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ALMOST AUTOMORPHIC FUNCTIONS WITH VALUES IN
p-FRÉCHET SPACES

CIPRIAN G. GAL, SORIN G. GAL, GASTON M. N’GUÉRÉKATA

Abstract. In this paper we develop a theory of almost automorphic functions
with values in p-Fréchet spaces, 0 < p < 1, including the lp, Lp spaces and

the Hardy space Hp. Although the p-norm for 0 < p < 1 does not have all
the properties of an usual norm, the majority of main properties of almost

automorphic functions with values in Banach spaces are extended to this case.

Applications to semigroups of linear operators and to dynamical systems in
p-Fréchet spaces are given.

1. Introduction

Harald Bohr’s interest in functions that could be represented by a Dirichlet
series led him to devise a theory of almost periodic real (and complex) functions,
founding this theory between the years 1923 and 1926. Such functions have the form∑∞

n=1 ane−λnz, where an, z ∈ C and (λn)n∈N is a monotone increasing sequence of
real numbers (series which play an important role in complex analysis and analytic
number theory).

The theory of almost periodic functions was strongly extended to abstract spaces;
see for example the monographs [10, 24, 25] (for Banach space valued functions),
and the works [8, 24, 26] (for Fréchet space valued functions). Also, in the recent
paper [3] (see also Chapter 3 in the book [25]), the theory of real-valued almost
periodic functions has been extended to the case of fuzzy-number-valued functions.

The concept of almost automorphy is a generalization of almost periodicity.
It has been introduced in the literature by Bochner in relation to some aspects
of differential geometry [4, 5, 6, 7]. Important contributions to the theory of
almost automorphic functions have been obtained, for example, in the papers
[22, 29, 30, 31, 32, 33, 34], in the books [24, 25, 33] (concerning almost auto-
morphic functions with values in Banach spaces), and in [28] (concerning almost
automorphy on groups). Also, the theory of almost automorphic functions with
values in fuzzy-number-type spaces was developed in [15, 19] (see also Chapter 4 in
[25]). Recently, in [16], we developed the theory of almost automorphic functions
with values in a locally convex space (Fréchet space). In [9], the theory of almost

2000 Mathematics Subject Classification. 43A60, 34C35.
Key words and phrases. Almost automorphic; asymptotically almost automorphic;

weakly almost automorphic; semigroup of linear bounded operator; p-Fréchet space.
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automorphic and asymptotically almost automorphic semigroups of linear opera-
tors on Banach spaces is studied, while in our very recent article [17], we extended
the theory from [9] to complete metrizable locally convex (Fréchet) spaces.

The purpose of this paper is to extend the main properties of almost automorphic
functions with values in Banach spaces, to the class of almost automorphic functions
with values in other important abstract spaces in functional analysis, namely the
p-Fréchet spaces, 0 < p < 1, which are non-locally convex spaces. The paper is
organized as follows. In Section 2, we recall some known facts about Frechet spaces,
while in Section 3, we develop a theory of almost automorphic functions with values
in a p-Fréchet space, 0 < p < 1. The main results are given in Section 4. Finally,
in Section 5, we present some applications to dynamical systems and semigroups of
linear operators in p-Fréchet spaces.

2. Preliminaries

It is well known that an F -space (X, +, ·, ‖ · ‖) is a linear space (over the field
K = R or K = C) such that ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X, ‖x‖ = 0 if and
only if x = 0, ‖λx‖ ≤ ‖x‖, for all scalars λ with |λ| ≤ 1, x ∈ X, and with respect
to the metric D(x, y) = ‖x − y‖, X is a complete metric space (see e.g. [12, p.
52], cf. [23] also). Obviously that D is invariant under translations. In addition, if
there exists 0 < p < 1 with ‖λx‖ = |λ|p‖x‖, for all λ ∈ K, x ∈ X, then ‖ · ‖ will be
called a p-norm and X will be called p-Fréchet space. (This is only a slight abuse
of terminology. Note that in [1], these spaces are called p-Banach spaces). In this
case, it is immediate that D(λx, λy) = |λ|pD(x, y), for all x, y ∈ X and λ ∈ K.

It is known that the F -spaces are not necessarily locally convex spaces. Three
classical examples of p-Fréchet spaces, non-locally convex, are the Hardy space Hp

with 0 < p < 1 that consists in the class of all analytic functions f : D → C,
D = {z ∈ C; |z| < 1} with the property

‖f‖ =
1
2π

sup
{ ∫ 2π

0

|f(reit)|pdt, r ∈ [0, 1)
}

< +∞, (2.1)

the lp space

lp =
{
x = (xn)n; ‖x‖ =

∞∑
n=1

|xn|p < ∞
}

(2.2)

for 0 < p < 1, and the Lp[0, 1] space, 0 < p < 1, given by

Lp = Lp[0, 1] = {f : [0, 1] → R; ‖f‖ =
∫ 1

0

|f(t)|pdt < ∞.} (2.3)

More generally, we may consider Lp(Ω,Σ, µ), 0 < p < 1, based on a general mea-
sure space (Ω,Σ, µ), with the p-norm given by ‖f‖ =

∫
Ω
|f |pdµ. Some important

characteristics of the F -spaces are given by the following remarks.

Remarks. (1) Three fundamental results in Functional Analysis hold in F -spaces.
They are the Principle of Uniform Boundedness (see e.g. [12, p. 52]), the Open
Mapping Theorem and the Closed Graph Theorem (see e.g. [23, p. 9-10]). On
the other hand, the Hahn-Banach Theorem fails in non-locally convex F -spaces.
More precisely, if in an F -space, the Hahn-Banach theorem holds, then that space
is necessarily locally convex space (see e.g. [4, Chapter 4]).

(2) If (X, +, ·, ‖ · ‖) is a p-Fréchet space over the field K , 0 < p < 1, then its
dual X∗ is defined as the class of all linear functionals h : X → K which satisfy
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|h(x)| ≤ ‖|h‖| · ‖x‖1/p, for all x ∈ X, where ‖|h‖| = sup{|h(x)|; ‖x‖ ≤ 1} (see e.g.
[1, pp. 4-5]). Note that ‖| · ‖| is in fact a norm on X∗.

For 0 < p < 1, while (Lp)∗ = 0, we have that (lp)∗ is isometric to l∞- the Banach
space of all bounded sequences (see e.g. [23, p. 20-21]), therefore (lp)∗ becomes a
Banach space. Also, if φ ∈ (Hp)∗, then there exists a unique g which is analytic on
D and continuous on the closure of D, such that

φ(f) =
1
2π

lim
r→1

∫ 2π

0

f(reit)g(e−it)dt,

for all f ∈ Hp (see e.g. [13, Theorem 7.5]). Moreover, (Hp)∗ becomes a Banach
space with respect to the usual norm ‖|φ‖| = sup{|φ(f)|; ‖f‖ ≤ 1} (cf. e.g. [13]).
In both cases of lp and Hp, 0 < p < 1, their dual spaces separate the points of
corresponding spaces.

