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MULTIPLE SEMICLASSICAL STATES FOR SINGULAR
MAGNETIC NONLINEAR SCHRÖDINGER EQUATIONS

SARA BARILE

Abstract. By means of a finite-dimensional reduction, we show a multiplicity
result of semiclassical solutions u : RN → C to the singular nonlinear Schrö-

dinger equation“ ε

i
∇−A(x)

”2
u + u + (V (x)− γ(ε)W (x))u = K(x)|u|p−1u, x ∈ RN ,

where N ≥ 2, 1 < p < 2∗ − 1, A(x), V (x) and K(x) are bounded potentials.

Such solutions concentrate near (non-degenerate) local extrema or a (non-
degenerate) manifold of stationary points of an auxiliary function Λ related to

the unperturbed electric field V (x) and the coefficient K(x) of the nonlinear

term.

1. Introduction and main results

In recent years, much attention has been devoted to the search of standing waves
solutions of the type ψ(x, t) = exp(−iE

~ t)u(x), E ∈ R, u : RN → C to the time-
dependent NLS equations (Nonlinear Schrödinger equations) with potentials

i~
∂ψ

∂t
=

(~
i
∇−A(x)

)2

ψ + U(x)ψ −K(x)|ψ|p−1ψ, (t, x) ∈ R× RN , (1.1)

where i is the imaginary unit and ~ is the Planck constant. The function A :
RN → RN denotes a magnetic potential , U : RN → R represents an electric
potential and the nonlinear term grows subcritically, namely for p > 1 if N = 2
and 1 < p < (N + 2)/(N − 2) if N ≥ 3.

This leads to solve the complex semilinear elliptic equation(ε
i
∇−A(x)

)2

u+ (U(x)− E)u = K(x)|u|p−1u, x ∈ RN , (1.2)

where ε = ~ and V (x) + 1 = U(x) − E is strictly positive on the whole RN ,
whose solutions are usually referred as semi-classical ones since their existence is
proved by letting ε→ 0 thus performing the transition from Quantum to Classical
Mechanics. It has been also investigated the problem of finding a family {uε}
of such solutions which exhibits a concentration behavior around a special point,
namely, solutions with a spike shape, a maximum point converging to a point
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located around a prescribed region, while vanishing as ε→ 0 everywhere else in the
domain. Such special point has been proved to be a critical point of the potential
V (x) and the study of single and multiple spike solutions to (1.2) and related
problems has attracted considerable attention in recent years. In the case A = 0,
different approaches have been carried out in order to study one-bump or multi-
bump semi-classical bound states (solutions with finite energy) and different cases
have been covered (see [1, 10, 11, 13, 20, 21, 22, 28, 29, 30, 34, 37, 39, 43, 45, 46, 52,
53]). In the case A 6= 0, the first existence result is due to Esteban and Lions [31]
for ε > 0 fixed by means of concentration-compactness arguments. Later, Kurata
[40] has showed, in the semiclassical limit, the existence and the concentration of a
least energy solution near global minima of V under suitable assumptions linking
the magnetic and the electric potentials in the case K(x) = 1. Furthermore, he
has proved that the magnetic potential only contributes to the phase factor of the
complex solution but it doesn’t influence the concentration of its modulus. A first
multiplicity result for solutions of (1.2) has been proved by Cingolani in [24], by
means of topological arguments that allow to relate the number of the solutions to
the richness of the set M of global minima of an auxiliary function Λ defined as

Λ(x) =
(1 + V (x))θ

K(x)2/(p−1)
, θ =

p+ 1
p− 1

− N

2
,

(see (4.5) in Section 4 for details) on the whole RN since K(x) > 0 for all x ∈ RN ,
which coincide with global minima of V (x) if K(x) = 1. In [23], Cingolani and
Secchi have treated the more general case in which Λ has a non-degenerate manifold
of stationary points. For bounded electric and magnetic potentials, they have
proved a multiplicity result following the new perturbation approach introduced
in the paper [2] due to Ambrosetti, Malchiodi and Secchi in the case A = 0 (see
also [3]). Precisely, by means of a finite-dimensional reduction, the complex valued
solutions to (1.2) (after the change of variable x→ εx) are found near least energy
solutions of the complex limiting equation(∇

i
−A(εξ)

