in our case)
to a desired final state (or, at least “near” a desired final state) at time t = T . In
the interesting case, the control is supported by a set of the form ω× (0, T ), where
ω ⊂ Ω is a nonempty (small) open set.

Nowadays, controllability problems are relatively well understood for linear and
semilinear parabolic equations; see for instance [6, 8, 5]. Unfortunately, this is not
the case for the integro-differential system (1.3), not even for simplified (linearized)
similar problems. For instance, consider the linear system

ut −∆u+ σ

∫ t

0

e−γ(t−s)u(s) ds+ α(x, t)u = g1ω,

u(x, t)|Σ = 0,

u(x, 0) = u0(x),

(5.7)

where α ∈ L∞(Q) and 1ω is the characteristic function of ω.
It is said that this system is approximately controllable in L2(Ω) at time T if,

for any u1 ∈ L2(Ω) and any ε > 0, there exists g ∈ L2(ω × (0, T )) such that the
corresponding solution satisfies

|u(·, T )− u1| ≤ ε.

To our knowledge, it is unknown whether (5.7) is approximately controllable. Ob-
serve that (5.7) can be equivalently written in the form

ut −∆u+ v + α(x, t)u = g1ω,

vt − σu+ γv = 0,

u(x, t)|Σ = 0,

u(x, 0) = u0(x), v(x, 0) = 0.

(5.8)

Hence, it can be regarded as the singular limit of the family of reaction-diffusion
systems

ut −∆u+ v + α(x, t)u = g1ω,

vt − k∆v − σu+ γv = 0,

u(x, t)|Σ = 0,
∂

∂n
v(x, t)|Σ = 0

u(x, 0) = u0(x), v(x, 0) = 0

(5.9)

as k → 0+.
Indeed, it is not difficult to prove that, for any g ∈ L2(Q), any u0 ∈ L2(Ω) and

any k > 0, (5.9) possesses exactly one solution (uk, vk), with

uk, vk ∈ C0([0, T ];L2(Ω)). (5.10)

It is also easy to show that uk and vk are uniformly bounded in L2(0, T ;H1
0 (Ω)) ∩

L∞([0, T ];L2(Ω)) and L∞(0, T ;L2(Ω)), respectively. As a consequence, as k → 0+,
(uk, vk) converges in an appropriate sense to the unique solution (u, v) of (5.8).
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The standard results concerning the approximate controllability of parabolic
equations and systems can be applied to (5.9); see [6, 8]. In particular, for any
u0, u1 ∈ L2(Ω) and any ε > 0, there exist controls gk ∈ L2(ω × (0, T )) such that
the associated solutions of (5.9) satisfy

|uk(·, T )− u1| ≤ ε.

Obviously, in order to establish an approximate controllability result for (5.8), it
suffices to prove that, for some controls gk with these properties, one has

‖gk‖L2(ω×(0,T )) ≤ C.

But, at the present, this is unknown. Of course, the approximate controllability of
the nonlinear system (1.3) with g replaced by g1ω is completely open.

5.3. Time-independent coefficients. If, in (5.7), the coefficient α is independent
of t, the approximate controllability property is satisfied. A sketch of the proof of
this fact is as follows (see [3] and [4] for some related results). Let us consider the
adjoint system

−ht −∆h+ σ

∫ T

t

e−γ(s−t)h(s) ds+ α(x)h = 0,

h(x, t)|Σ = 0,

h(x, T ) = h0(x),

(5.11)

From classical results, we know that what we have to prove is the following unique
continuation property:

Let h0 ∈ L2(Ω) be given, let h be the associated solution of (5.11)
and let us assume that h = 0 in ω × (0, T ). Then h ≡ 0.

The function t 7→ h(·, t), regarded as a mapping from (−∞, T ) into L2(Ω), is
analytic. This is because h(·, t) can be written as the sum of a series that converges
normally and uniformly on any compact set in (−∞, T ) and each term of the series
is analytic in t.

Indeed, let us denote by (θn, λn) the n-th eigenfunction-eigenvalue pair for the
elliptic operator −∆+α(x) with Dirichlet boundary conditions and let us set h0n =
(h0, θn) for each n. We have

h(·, t) =
∑
n≥1

h0n

ζn
θn(x)

(
µ+

n e
µ+

n (T−t) − µ−n e
µ−n (T−t)

)
for some ζn, µ+

n and µ−n satisfying

ζn ∼ λn, µ+
n ∼ −C, µ−n ∼ −λn as n→ +∞

(recall that λn ∼ n2/N ). Therefore, the L2-norm of the n-th term is bounded in
each compact set S ⊂ (−∞, T ) by a constant times

|h0n|
λn

+ |h0n|eµ−n a

where a depends on S. This proves that t 7→ h(·, t) is analytic.
As a consequence, t 7→ h(·, t)|ω, regarded as a mapping from (−∞, T ) into L2(ω),

is also analytic. Since it vanishes on (0, T ), it vanishes everywhere in (−∞, T ).
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Let us set F (t) ≡ h(·, T − t) and let F̃ (z) be the Laplace transform of F (a
meromorphic L2(Ω)-valued function). Then z 7→ F̃ (z)|ω is a meromorphic L2(ω)-
valued function with poles at the µ±n . But this function vanishes identically, since
F (t)|ω ≡ 0. Consequently, all the residues vanish and this easily implies that
h0n = 0 for all n.
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Addendum posted on July 8, 2009.

Following suggestions by the anonymous referee, the authors want to clarify the
controllability result.

In the final part of the paper, where we prove approximate controllability, we
use that the solution to the adjoint system

−ht −∆h+ σ

∫ T

t

e−γ(s−t)h(s) ds+ α(x)h = 0,

h(x, t)
∣∣
Σ

= 0,

h(x, T ) = h0(x)

is analytic, regarded as a mapping from (−∞, T ) to L2(Ω). It was stated that this
is true becasue

h(·, t) can be written as the sum of a series that converges normally
and uniformly on any compact set in (−∞, T ) and each term of the
series is analytic in t.

It should have been said that this is true because
h(·, t) can be extended to a function in GT = {z ∈ C : Re z < T}
that is the sum of a series that converges normally and uniformly
on any compact set in GT and each term of the series is analytic
in z.

The argument and estimates needed to prove this last assertion are actually
depicted in the paper: For all z ∈ GT , we set

h(·, z) =
∑
n≥1

h0n

ζn
θn(x)

(
µ+

n e
µ+

n (T−z) − µ−n e
µ−n (T−z)

)
and note that the L2-norm of the n-th term is bounded in each compact set S ⊂ GT

by a constant times |h0n|
λn

+ |h0n|eµ−n a, where a depends on S. This proves normal
and uniform convergence on the compact subsets of GT and, consequently, that
z 7→ h(·, z) is analytic.

End of addendum.
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