(3) The spaces lp and Hp, 0 < p < 1, have Schauder bases (see e.g. [13, p. 20]
for lp and [23, 27] for Hp). It is also worth to note that according to [14], every
linear isometry T of Hp onto itself has the form

T (f)(z) = α[φ′(z)]1/pf(φ(z)),

where α is some complex number of modulus one and φ is some conformal mapping
of the unit disc onto itself.

3. Basic Definitions and Properties

In this section, we develop a theory of almost automorphic functions with values
in a p-Fréchet space, 0 < p < 1, denoted by (X, +, ·, ‖ · ‖). In the previous section,
we pointed out that the metric D(x, y) = ‖x−y‖ is invariant under translations and
satisfies D(cx, cy) = |c|pD(x, y). In addition, D has the following simple properties.

Theorem 3.1. (i) D(cx, cy) ≤ D(x, y) for |c| ≤ 1;
(ii) D(x + u, y + v) ≤ D(x, y) + D(u, v);
(iii) D(kx, ky) ≤ D(rx, ry) if k, r ∈ R, 0 < k ≤ r;
(iv) D(kx, ky) ≤ kD(x, y), for all k ≥ 1;
(v) D(cx, cy) ≤ (|c|+ 1)D(x, y),∀c ∈ R.

Proof. Property (i) and (iii) are obvious. (ii) We have

D(x + u, y + v) = D(x + (u− v) + v, y + v)

= D(x + u− v, y)

= D(y, x + u− v)

≤ D(y, x) + D(x, x + u− v)

= D(x, y) + D(x + v, x + u)

= D(x, y) + D(v, u).

(iv) Since 0 < p < 1, we have D(kx, ky) = |k|pD(x, y) ≤ kD(x, y), for all k ≥ 1.
(v) If |c| < 1 then D(cx, cy) = |c|pD(x, y) ≤ (|c|+ 1)D(x, y). If |c| ≥ 1 then we get

D(cx, cy) = |c|pD(x, y) ≤ |c|D(x, y) ≤ (|c|+ 1)D(x, y),

which proves the theorem. �

Now, we start with the following Bochner-kind definition.
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Definition 3.2. We say that a continuous function f : R → X, is almost automor-
phic, if every sequence of real numbers (rn)n contains a subsequence (sn)n, such
that for each t ∈ R, there exists g(t) ∈ X with the property

lim
n→+∞

‖g(t)− f(t + sn)‖ = lim
n→+∞

‖g(t− sn)− f(t)‖ = 0.

Note that the above convergence on R is pointwise. Equivalently, in terms of the
metric D, we can write

lim
n→+∞

D(g(t), f(t + sn)) = lim
n→+∞

D(g(t− sn), f(t)) = 0.

Remark. The almost automorphy in Definition 3.2 is a more general concept than
almost periodicity in p-Fréchet spaces, 0 < p < 1, defined in [20]. Indeed, by the
Bochner’s criterion (see [20, Theorem 3.7]), a function with values in a p-Fréchet
space is almost periodic if and only if for every sequence of real numbers (rn)n,
there exists a subsequence (sn)n, such that the sequence (f(t + sn))n converges
uniformly with respect to t ∈ R, in the metric D. Obviously this is a stronger
condition than the pointwise convergence in Definition 3.2.

Example. The function fx : R → X defined by fx(t) = xcos 1
2−sinπt−sint , for

a given x ∈ X, is almost automorphic but not almost periodic, since it is not
uniformly continuous on R.

The following elementary properties hold.

Theorem 3.3. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, 0 < p < 1 and D(x, y) =
‖x− y‖. If f, f1, f2 : R → X are almost automorphic functions then we have:

(i) f1 + f2 is almost automorphic;
(ii) cf is almost automorphic for every scalar c ∈ R;
(iii) fa(t) = f(t + a),∀t ∈ R is almost automorphic for each fixed a ∈ R;
(iv) We have sup{‖f(t)‖; t ∈ R} < +∞ and sup{‖g(t)‖; t ∈ R} < +∞, where g

is the function attached to f in Definition 3.2;
(v) The range Rf = {f(t); t ∈ R} is relatively compact in the complete metric

space (X, D);
(vi) The function h defined by h(t) = f(−t), t ∈ R is almost automorphic;
(vii) If f(t) = 0X for all t > a for some real number a, then f(t) = 0X for all

t ∈ R;
(viii) If A : X → Y is continuous, where Y is another q -Fréchet space, 0 < q < 1,

then A(f) : R → Y also is almost automorphic.
(ix) Let hn : R → X, n ∈ N be a sequence of almost automorphic functions

such that hn(t) → h(t) when n → +∞, uniformly in t ∈ R with respect to
the p-norm ‖ · ‖ (that is with respect to the metric D). Then h is almost
automorphic.

Proof. Property (i) is immediate from

D(u + v, w + e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ X

and from Definition 3.2.
(ii) It follows easily from the property D(c · u, c · v) ≤ (|c| + 1)D(u, v), for all

u, v ∈ X, for all c ∈ R (see Theorem 3.1, (v)) and from Definition 3.2.
(iii) The proof is immediate by Definition 3.2.
(iv) Let us suppose that sup{‖f(t)‖; t ∈ R} = +∞. Then there exists a sequence

of real numbers (rn)n such that ‖f(rn)‖ → +∞, when n → +∞. Since f is almost
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automorphic, by Definition 3.2 for t = 0, we can extract a subsequence (sn)n of
(rn)n such that limn→+∞ ‖g(0)− f(sn)‖ = 0, where g(0) ∈ X. It follows that

‖f(sn)‖ ≤ ‖f(sn)− g(0)‖+ ‖g(0)‖,

where, by passing to the limit as n →∞, we obtain the contradiction +∞ ≤ ‖g(0)‖.
The proof for g is similar, by taking into account the relation limn→+∞ ‖g(−sn)−
f(0)‖ = 0, in Definition 3.2, for t = 0.

(v) Let (f(rn))n be an arbitrary sequence in X. From Definition 3.2, there exists
a subsequence (sn)n of (rn)n such that limn→+∞D(g(0), f(sn)) = 0, i.e. (f(sn))n

is a convergent subsequence of (f(rn))n in the complete metric space (X, D), which
proves that Rf is relatively compact in (X, D).

(vi) The proof of (vi) is similar to the proof of [24, Theorem 2.1.4]. The proof
of (vii) is identical to the proof of [24, Theorem 2.1.8]. Property (viii) is again an
immediate consequence of Definition 3.2 and of the continuity of A. We leave the
details to the reader. Finally, the proof (ix) is identical to the proof of [24, Theorem
2.1.10], by using the fact that (X, D) is complete metric space and the triangle’s
inequality holds with D as a metric. The theorem is proved. �

Let us recall now that for f : R → X, the derivative of f at x ∈ R denoted by
f ′(x) ∈ X, is defined by the relation

lim
h→0

d(f ′(x),
f(x + h)− f(x)

h
) = 0.