)2

u+ u+ V (εξ)u = K(εξ)|u|p−1u in RN , (1.3)

(see Remark 5.2) where εξ is in a neighborhood of M . In such sense, here and in
what follows, as ε→ 0, solutions of (1.2) concentrate around stationary points of Λ
(see Proof of Theorem 5.1). Furthermore, the boundedness of the electromagnetic
potentials assures that the variational setting H1(RN ,C) of (1.3) becomes equiv-
alent to the variational framework in which (1.2) is set up. Then, such result has
been improved in [25] to degenerate and topologically non-trivial critical points of
Λ dropping the boundedness of the magnetic potential. Necessary conditions for
a sequence of solutions to (1.2) to concentrate, in different senses, around a given
point have been established by Secchi and Squassina in [49]. For multi-peaks, we
refer to [8, 14, 26] and for the critical case to [4, 6, 17]. The asymptotic evolution
has been recently studied in [50]. Dealing with singular magnetic NLS equations,
we cite a recent paper by Barile [7] where the author has obtained a multiplicity
result of complex-valued solutions to(ε

i
∇−A(x)

)2

u+ (V (x)− γ(ε)W (x))u = |u|p−2u, x ∈ RN , (1.4)

where 2 < p < 2∗, γ : [0,+∞) → [0,+∞) and W : RN → [0,+∞) is a measurable
potential satisfying (W1) like 1

|x| ,
1
|x|2 (see [42] in the case A = 0). The introduction
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of singular potentials has important physical interest since they appear in many
fields such as Quantum Mechanics and Astrophysics [35, 41], Chemistry [15, 44],
Cosmology [9] and Differential Geometry [5] thus being the object of a wide recent
mathematical research (e.g. [16, 19, 31, 32, 33, 36, 48, 51]). Furthermore, in such a
case, it has a certain relevance from the mathematical point of view since it allows
to perturbe the potential V (x) which is supposed to be bounded below so that
the resulting potential Vε(x) = V (x) − γ(ε)W (x) may be unbounded below and
eventually above. Following the variational approach used in [24], it is proved that
the number of the solutions to (1.4) can still be related to the topology of the global
minima set of the unperturbed potential V (x), provided the perturbation γ(ε) is
small with respect to the coefficient ε2 of the differential term, in the sense that for
any δ > 0 there exists η∗∗(δ) > 0 such that

lim sup
ε→0

γ(ε)
ε2

< η∗∗(δ).

Thus such result can be seen as a quite natural but important generalization of
the one in [24] to the case of unbounded electric potentials and K(x) = 1. Our
purpose, in this work, is to extend such multiplicity result to(ε

i
∇−A(x)

)2

u+ u+ (V (x)− γ(ε)W (x))u = K(x)|u|p−1u, x ∈ RN , (1.5)

in the more general case in which the auxiliary function Λ has a manifold M of
stationary points, not necessarily global minima and, for bounded magnetic and
electric potentials A(x) and V (x), following the perturbation approach used in
[23]. Really, we are able to prove that the result in the spirit of [23] holds after
the introduction of the new term −γ(ε)W (x) which may be unbounded below, thus
generalizing it to the case of electric potentials eventually unbounded.