Also, the integral can be defined in usual way, by using Riemann sums or, by using
approximation by step functions (cf. [18]). Unfortunately, because the Leibniz-
Newton formula does not hold for functions with values in p-Fré chet spaces X
with 0 < p < 1 (cf. [18]), the classical results concerning the almost automorphy
of the derivative and of the (indefinite) integral of an almost automorphic func-
tion do not seem to be valid, because the Leibniz-Newton formula seems to be the
fundamental tool for the proofs. On the other hand, when studying almost auto-
morphic functions, the following concepts and results can still be useful. We will
follow here the ideas in [24, Section 2.2]. In general, the results that we proved in
[24], in the case of Banach spaces remain the same for the case of p-Fréchet spaces,
with 0 < p < 1, except for those results that are proved through the use of the
Leibniz-Newton formula.

Definition 3.4. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, 0 < p < 1 and D(x, y) =
‖x − y‖. A continuous function f : R ×X → X is said to be almost automorphic
in t ∈ R for each x ∈ X, if for every sequence of real numbers (rn)n, there exists a
subsequence (sn)n such that for all t ∈ R and x ∈ X, there exists g(t, x) with the
property

lim
n→+∞

‖f(t + sn, x)− g(t, x)‖ = lim
n→+∞

‖g(t− sn, x)− f(t, x)‖ = 0.

The following simple properties hold.

Theorem 3.5. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, 0 < p < 1 and D(x, y) =
‖x− y‖.

(i) If f1, f2 : R × X → X are almost automorphic in t for each x ∈ X, then
f1 + f2 and c · f1, where c ∈ R are also almost automorphic in t for each
x ∈ X.
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(ii) If f(t, x) is almost automorphic in t for each x ∈ X then for all x ∈ X, we
have sup{‖f(t, x)‖; t ∈ R} < +∞. Also, for the corresponding function g
in Definition 3.2 we have sup{‖g(t, x)‖; t ∈ R} < +∞.

(iii) If f(t, x) is almost automorphic in t for each x ∈ X and if ‖f(t, x) −
f(t, y)‖ ≤ L‖x−y‖,∀x, y ∈ X and t ∈ R, where L is independent of x, y and
t, then for the corresponding g in Definition 3.2 we have ‖g(t, x)−g(t, y)‖ ≤
L‖x− y‖, for all x, y ∈ X and t ∈ R.

(iv) Let f(t, x) be almost automorphic in t for each x ∈ X and ϕ : R → X be
almost automorphic. If ‖f(t, x)−f(t, y)‖ ≤ L‖x−y‖,∀x, y ∈ X and t ∈ R,
where L is independent of x, y and t then the function F : R → X defined
by F (t) = f(t, ϕ(t)) is almost automorphic.

Proof. The proof of (i) is similar to that of Theorem 3.3, (i), (ii). The proof of
(ii) is similar to the proof of Theorem 3.3, (iv). The proofs of (iii) and (iv) are
analogous to the proofs of [24, Theorems 2.2.5 and 2.2.6]. We note that in these
proofs, only the triangle inequality of the p-norm was used. �

Analogous to the case of Banach spaces (see e.g. [24, p. 37], the concept in
Definition 3.2 can be generalized as follows.

Definition 3.6. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, 0 < p < 1. A continuous
function f : R+ → X is said to be asymptotically almost automorphic if it admits
the decomposition f(t) = g(t) + h(t), t ∈ R+, where g : R → X is almost automor-
phic and h : R+ → X is a continuous function with limt→+∞ ‖h(t)‖ = 0. Here g
and h are called the principal and the corrective terms of f , respectively.

Remark. Every almost automorphic function restricted to R+ is asymptotically
almost automorphic, by taking h(t) = 0X , for all t ∈ R+.

Regarding this new concept, the following results hold.

Theorem 3.7. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, 0 < p < 1, and let f, f1, f2 :
R+ → X be asymptotically almost automorphic. Then we have:

(i) f1 + f2 and c · f, c ∈ R are asymptotically almost automorphic;
(ii) For fixed a ∈ R+, the function fa(t) = f(t + a) is asymptotically almost

automorphic;
(iii) We have sup{‖f(t)‖; t ∈ R+} < +∞.
(iv) Let (X, +, ·, ‖·‖1) be a p-Fréchet space (Y,+, ·, ‖·‖2) be a q-Fréchet space and

f : R+ → X be an asymptotically almost automorphic function, f = g + h.
Let φ : X → Y be continuous and assume there is a compact set B in (X, D)
with D(x, y) = ‖x− y‖1, which contains the closures of {f(t); t ∈ R+} and
{g(t); t ∈ R+}. Then φ◦f : R+ → Y is asymptotically almost automorphic;

(v) The decomposition of an asymptotically almost automorphic function is
unique.

Proof. (i) Let c ∈ R, f1 = g1+h1, f2 = g2+h2, f = g+h, where the decompositions
are like those in Definition 3.6. We clearly have f1 + f2 = [g1 + g2] + [h1 + h2] and
c · f = c · g + c · h. By Theorem 3.3, (i), (ii), it follows that g1 + g2, c · g are almost
automorphic. Also, from the properties of the p-norm ‖ · ‖, we get

lim
t→+∞

‖h1(t) + h2(t)‖ ≤ lim
t→+∞

‖h1(t)‖+ lim
t→+∞

‖h2(t)‖ = 0,

and
lim

t→+∞
‖c · h(t)‖ = |c|p lim

t→+∞
‖h(t)‖ = 0.
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(ii) Let f = g+h be the decomposition in Definition 3.6. Then fa(t) = g(t+a)+
h(t+a), where by Theorem 3.3, (iii), g(t+a) is almost automorphic. By Definition
3.6, we immediately get limt→+∞ ‖h(t + a)‖ = 0.

(iii) Let now f = g + h be the decomposition in Definition 3.6. We have

sup{‖f(t)‖; t ∈ R+} ≤ sup{‖g(t)‖; t ∈ R+}+ sup{‖h(t)‖; t ∈ R+}.

By Theorem 3.3, (iv), we get sup{‖g(t)‖; t ∈ R+} < +∞. Moreover, denoting
Q(t) = ‖h(t)‖, clearly Q is continuous on [0,+∞) (since the property | ‖F‖ −
‖G‖ | ≤ ‖F − G‖ is a consequence of the triangle’s inequality). By hypothesis,
limt→+∞ ‖h(t)‖ = 0, which immediately implies that we have

lim
t→+∞

‖h(t)‖ = lim
t→+∞

Q(t) = 0.

Let ε > 0 be fixed. There exists δ > 0, such that ‖h(t)‖ < ε, for all t > δ. From the
continuity of Q on [0, δ], there exists M > 0 such that Q(t) ≤ M , for all t ∈ [0, δ].
In conclusion, 0 ≤ Q(t) ≤ M + ε,∀t ∈ R+, which implies the desired conclusion.

(iv) Let f = g + h be the decomposition in Definition 3.6. By Theorem 3.3,
(viii), φ ◦ g : R → Y is almost automorphic and also by hypothesis, φ ◦ f , φ ◦ g,
are continuous on R+. Denote now Γ(t) = φ(f(t)) − φ(g(t)). Let ε > 0. By
the uniform continuity of φ on the compact set B , there exists δ > 0, such that
‖φ(x)−φ(y)‖2 < ε, for all ‖x−y‖1 < δ, x, y ∈ B. On the other hand, by hypothesis,
we have limt→+∞ ‖h(t)‖1 = 0, therefore there exists t0 (depending on δ ), such that
‖h(t)‖1 = ‖f(t)− g(t)‖1 < δ, for all t > t0. Then, for t > t0 we obtain,

‖Γ(t)‖2 = ‖φ(f(t))− φ(g(t))‖2 < ε,

for all t > t0, which means limt→+∞ ‖Γ(t)‖2 = 0.
(v) Let us suppose now that f has two decompositions f = g1 + h1 = g2 + h2.

For all t ≥ 0 we get g1(t)− g2(t) = h2(t)− h1(t), which implies

lim
t→+∞

‖g1(t)− g2(t)‖ ≤ lim
t→+∞

‖h2(t)‖+ lim
t→+∞

‖h1(t)‖ = 0.

Consider the sequence (n). Since g1 − g2 is almost automorphic, there exists a
subsequence (nk) such that

lim
k→+∞

‖[g1(t + nk)− g2(t + nk)]− F (t)‖ = 0

and
lim

k→+∞
‖F (t− nk)− [g1(t)− g2(t)]‖ = 0,

with the convergence holding pointwise on R. But

‖F (t)‖ ≤ ‖F (t)− [g1(t + nk)− g2(t + nk)]‖+ ‖g1(t + nk)− g2(t + nk)‖.

Passing to the limit as k → +∞ and taking the above relations into account,
it follows ‖F (t)‖ = 0,∀t ∈ R+, which implies g1(t) − g2(t) = 0,∀t. Therefore,
h2(t)− h1(t) = 0, for all t ∈ R+, which proves the theorem. �

Remark. Concerning the derivative and indefinite integral of asymptotically al-
most automorphic functions, we have the same negative phenomenon as in the case
of almost automorphic functions (see the Remark after the proof of Theorem 3.3).

We also have the following result.
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Theorem 3.8. If (X, +, ·, ‖ · ‖) is a p-Fréchet space with 0 < p < 1, then the space
of almost automorphic X-valued functions AA(X), is a p-Fréchet space with respect
to the p-norm given by ‖f‖b = sup{‖f(t)‖; t ∈ R}, which generates the metric Db

on AA(X) defined by Db(f, g) = ‖f − g‖b.

Proof. First note that the convergence of a sequence (fn)n ∈ AA(X) to f ∈ AA(X)
with respect to Db, is equivalent to the uniform convergence with respect to t ∈ R,
in the p -norm ‖·‖b. Now, by Theorem 3.3, (i), (ii), (iv), AA(X) is a linear subspace
of the space of all f : R → X, continuous, bounded (i.e. ‖f‖b < +∞) functions,
denoted by Cb(R;X). Since Cb(R;X) is complete metric space with respect to the
metric Db(f, g) = ‖f − g‖b, by Theorem 3.3, (ix), AA(X) is closed, which implies
that (AA(X), Db) is complete metric space. �

We also now introduce a more general concept.

Definition 3.9. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space with 0 < p < 1, having
the dual space X∗ 6= {0}. We say that a weakly continuous function f : R → X,
is weakly almost automorphic, if every sequence of real numbers (rn)n, contains a
subsequence (sn)n, such that for each t ∈ R, there exists g(t) ∈ X with the property

lim
n→+∞

ϕ[f(t + sn)] = ϕ[g(t)] and lim
n→+∞

ϕ[g(t− sn)] = ϕ[f(t)],

for all ϕ ∈ X∗ (the above convergence on R is pointwise).

Remarks. (1) A function f : R → X is called weakly continuous on R, if we
consider that X is endowed with the weak topology induced by X∗. For example,
in the case of X = lp or X = Hp, 0 < p < 1, the weak topology is a locally convex
Hausdorff topology (see the considerations above, [20, Definition 3.13]).

(2) The convergence in the p-norm ‖ · ‖, obviously implies the weak-convergence,
from the inequality

|ϕ(x)| ≤ ‖|ϕ‖| · ‖x‖p,

where ϕ ∈ X∗ and ‖|ϕ‖| = sup{|ϕ(x)|; ‖x‖ ≤ 1}. This means that a function
which is almost automorphic in the sense of Definition 3.2, also is weakly almost
automorphic.

(3) If f is weakly almost automorphic, it is immediate that for any ϕ ∈ X∗, the
numerical function F : R → R given by F (x) = ϕ[f(x)], for all x ∈ R, is almost
automorphic.

(4) Obviously that Definition 3.9 has no sense for X = Lp, 0 < p < 1, since in
this case X∗ = {0}, but seems to be suitable for X = lp or X = Hp, 0 < p < 1,
which have rich dual spaces.

The following properties hold.

Theorem 3.10. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space with 0 < p < 1, having
the dual space X∗ 6= {0}, and suppose that f1, f2, f : R → X are weakly almost
automorphic.

(i) Then f1 + f2 is weakly almost automorphic;
(ii) Then cf is weakly almost automorphic;
(iii) If a ∈ R is fixed, then fa given by fa(x) = f(x+a), for all x ∈ R, is weakly

almost automorphic;
(iv) Then f− given by f−(x) = f(−x), for all x ∈ R, is weakly almost automor-

phic;
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(v) If A : X → X is continuous linear operator, that is

‖A(x)‖ ≤ ‖|A‖| · ‖x‖, for all x ∈ X,

where ‖|A‖| = sup{‖A(x)‖; ‖x‖ ≤ 1} < +∞, then F : R → X given by
F (x) = A[f(x)], is weakly almost automorphic;

(vi) If the range of f is relatively compact in X then f is almost automorphic
in the sense of Definition 3.2 (that is in “strong” sense).