Without loss of generality we can assume that V (0) = 0 and K(0) = 1. Per-
forming the change of variable x 7→ εx, the problem becomes that of finding some
functions u : RN → C such that(∇

i
−A(εx)

)2

u+ u+ (V (εx)− γ(ε)W (εx))u = K(εx)|u|p−1u in RN . (1.6)

Of course, if u is a solution of (1.6), then u(·/ε) is a solution of (1.5). Since (1.6) is
invariant under the multiplicative action of S1, solutions of (1.6) naturally appear
as orbits so that we simply speak about solutions. The complex-valued solutions
to (1.6) are found near least energy solutions of the equation(∇

i
−A(εξ)

)2

u+ u+ V (εξ)u = K(εξ)|u|p−1u in RN , (1.7)

(see Remark 5.2) where εξ is in a neighborhood of M . The least energy of (1.7)
have the form

zεξ,σ : x ∈ RN → eiσ+iA(εξ)·x
(

1 + V (εξ)
K(εξ)

)1/(p−1)

U((1 + V (εξ))1/2(x− ξ)),

(see Section 2) where εξ belongs to M and σ ∈ [0, 2π]. As in [23] (see also [2]),
the proof relies on a suitable finite-dimensional reduction and critical points of the
Euler functional fε associated to problem (1.6) are found near critical points of a
finite-dimensional functional Φε which is defined on a suitable neighborhood of M
(see (4.6) and (4.7)). This allows to use Ljusternik-Schnirelman category in the
case M is a set of local maxima or minima of Λ. We remark again that the case of
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maxima cannot be handled by using direct variational arguments as in [7, 24]. We
present a special case of our results.

We will use the following assumptions:

(K1) K ∈ L∞(RN ) ∩ C2(RN ) is strictly positive and K ′′ is bounded;
(V1) V ∈ L∞(RN )∩C2(RN ) satisfies infx∈RN (1+V (x)) > 0, and V ′′ is bounded;
(W1) W : RN → [0,+∞) is a measurable function such that, for some α1 > 0

and α2 ≥ 0, ∫
RN

W (x)|v|2 ≤ α1‖∇|v|‖22 + α2‖v‖22

for any v such that |v| ∈ H1(RN ,R);
(A1) A ∈ L∞(RN ,RN ) ∩ C1(RN ,RN ), and the Jacobian JA of A is globally

bounded in RN ;
(G1) γ : [0,+∞) → [0,+∞) is a function which depends on ε such that G(ε) :=

γ(ε)
ε2 = O(ε).

Theorem 1.1. Assume (K1), (V1), (W1), (A1), (G1). If the auxiliary function
Λ has a non-degenerate critical point x0 ∈ RN , then for ε > 0 small, the problem
(1.6) has at least a (orbit of) solution concentrating near x0.

Furthermore, if M is a set of critical points non-degenerate in the sense of Bott
(see [12]) we can prove the existence of (at least) cup long of M , denoted by l(M),
solutions concentrating near points of M . For the definition of the cup long, refer
to Section 5.

Theorem 1.2. As in Theorem 1.1, assume (K1), (V1), (W1), (A1), (G1). If the
auxiliary function Λ has a smooth, compact, non-degenerate manifold of critical
points M , then for ε > 0 small, the problem (1.6) has at least l(M) (orbits of)
solutions concentrating near points of M .

We remark that the presence of an external magnetic field produces a phase in
the complex wave which depends on the value of A near M , but does not seem to
influence the location of the peaks of the modulus of the complex wave.

Notation. 1. The complex conjugate of any number z ∈ C will be denoted by
z̄. 2. The real part of a number z ∈ C will be denoted by Re z. 3. The ordinary
inner product between two vectors a, b ∈ RN will be denoted by a · b. 4. We
omit the symbol dx in integrals over RN when no confusion can arise. 5. C
denotes a generic positive constant, which may vary inside a chain of inequalities.
6. We use the Landau symbols. For example O(ε) is a generic function such that
lim supε→0O(ε)/ε <∞, and o(ε) is a function such that limε→0 o(ε)/ε = 0.