Proof. The proofs for (i)-(v) follow easily from Definition 3.9. Also, the proof of
(vi) is similar to the proof in the case of Banach spaces. We refer the reader to
the proof of [24, Theorem 2.3.7]. Indeed, in that proof, the only property that
we used was the fact that any sequence belonging to a compact subset contains a
convergent subsequence and that the convergence in the p-norm ‖ · ‖ implies the
weak convergency (see Remark 2 after Definition 3.9). �

Remark. In the case of Banach space valued functions, if f is weakly automorphic
then sup{‖f(t)‖; t ∈ R} < +∞ (see e.g. [24, Theorem 2.3.4]. In Banach spaces, the
main tool for the proof is the fact that any weakly convergent sequence is necessarily
bounded in norm. Unfortunately, in the case of p-Fréchet spaces, 0 < p < 1, this
proposition does not hold in general. To see this, take for example the Hardy
space Hp, 0 < p < 1. Indeed, there exists weakly convergent sequences which
are unbounded with respect to the p-norm (see [13, Corollary 2]). Consequently,
it appears that if f : R → X is weakly almost automorphic, then f might be
unbounded with respect to the p-norm.

However, a weaker result hold, as follows.

Theorem 3.11. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space with 0 < p < 1, having the
dual space X∗ 6= {0}, and suppose that f : R → X is weakly almost automorphic.

(i) If X = lp, 0 < p < 1, then sup{‖f(t)‖l1 : t ∈ R} < ∞, where ‖ · ‖l1 denotes
the norm in the Banach space l1, given by ‖x‖l1 =

∑∞
k=1 |xk|, x = (xk)k∈N;

(ii) If X = Hp, 0 < p < 1, then sup{‖f(t)‖Bp ; t ∈ R} < ∞, where ‖F‖Bp

denotes the norm in the Banach space Bp, defined as the space of all analytic
functions F , in the open unit disk, which satisfy

‖F‖Bp =
∫ 1

0

(1− r)(1/p)−2M1(r, F )dr < ∞,

where

M1(r, F ) =
1
2π

∫ 2π

0

|F (reiθ)|dθ.

Proof. (i) Obviously lp ⊂ l1 and ‖x‖l1 ≤ C‖x‖
1
p , with C independent of x, where

‖ · ‖ denotes the p-norm in X. According to e.g. [23, pp. 20-21, 27-28], the space
l1 is the smallest Banach space containing lp with 0 < p < 1, called the envelope of
lp and [l1]∗ = [lp]∗ = l∞, where l∞ is the Banach space of all bounded sequences.

In what follows we may argue as in proof of [24, Theorem 2.3.4]. Thus, suppose
by contradiction that sup{‖f(t)‖l1 : t ∈ R} = ∞, so there exists a sequence of real
numbers (s′n)n with limn→∞‖f(s′n)‖l1 = ∞. Since f is weakly almost automor-
phic, we can extract a subsequence (sn)n of (s′n)n, such that for n → ∞, we have
ϕ[f(sn)] → ϕ(α), for all ϕ ∈ (lp)∗ = (l1)∗, with α ∈ lp ⊂ l1. In other words, the
sequence (f [sn])n is weakly convergent in the Banach space l1, which implies that
it is bounded in the norm in l1, therefore we have obtained the contradiction.
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(ii) According to [13, Sections 3 and 4], Bp is a Banach space (with respect to the
norm mentioned in our statement) that is the envelope of Hp, it follows Hp ⊂ Bp,
(Hp)∗ = (Bp)∗ and ‖F‖Bp ≤ C‖F‖. The rest of proof is identical with that in
(i). �

4. Semigroups of operators on p-Fréchet spaces, 0 < p < 1

First let us recall a few notions of semigroups of linear operators in p-Fréchet
spaces, 0 < p < 1, developed in [18], as extensions of the results for Banach spaces
in [21].

If (X, ‖ · ‖) is a p-Fréchet space, 0 < p < 1, by repeating the standard techniques
in functional analysis (for the case of usual normed spaces) it follows that a linear
operator A : X → X is continuous (as mapping between two metric spaces) if and
only if ‖|A‖| = sup{‖A(x)‖; ‖x‖ ≤ 1} < +∞ and

‖A(x)‖ ≤ ‖|A‖| · ‖x‖,
for all x ∈ X. (for details see e.g. [1, Example 2 after Theorem 1]). More generally,
if (X, ‖ · ‖1) is a p-Fréchet space and (Y, ‖ · ‖2) is a q-Fréchet space, with 0 < p < 1,
0 < q < 1, then according to [2, p. 93, Definition 2.2, relationships (1) and (2)],
the boundedness of the linear operator A : X → Y is equivalent to

‖A(x)‖1/q
2 ≤ ‖|A‖| · ‖x‖1/p

1 , x ∈ X,

where

‖|A‖| = sup{‖A(x)‖1/q
2

‖x‖1/p
1

;x ∈ X, x 6= 0X}.

Note that in the case when X = Y (and therefore p = q), from [2, p. 93, relation-
ships (1) and (2)], it easily follows that the boundedness becomes as it is stated at
the beginning (i.e. as for classical linear operators between Banach spaces).

If we denote by B(X) the space of all linear and continuous (i.e. bounded)
operators A : X → X, then ‖|A‖| = sup{‖A(x)‖; ‖x‖ ≤ 1} is a p-norm on B(X),
since

‖|λA‖| = sup{‖λA(x)‖; ‖x‖ ≤ 1} = |λ|p sup{‖A(x)‖; ‖x‖ ≤ 1} = |λ|p‖|A‖|.
Also, since X is complete with respect to the metric D(x, y) = ‖x − y‖, it easily
follows that B(X) is complete with respect to the metric DO(T, S) = ‖|T − S‖|,
for all T, S ∈ B(X), i.e. B(X) is a p-Fréchet space.

Definition 4.1 ([18]). A family (T (t))t≥0 of linear continuous (i.e. bounded)
operators on the p-Fréchet space (X, ‖ · ‖), 0 < p < 1, satisfying the properties
T (t + s) = T (t)[T (s)], for all t, s ≥ 0, T (0) = I (I-the identity operator on X) and
T (·)(x) : R+ → X is continuous for each x ∈ X, is called a strongly continuous
(one parameter) semigroup on X. If T (t + s) = T (t)[T (s)], for all t, s ∈ R, then
(T (t))t∈R is called group of linear operators on X. Also, (T (t))t is called uniformly
continuous if T : K → B(X) is continuous, where K = R or K = R+.

An operator A ∈ B(X) is called the (infinitesimal) generator of a strongly con-
tinuous semigroup (T (t))t≥0, if there exists the limit

lim
t↘0

‖T (t)(x)− x

t
−A(x)‖ = 0,

for some x ∈ X. The domain D(A) of A is the set of all x ∈ X, such that the above
limit exists.
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We can state the following result.

Theorem 4.2 ([18]). Let (X, +, ·, ‖ · ‖) be a p-Fréchet space where 0 < p < 1, and
A ∈ B(X). For x ∈ X and t ∈ R let us define Sm(t)(x) =

∑m
j=0

tj

j! A
j(x),m ∈ N.

It follows that
(i) For each x ∈ X and t ∈ R, the sequence Sm(t, x),m = 1, 2, . . . , is con-

vergent in X, that is there exists an element in X dented by etA(x), such
that

lim
m→+∞

‖etA(x)− Sm(t, x)‖ = 0,

and we write etA(x) =
∑+∞

k=0
tk

k! A
k(x);

(ii) For any fixed t ∈ R, we have etA ∈ B(X);
(iii) e(t+s)A = etAesA,∀t, s ∈ R;
(iv) The limit

lim
t→0+

‖A(x)− etA(x)− x

t
‖ = 0,

exists for all x ∈ X;
(v) etA is continuous as function of t ∈ R to B(X) and e0A = I. Also, T (t) =

etA is differentiable, d
dt [e

tA(x)] = A[etA(x)] and the function etA(x0) : R →
X is the unique solution of the Cauchy problem x′(t) = A[x(t)], t ∈ R,
x(0) = x0.

Theorem 4.2 shows that T (t) = etA, t ≥ 0 is a strongly continuous group of
operators. Also, let us prove the following result.

Theorem 4.3. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, where 0 < p < 1.
(i) Let (T (t))t∈R be a strongly continuous group of bounded linear operators on

X. Assume that the function x : R → X, defined by x(t) = T (t)[x0] is
almost automorphic for some x0 ∈ X. Then inft∈R ‖x(t)‖ > 0, or x(t) =
0,∀t ∈ R.

(ii) Let x : R+ → X and f : R → X be two continuous functions and T =
(T (t))t∈R+ be a strongly continuous semigroup of bounded linear operators
on X. Suppose that

x(t) = T (t)(x(0)) +
∫ t

0

T (t− s)(f(s))ds, t ∈ R+.

Then for given t in R and b > a > 0, a + t > 0, we have

x(t + b) = T (t + a)(x(b− a)) +
∫ t

−a

T (t− s)(f(s + b))ds.

Proof. (i) Let us suppose that we have inft∈R ‖x(t)‖ = 0. Let (s′n)n be a sequence
of real numbers such that limn→+∞ ‖x[s′n]‖ = 0. Since, by hypothesis, as function
of t, the function x(t) is almost automorphic, by Definition 3.2, we can extract a
subsequence (sn)n of (s′n)n such that for all t ∈ R, there exists y(t) ∈ X with the
property

lim
n→+∞

‖y(t)− x(t + sn)‖ = lim
n→+∞

‖y(t− sn)− x(t)‖ = 0,

with the above convergence on R being pointwise. Also, we can easily deduce that

x(t + sn) = T (t + sn)[x0] = T (t)(T (sn)[x0]) = T (t)[x(sn)].
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From the above limits, we obtain

‖y(t)‖ ≤ ‖y(t)− x(t + sn)‖+ ‖x(t + sn)‖ ≤

‖y(t)− x(t + sn)‖+ ‖|T (t)‖| · ‖x(sn)‖,
thus passing to the limit as n → +∞, it follows that ‖y(t)‖ = 0, that is, y(t) = 0X ,
for all t ∈ R. This immediately implies x(t) = 0, for all t ∈ R.

(ii) As in the proof of [24, Theorem 2.4.7], we obtain

x(t+b) = T (t+a)
[
x(b−a)−

∫ b−a

0

T (b−a−s)(f(s))ds
]
+

∫ t+b

0

T (t+b−s)(f(s))ds.

Then from the above relation we get

x(t + b) + T (t + a)
[ ∫ b−a

0

T (b− a− s)(f(s))ds
]

= T (t + a)[x(b− a)] +
∫ t+b

0

T (t + b− s)(f(s))ds.

Taking into account that T commutes with the integral (since it is linear and
continuous operator), by the property T (u + v) = T (u)[T (v)],∀u, v ∈ R+ and by
the substitution u = s− b, we obtain

x(t + b) +
∫ −a

−b

T (t−u)[f(u + b)]du = T (t + a)[x(b− a)] +
∫ t

−b

T (t−u)[f(u + b)]du.

But because t > −a, we can write∫ t

−b

T (t− u)[f(u + b)]du =
∫ −a

−b

T (t− u)[f(u + b)]du +
∫ t

−a

T (t− u)[f(u + b)]du,

we immediately get the required relation from the statement of theorem. The
theorem is proved. �

In what follows, we will be concerned with the behavior of asymptotically almost
automorphic semigroups of linear operators T = T (t), t ∈ R+ on p-Fréchet spaces,
0 < p < 1. We present some topological and asymptotic properties based on the
Nemytskii and Stepanov theory of dynamical systems.

Definition 4.4. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, where 0 < p < 1. A
mapping u : R+ ×X → X is called a dynamical system if:

(i) u(0X , x) = x, for all x ∈ X;
(ii) u(·, x) : R+ → X is continuous for any t > 0 and right-continuous at t = 0,

for each x ∈ X. The mapping u(·, x) is called a motion originating at
x ∈ X.

(iii) u(t, ·) : X → X is continuous for each t ≥ 0 ;
(iv) u(t + s, x) = u(t, u(s, x)),∀x ∈ X, for all t, s ∈ R+.

Theorem 4.5. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, where 0 < p < 1. Every
strongly continuous semigroup (T (t))t≥0 on X determines a dynamical system and
conversely, by defining u(t, x) = T (t)(x), t ∈ R+, x ∈ X.

The proof of the above theorem is similar to the proof of [24, Theorem 2.7.2].
In the rest of this section, T = (T (t))t∈R+ will be a strongly continuous semigroup
of linear bounded operators on the p-Fréchet space (X, +, ·, ‖ · ‖), 0 < p < 1, such
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that for fixed x0 ∈ X, the motion T (t)(x0) : R+ → X is an asymptotically almost
automorphic function with principal term f and the corrective term g.

Definition 4.6. A function ϕ : R → X is said to be a complete trajectory of T if
it satisfies the functional equation ϕ(t) = T (t− a)(ϕ(a)), for all a ∈ R, t ≥ a.

Theorem 4.7. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, where 0 < p < 1. The
principal term f of T (t)(x0) is a complete trajectory for T .

Proof. The proof is similar to that of [24, Theorem 2.7.4]. We would only have to
consider the limits here with respect to the metric D(x, y) = ‖x− y‖. �

Definition 4.8. Let (X, +, ·, ‖ · ‖) be a p-Fréchet space, where 0 < p < 1.
The set ω+(x0) = {y ∈ X;∃ 0 ≤ tn → +∞, limn→+∞ ‖T (t)(x0) − y‖ = 0} is

called the ω-limit set of T (t)(x0).
ω+

f (x0) = {y ∈ X;∃ 0 ≤ tn → +∞, limn→+∞ ‖f(tn) − y‖ = 0} is called the
ω-limit set of f , the principal term of T (t)(x0).

γ+(x0) = {T (t)(x0); t ∈ R+} is the trajectory of T (t)(x0).
A set B ⊆ X is said to be invariant under the semigroup T = (T (t))t∈R+ , if

T (t)(y) ∈ B,∀y ∈ B,∀t ∈ R+.
e ∈ X is called a rest-point for the semigroup T if T (t)(e) = e,∀t ≥ 0.