2. The variational framework

We work in the real Hilbert space E obtained as the completion of C∞0 (RN ,C)
with respect to the norm ‖ · ‖ associated to the inner product

(u|v) ≡ Re
∫

RN

∇u · ∇v + uv.
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Solutions to (1.6) are, under some conditions we are going to point out, critical
points of the functional formally defined on E as

fε(u) =
1
2

∫
RN

(∣∣∣(1
i
∇−A(εx)

)
u
∣∣∣2 + |u|2 + (V (εx)− γ(ε)W (εx))|u|2

)
dx

− 1
p+ 1

∫
RN

K(εx)|u|p+1 dx.

(2.1)

In the following, we shall assume that the functions V , W , K and A satisfy as-
sumptions (V1), (W1), (K1) and (A1). In particular, by the boundedness of the
magnetic and electric potentials, the norm ‖ · ‖2 is equivalent to the usual norm

‖u‖2ε ≡
∫

RN

(
|Dεu|2 + (1 + V (εx))|u|2

)
dx <∞

on the real Hilbert space Eε, defined by the closure of C∞0 (RN ,C) under the scalar
product

(u|v)ε ≡ Re
∫

RN

(
DεuDεv + (1 + V (εx))uv

)
dx,

where Dεu = (Dε
1u, . . . ,D

ε
Nu) and Dε

j = i−1∂j −Aj(εx). Indeed,∫
RN

(∣∣∣(1
i
∇−A(εx)

)
u
∣∣∣2) dx =

∫
RN

(
|∇u|2 + |A(εx)u|2−2 Re

(∇u
i
·A(εx)u

))
dx,

and the last integral is finite thanks to the Cauchy-Schwartz inequality and the
boundedness of A. The functional spaces E and Eε are isomorphic so, roughly
speaking, we can say that the above variational frameworks become equivalent.
This allows us to prove that the integral involving W is finite by assumption (W1)
as we need that for all u ∈ E it results |u| ∈ H1(RN ,R). Since A is real valued, it
is easy to deduce that (see, for example, [38, 47]) for any u ∈ Eε, the diamagnetic
inequality

|∇|u|(x)| =
∣∣∣ Re

(
∇u u

|u|

)∣∣∣ =
∣∣∣ Re

(
(∇u− iA(εx)u)

u

|u|

)∣∣∣ ≤ |Dεu(x)| (2.2)

holds a.e. in RN and |u| ∈ H1(RN ,R). Furthermore,∫
RN

|∇|u‖2 + |u|2 dx ≤
∫

RN

(
|Dεu|2 + (1 + V (εx))|u|2

)
dx ≤ c‖u‖2 (2.3)

So, by the change of variable y = εx, (W1) and (2.3), we have that

γ(ε)
∫

RN

W (εx)|u|2 ≤ γ(ε)
εN

[
α1

∫
RN

∣∣∣∇ ∣∣∣u(y
ε

)∣∣∣∣∣∣2 + α2

∫
RN

∣∣∣u(y
ε

)∣∣∣2 ]
≤ γ(ε)

ε2

[
α1

∫
RN

|∇|u(x)‖2 + α2ε
2

∫
RN

|u(x)|2
]

(with x =
y

ε
)

≤ γ(ε)
ε2

αε

[ ∫
RN

|∇|u(x)‖2 +
∫

RN

|u(x)|2
]

≤ G(ε)αεc‖u‖2
(2.4)

is finite for ε small, where αε := max{α1, α2ε
2} → α1 as ε → 0. It follows that fε

is actually well defined on E for ε small enough. In order to find possibly multiple
critical points of (2.1), we follow the approach of [2, 23]. Since we need to find
complex-valued solutions, some further remarks are due.
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Let ξ ∈ RN which will be fixed suitable later on: we look for solutions to (1.6)
“close” to a particular solution of the equation(∇

i
−A(εξ)

)2

u+ u+ V (εξ)u = K(εξ)|u|p−1u in RN (2.5)

(see Remark 5.2). More precisely, we denote by Uc : RN → C a least-energy solution
to the scalar problem

−∆Uc + Uc + V (εξ)Uc = K(εξ)|Uc|p−1Uc in RN . (2.6)

By energy comparison (see [40]), one has that

Uc(x) = eiσUξ(x− y0)

for some choice of σ ∈ [0, 2π] and y0 ∈ RN , where Uξ : RN → R is the unique
solution of −∆Uξ + Uξ + V (εξ)Uξ = K(εξ)|Uξ|p−1Uξ,

Uξ(0) = max
RN

Uξ, Uξ > 0.
(2.7)

If U denotes the unique solution of{
−∆U + U = Up in RN ,

U(0) = max
RN

U, U > 0, (2.8)

then some elementary and direct computations prove that Uξ(x) = α(εξ)U(β(εξ)x),
where

α(εξ) =
(

1 + V (εξ)
K(εξ)

)1/(p−1)

, β(εξ) =
(
1 + V (εξ)

)1/2
,

and the function u(x) = eiA(εξ)·xUc(x) actually solves (2.5).
For ξ ∈ RN and σ ∈ [0, 2π], we set

zεξ,σ : x ∈ RN → eiσ+iA(εξ)·xα(εξ)U(β(εξ)(x− ξ)). (2.9)

Sometimes, for convenience, we shall identify [0, 2π] and S1 ⊂ C, through η = eiσ.
Introduce the functional F εξ,σ : E → R defined by

F εξ,σ(u) =
1
2

∫
RN

(∣∣∣(∇u
i
−A(εξ)u

)∣∣∣2 + |u|2 + V (εξ)|u|2
)
dx

− 1
p+ 1

∫
RN

K(εξ)|u|p+1 dx,

whose critical points correspond to solutions of (2.5). The set

Zε = {zεξ,σ|ξ ∈ RN ∧ σ ∈ [0, 2π]} ∼= S1 × RN

is a regular manifold of critical points for the functional F εξ,σ. From elementary
differential geometry it follows that

Tzεξ,σZε = spanR

{ ∂

∂σ
zεξ,σ = izεξ,σ,

∂

∂ξ1
zεξ,σ, . . . ,

∂

∂ξN
zεξ,σ

}
where we mean by the symbol spanR that all the linear combinations must have
real coefficients. We remark that, for j = 1, . . . , N ,

∂

∂ξj
zεξ,σ = − ∂

∂xj
zεξ,σ + izεξ,σAj(εξ) +O(ε) . (2.10)
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So that any ζ ∈ Tzεξ,σZε can be written as

ζ = il1z
εξ,σ +

N+1∑
j=2

lj
∂

∂xj−1
zεξ,σ +O(ε) (2.11)

for some real coefficients l1, l2, . . . , lN+1.
The next lemma shows that ∇fε(zεξ,σ) gets small when ε → 0, namely zεξ,σ is

an “almost solution” of (1.6).

Lemma 2.1. For all ξ ∈ RN , all η ∈ S1 and all ε > 0 small, one has that

‖∇fε(zεξ,σ)‖ ≤ C
(
ε|∇V (εξ)|+ ε|∇K(εξ)|+ ε|JA(εξ)|

+ ε|divA(εξ)|+ ε2 + C(εξ)G(ε)
)
,

for some constant C > 0.

Proof. From

fε(u) = F εξ,η(u) +
1
2

∫
RN

(∣∣∣∇u
i
−A(εx)u

∣∣∣2 − ∣∣∣∇u
i
−A(εξ)u

∣∣∣2)
+

1
2

∫
RN

[V (εx)− V (εξ)] |u|2 − γ(ε)
2

∫
RN

W (εx))|u|2

− 1
p+ 1

∫
RN

[K(εx)−K(εξ)] |u|p+1

(2.12)

and since zεξ,η is a critical point of F εξ,η, one has (with z = zεξ,η)

〈∇fε(z)|v〉

= εRe
∫

RN

1
i
(divA(εx))zv + 2 Re

∫
RN

(A(εξ)−A(εx)) z ·
(∇
i
−A(εξ)

)
v

+ Re
∫

RN

[V (εx)− V (εξ)] zv − γ(ε)Re
∫

RN

W (εx)zv

− Re
∫

RN

[K(εx)−K(εξ)] |z|p−2zv.