Also, the following properties hold.

Theorem 4.9. (i) ω+(x0) is not empty, ω+(x0) = ω+
f (x0), ω+(x0) is invari-

ant under T and is closed in X (with respect to D), ω+(x0) is compact if
γ+(x0) is relatively compact. Also, if x0 is a rest-point of the semigroup T
then ω+(x0) = {x0}.

(ii) If we denote γf (x0) = {f(t); t ∈ R} then γf (x0) is relatively compact (by
Theorem 3.3, (v)) and invariant under the semigroup T .

(iii) If we denote ν(t) = inf{‖T (t)(x0)− y‖; y ∈ ω+(x0)}, then limt→+∞ ν(t) =
0.

Proof. We can imitate the proofs as in the case of Banach spaces, reasoning with
respect to the p-norm instead of the usual norm.

(i) As in the proof of [24, Theorem 2.7.6], from the almost automorphy of f , let
(tnk

)k∈N be the sequence satisfying

lim
k→+∞

‖f(tnk
)− g(0)‖ = 0.

But
‖T (tnk

)(x0)− f(tnk
)‖ = ‖(f(tnk

) + g(tnk
))− f(tnk

)‖ = ‖g(tnk
)‖,

which implies
lim

k→+∞
‖T (tnk

)(x0)− f(tnk
)‖ = 0.

We then immediately get limk→+∞ ‖T (tnk
)(x0) − g(0)‖ = 0, which means that

g(0) ∈ ω+(x0) i.e. ω+(x0) is non empty.
The equality ω+(x0) = ω+

f (x0) follows immediate from limt→+∞ ‖T (t)(x0) −
f(t)‖ = 0, which can be proved as above.

To prove that ω+(x0) is invariant under T , we reason exactly as in the proof of
[24, Theorem 2.7.9].

Reasoning as in the proof of [24, Theorem 2.7.10], we immediately obtain that
ω+(x0) is closed in X (there only the triangle inequality of ‖ · ‖ is used). Arguing
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exactly as in the proof of [24, Theorem 2.7.11], we get that ω+(x0) is compact if
γ+(x0) is relatively compact. Also, reasoning as in the proof of [24, Theorem 2.7.16],
we immediately obtain that ω+(x0) = {x0} for x0 a rest-point of the semigroup T .

The claims (ii) and (iii) are similar to the proofs of [24, Theorems 2.7.12 and
2.7.13], respectively. �

5. Almost automorphic groups and semigroups on p-Fréchet spaces,
0 < p < 1

Everywhere in this section, (X, +, ·, ‖·‖) will be a p-Fréchet space, with 0 < p < 1.
First we recall some concepts and results from [20] concerning B-almost periodic
functions with values in p-Fréchet spaces.

Definition 5.1 ([20]). Let f : R → X be continuous on R. We say that f is
B-almost periodic if: ∀ε > 0, ∃l(ε) > 0 such that any interval of length l(ε) of the
real line contains at least one point ξ with

‖f(t + ξ)− f(t)‖ < ε, ∀t ∈ R.

Remarks. (1) A set E ⊂ R is called relatively dense (in R), if there exists a
number l > 0 such that every interval (a, a + l) contains at least one point of E.
By using this concept, we can reformulate Definition 5.1 as follows: f : R → X is
called B-almost periodic if for every ε > 0, there exists a relatively dense set {τ}ε,
such that

sup
t∈R

‖f(t + τ)− f(t)‖ ≤ ε, for all τ ∈ {τ}ε.

Also, each τ ∈ {τ}ε is called ε-almost period of f .
(2) It was proved in [20, Theorem 3.6] that the range of an B-almost periodic

function with values in the p-Fréchet space (X, +, ·, ‖ · ‖) is relatively compact (r.c.
for short) in the complete metric space (X, D), with D(x, y) = ‖x− y‖.

Similar to the case of Banach spaces, we have developed a theory of Bochner’s
transform for p-Fréchet spaces (see [20]), as follows.

Let us denote AP (X) = {f : R → X; f is B-almost periodic} and for f ∈
AP (X), let us define ‖f‖b = sup{‖f(t)‖; t ∈ R}. By [20, Theorem 3.2], we get
‖f‖b < +∞. It follows that ‖ · ‖b also is a p-norm on the space

Cb(R, X) = {f : R → X; is continuous and bounded on R}.
In addition, since (X, D) is a complete metric space, by standard reasonings it
follows that Cb(R, X) becomes complete metric space with respect to the metric
Db(f, g) = ‖f − g‖b, that is, (Cb(R, X), ‖ · ‖b) becomes a p-Fréchet space. Then,
the result in [20, Theorems 3.2 and 3.5] shows that AP (X) is a closed subset of
Cb(R, X), that is, (AP (X), Db) is complete metric space and therefore (AP (X), ‖ ·
‖b) becomes p-Fréchet space.

The Bochner transform on Cb(R, X) is defined as in the case of Banach spaces,
by

f̃ : R → Cb(R, X), f̃(s)(t) = f(t + s),

for all t ∈ R and we write f̃ = B(f). The properties of Bochner’s transform on
p-Fréchet spaces, 0 < p < 1, can be summarized as follows.

Theorem 5.2 ([20, Theorem 3.11]). (i)

‖f̃(s)‖b = ‖f(·+ s)‖b = ‖f̃(0)‖b, for all s ∈ R;
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(ii)

‖f̃(s+τ)−f̃(s)‖b = sup{‖f(t+τ)−f(t)‖; t ∈ R} = ‖f̃(τ)−f̃(0)‖b, for all s, τ ∈ R;

(iii) f is B-almost periodic if and only if, f̃ is B-almost periodic, with the same
set of ε-almost periods {τ}ε;

(iv) f̃ is B-almost periodic, if and only if there exists a relatively dense sequence
in R, denoted by {sn;n ∈ N}, such that the set of functions {f̃(sn);n ∈ N},
is relatively compact in the complete metric space (Cb(R, X), Db);

(v) f̃ is B-almost periodic, if and only f̃(R) is relatively compact in the complete
metric space (Cb(R, X), Db);

(vi) (Bochner’s criterion) f is B-almost periodic if and only if f̃(R) is relatively
compact in the complete metric space (Cb(R, X), Db).

The above (vi) Bochner’s criterion can be restated as follows.

Theorem 5.3 ([20, Theorem 3.7]). A function f ∈ C(R, X) is B-almost periodic
if and only if for every sequence of real numbers (s′n), there exists a subsequence
(sn) such that (f(t + sn)) is uniformly convergent in t ∈ R.

Furthermore, we have the following result.