From the assumption that |D2V (x)| ≤ const. and direct calculations one infers∫
RN

|V (εx)− V (εξ)|2 |zεξ,σ|2 ≤ c1ε
2|∇V (εξ)|2 + c2ε

4,

and similar estimates hold for the terms involving K (see [23]). In particular, after
the change of variable y = εx, by Hölder inequality and (W1) we have

γ(ε)
∫

RN

W (εx)|zεξ,σ||v| ≤ γ(ε)
εN

[ ∫
RN

W (y)
∣∣∣zεξ,σ

(y
ε

)∣∣∣2]1/2[ ∫
RN

W (y)
∣∣∣v(y

ε

)∣∣∣2]1/2

≤ γ(ε)
εN

[
α1

∫
RN

∣∣∣∇∣∣∣zεξ,σ
(y
ε

)∣∣∣∣∣∣2 + α2

∫
RN

∣∣∣zεξ,σ(
y

ε
)
∣∣∣2︸ ︷︷ ︸

τ1

]1/2

×
[
α1

∫
RN

∣∣∣∇ ∣∣∣v (y
ε

)∣∣∣∣∣∣2 + α2

∫
RN

∣∣∣v (y
ε

)∣∣∣2︸ ︷︷ ︸
τ2

]1/2

(2.13)
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By the change of variable x = y/ε, the definition of z and (2.3) we have

τ1 =
εN

ε2

[
α1α(εξ)2β(εξ)2−N

∫
RN

|∇U |2 + α2α(εξ)2β(εξ)−Nε2
∫

RN

U2
]

≤ εN

ε2
αε α(εξ)2β(εξ)−N︸ ︷︷ ︸

C1(εξ)

max{1, β(εξ)2}︸ ︷︷ ︸
C2(εξ)︸ ︷︷ ︸

C1,2(εξ)

‖U‖2 (2.14)

where C1(εξ), C2(εξ) → 1 as ε→ 0 and

τ2 =
εN

ε2

[
α1

∫
RN

|∇|v‖2 + α2ε
2

∫
RN

|v|2
]
≤ εN

ε2
αεc‖v‖2

so that

γ(ε)
∫

RN

W (εx)|zεξ,σ| |v| ≤ γ(ε)
ε2

αεC
′(εξ)c′‖U‖ ‖v‖ ≤ G(ε)αεC

′(εξ)c′′‖v‖

where C ′(εξ) =
(
C1,2(εξ)

)1/2. It then follows that

‖∇fε(zεξ,σ)‖ ≤ C
(
ε|∇V (εξ)|+ ε|∇K(εξ)|+ ε|JA(εξ)|

+ ε|divA(εξ)|+ ε2 + C(εξ)G(ε)
)
,

where C(εξ) = αεC
′(εξ). The lemma is proved. �

3. The invertibility of D2fε on (TZε)⊥

To apply the perturbation method, we need to exploit some non-degeneracy pro-
perties of the solution zεξ,σ as a critical point of F εξ,σ. Let Lε,σ,ξ : (Tzεξ,σZε)⊥ →
(Tzεξ,σZε)⊥ be the operator defined by

〈Lε,σ,ξv|w〉 = D2fε(zεξ,σ)(v, w)

for all v, w ∈ (Tzεξ,σZε)⊥. Recall the following elementary result which will play a
fundamental role in the present section.