Theorem 5.4 ([20, Theorem 3.12]). Let f ∈ Cb(R, X). Let us suppose that there
exists a relatively dense set of real numbers (sn), such that

(i) The set {f(sn);n ∈ N} is relatively compact in the metric space (X, D) and
(ii) for any n, m ∈ N, the relation

‖f(sn)− f(sm)‖ ≥ c‖f(·+ sn)− f(·+ sm)‖b,

holds with c > 0 independent of n, m.
Then, f is B-almost periodic.

It is clear that AP (X) ⊂ AA(X), and in general, the concepts of B-almost peri-
odicity and almost automorphy are not equivalent. However Theorem 5.4 allows us
to prove the equivalence between the B-almost periodicity and almost automorphy
of the “orbits” of a group/semigroup. In this sense, we present the following result.

Theorem 5.5. Let (T (t))t∈R be a family of uniformly bounded group of bounded
linear operators on a p-Fréchet space (X, +, ·, ‖ · ‖), 0 < p < 1 and let x0 ∈ X be
given. Then the following are equivalent:

(i) t → T (t)(x0) is almost automorphic;
(ii) t → T (t)(x0) is B-almost periodic.

Proof. It suffices to prove that (i) implies (ii). Since T (t)t∈R is uniformly bounded,
there exists M > 0 such that ‖T (t)(x0)‖ ≤ M‖x0‖, for all t ∈ R. Also, the range
RT (t)(x0) is relatively compact since T (t)(x0) is almost automorphic as function of
t (see Theorem 3.3, (v)). Thus given an r.d. sequence of real numbers (s′n), we can
find a subsequence (sn) such that (T (sn)(x0))n∈N is Cauchy. Now, in view of the
following inequality

c‖[T (t + sn)(x0)− T (t + sm)(x0)]‖ ≤ ‖[T (sn)(x0)− T (sm)(x0)]‖,

for all t ∈ R, (where c = 1
M ) we conclude that T (t)(x0) is B-almost periodic by

Theorem 5.4. �
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We remark that Theorem 5.5 is an extension of a result [9] in Banach spaces to
p-Fréchet spaces, 0 < p < 1.

Definition 5.6. A motion x ∈ C(R, X) is said to be strongly stable if for every
ε > 0 there exists δ > 0 such that ‖x(t1)−x(t2)‖ < δ implies ‖x(t+t1)−x(t+t2)‖ < ε
for all t ∈ R.

Example 5.7. If (T (t))t∈R is a family of uniformly bounded group of continuous
linear operators on X, then the function x(t) := T (t)(e) for some e ∈ X is a strongly
stable motion in X.

Theorem 5.8. If x ∈ C(R, X) is a strongly stable motion with a relatively compact
range in X, then x ∈ AP (X).

The proof of the above theorem is a direct consequence of Theorem 5.3. By
Definition 3.6 we have introduced the concept of asymptotically almost automorphic
function with values in a p-Fréchet space, 0 < p < 1. In a similar manner, we can
introduce the following concept.

Definition 5.9. A function f ∈ C([0,∞), X) is said to be asymptotically B-almost
periodic if it admits the (unique) decomposition f = g + h where g ∈ AP (X) and
h ∈ C([0,∞), X) with limt→∞ h(t) = 0. g and h are called principal term and
corrective term of f , respectively.

It is clear that if f is asymptotically B-almost periodic, then it is asymptotically
almost automorphic. Although the converse is not true in general, we will prove
that in the case of uniformly bounded semigroups, the answer is affirmative.

Theorem 5.10. Let (T (t))t∈R+ be a family of uniformly bounded semigroup of
continuous linear operators on the p-Fréchet space (X, ‖ · ‖). If t → T (t)(x0) is
asymptotically almost automorphic then it is asymptotically B-almost periodic.

Proof. Let (s′′n) be a given sequence in R+. Then we can extract a subsequence (s′n)
such that (g(s′n)) is convergent, where g is the principal term of T (t)(x0). Since
h ∈ C([0,∞), X), we can extract a subsequence (sn) such that h(sn) is convergent
(the situation when sn → +∞ is covered by the property of h as the corrective term
of T (t)(x0) , i.e h(sn) → 0). This implies that (T (sn)(x0)) is convergent. Finally,
by recalling Theorem 5.4 and 5.5, the proof is complete. �

In what follows, let us consider the inhomogeneous Cauchy problem
du(t)

dt
= Au(t) + f(t, u), t ≥ a (5.1)

u(a) = ua ∈ Xp, (5.2)
where (Xp, ‖ · ‖p) is a p-Frechet space, 0 < p < 1, A : Xp → Xp is linear and
continuous and f : R×Xp → Xp such that f(t, x) is almost automorphic in t for
each x ∈ Xp and ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖,∀x, y ∈ Xp and t ≥ a, where
L is independent of x, y and t. For instance, Xp can be any of the examples of
spaces in Section 2, see (2.1)–(2.3). Let now T = {T (t)}t≥0 be a family of strongly
continuous semigroups on Xp with generator A. In the case when Xp (p ≥ 1) is
a Banach space, it is a well-known fact that the concept of integral of continuous
functions defined on compact intervals, with values in Xp, plays a crucial role in
defining so-called mild solutions for (5.1)-(5.2). Thus, using standard arguments
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from fixed point theory, we would be driven to prove that the mild solution of
(5.1)-(5.2) is of the form

u(t) = T (t)u(a) +
∫ t

a

T (t− s)f(s, u(s))ds := Su(t). (5.3)

Note that the integral in (5.3) is defined as in [2] (cf. also [18]). In other words, we
would have to prove that the integral operator Su on the right hand side of (5.3)
has a unique fixed point in a suitable space, which will turn out to be the mild
solution of (5.1)-(5.2). However, since the fundamental theorem of calculus does
not hold in the spaces Xp, 0 < p < 1 (cf. [18]), first it follows that a differentiable
mild solution is not necessarily a solution of (5.1)-(5.2). Also, in general, we do not
get the following estimate∥∥∫ t

a

T (t− s)f(s, u(s))ds
∥∥

p
≤

∫ t

a

‖T (t− s)f(s, u(s))‖pds. (5.4)

This inequality is essential in proving that the map S above is a contraction on
suitable bounded subsets of C([a, T ]; Xp). Furthermore, lacking a Leibniz-Newton
formula, the indefinite integral of an almost automorphic function is not an almost
automorphic function. Consequently, due to the lack of a rich structure of calculus
in such non-locally convex spaces, it seems that one cannot hope for an interest-
ing theory with real world applications of semilinear differential equations (with
unrestricted or almost automorphic solutions).
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[22] J. A. Goldstein and G. M. N’Guérékata, Almost automorphic solutions of semilinear evolution

equations, Proc. Amer. Math. Soc., 133 (2005), No. 8, 2401-2408.
[23] N. J. Kalton, N. T. Peck and J. W. Roberts, An F -Space Sampler, London Mathematical

Society Lecture Notes Series, vol. 89, Cambridge University Press, Cambridge, 1984.
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