Lemma 3.1. Let M ⊂ RN be a bounded set. Then there exists a constant C > 0
such that for all ξ ∈M one has∫

RN

∣∣∣∣(∇i −A(ξ)
)
u

∣∣∣∣2 + |u|2 ≥ C

∫
RN

(
|∇u|2 + |u|2

)
∀u ∈ E. (3.1)

For the proof, we refer to [23]. At this point we shall prove the following result.

Lemma 3.2. Given ξ > 0, there exists C > 0 such that for ε > 0 small enough
one has

|〈Lε,σ,ξv|v〉| ≥ C‖v‖2, ∀|ξ| ≤ ξ, ∀σ ∈ [0, 2π], ∀v ∈ (Tzεξ,σZε)⊥. (3.2)

Proof. We follow the arguments in [23] with some modifications due to the presence
of the terms involving W . Recall that

Tzεξ,σZε = spanR

{
∂

∂ξ1
zεξ,σ, . . . ,

∂

∂ξN
zεξ,σ, izεξ,σ

}
,
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define

N = spanR

{
∂

∂x1
zεξ,σ, . . . ,

∂

∂xN
zεξ,σ, zεξ,σ, izεξ,σ

}
.

As in [2, 23], it suffices to prove (3.2) for all v ∈ spanR{zεξ,σ, φ}, where φ ⊥ N .
More precisely, we shall prove that for some constants C1 > 0, C2 > 0, for all ε
small enough and all |ξ| ≤ ξ we have

〈Lε,σ,ξz
εξ,σ|zεξ,σ〉 ≤ −C1 < 0, (3.3)

〈Lε,σ,ξφ|φ〉 ≥ C2‖φ‖2 ∀ φ ⊥ N . (3.4)

From the expression for the second derivative of F εξ,σ and the fact that zεξ,σ, as a
solution of (2.5), is a mountain pass critical point of F εξ,σ, we can find some c0 > 0
such that for all ε > 0 small, all |ξ| ≤ ξ and all σ ∈ [0, 2π] it results

D2F εξ,σ(zεξ,σ)(zεξ,σ, zεξ,σ) < −c0 < 0. (3.5)

Recalling (2.12), we find

〈Lε,σ,ξz
εξ,σ|zεξ,σ〉 = D2F εξ,σ(zεξ,σ)(zεξ,σ, zεξ,σ)

+
∫

RN

(∣∣∣(∇
i
−A(εx)

)
zεξ,σ

∣∣∣2 − ∣∣∣(∇
i
−A(εξ)

)
zεξ,σ

∣∣∣2)
+

∫
RN

[V (εx)− V (εξ)] |zεξ,σ|2 − γ(ε)
∫

RN

W (εx))|zεξ,σ|2

−
∫

RN

[K(εx)−K(εξ)] |zεξ,σ|p+1.

Since, following the computations in (2.13) and (2.14),

γ(ε)
∫

RN

W (εx))|zεξ,σ|2 ≤ γ(ε)
εN

[
α1

∫
RN

∣∣∣∇∣∣∣zεξ,σ
(y
ε

)∣∣∣∣∣∣2 + α2

∫
RN

∣∣∣zεξ,σ
(y
ε

)∣∣∣2︸ ︷︷ ︸
τ1

]

≤ γ(ε)
ε2

αεC
1,2(εξ)‖U‖2 ≤ G(ε)C ′αεC

1,2(εξ)

for ε small enough, we infer that

〈Lε,σ,ξz
εξ,σ|zεξ,σ〉 ≤ D2F εξ,σ(zεξ,σ)(zεξ,σ, zεξ,σ) + c1ε|∇V (εξ)|

+ c2ε|∇K(εξ)|+ c3ε|JA(εξ)|+ c4ε
2 + c5C(εξ)G(ε)

where C(εξ) = αεC
1,2(εξ). Hence (3.3) follows. The proof of (3.4) is more involved.

As before, since zεξ,σ is a critical point for F εξ,σ of mountain-pass type, by standard
results (see [18]) there results

D2F εξ,σ(zεξ,σ)(φ, φ) ≥ c1‖φ‖2 ∀φ ⊥ N . (3.6)

Let R >> 1 and consider a radial smooth function χ1 : RN → R such

χ1(x) = 1, for |x| ≤ R; χ1(x) = 0, for |x| ≥ 2R;

|∇χ1(x)| ≤
2
R
, for R ≤ |x| ≤ 2R.

We also set χ2(x) = 1− χ1(x). Given φ let us consider the functions

φi(x) = χi(x− ξ)φ(x), i = 1, 2.
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Due to the definition of χ, straightforward computations yield

‖φ‖2 = ‖φ1‖2 + ‖φ2‖2 + 2Iφ + oR(1)‖φ‖2 (3.7)

where Iφ =
∫

RN χ1χ2(φ2 + |∇φ|2) and oR(1) is a function which tends to 0, as
R→ +∞.

At this point, let us evaluate the three terms in the equation below:

(Lε,σ,ξφ|φ) = (Lε,σ,ξφ1|φ1)︸ ︷︷ ︸
α1

+(Lε,σ,ξφ2|φ2)︸ ︷︷ ︸
α2

+2 (Lε,σ,ξφ1|φ2)︸ ︷︷ ︸
α3

.

One has

α1 = 〈Lε,σ,ξφ1|φ1〉 = D2F εξ,σ(zεξ,σ)(φ1, φ1)

+
∫

RN

[V (εx)− V (εξ)] |φ1|2 − γ(ε)
∫

RN

W (εx))|φ1|2

−
∫

RN

[K(εx)−K(εξ)] |φ1|p+1

+
∫

RN

(∣∣∣(∇
i
−A(εx)

)
φ1

∣∣∣2 − ∣∣∣(∇
i
−A(εξ)

)
φ1

∣∣∣2).
Using (3.6) (for details, see [23]), we infer

D2F εξ [φ1, φ1] ≥ C‖φ1‖2 + oR(1)‖φ‖2. (3.8)

Using arguments already carried out before, one has∫
RN

[V (εx)− V (εξ)] |φ1|2 ≤ εcR‖φ‖2

and similarly for the terms containing K. In particular, by the change of variable
y = εx, assumption (W1) and the definition of φ1 we have

γ(ε)
∫

RN

W (εx)|φ1|2 ≤
γ(ε)
ε2

[
α1

∫
RN

|∇|χ1(x− ξ)φ‖2 + α2ε
2

∫
RN

|χ1(x− ξ)φ|2
]

=
γ(ε)
ε2

[
α1

( ∫
R≤|y|≤2R

|∇χ1(y)|2|φ(y + ξ)|2 +
∫
|y|≤2R

|χ1(y)|2|∇φ(y + ξ)|2

+ 2
∫

R≤|y|≤2R

χ1(y)φ(y + ξ)∇χ1(y) · ∇φ(y + ξ)
)

+ α2ε
2

∫
|y|≤2R

|χ1(y)φ(y + ξ)|2
]

≤ G(ε)
[
αε‖φ1‖2 + oR(1)‖φ‖2

]
It follows that

α1 = (Lε,σ,ξφ1|φ1) ≥ c1‖φ1‖2 − c2εR‖φ‖2 + oR(1)‖φ‖2

−G(ε)
[
αε‖φ1‖2 + oR(1)‖φ‖2

]
.

(3.9)
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Let us now estimate α2. In particular,

γ(ε)
∫

RN

W (εx)|φ2|2

≤ γ(ε)
ε2

[
α1

∫
RN

|∇|χ2(x− ξ)φ‖2 + α2ε
2

∫
RN

|χ2(x− ξ)φ|2
]

=
γ(ε)
ε2

[
α1

( ∫
R≤|y|≤2R

|∇χ2(y)|2|φ(y + ξ)|2 +
∫
|y|≥R

|χ2(y)|2|∇φ(y + ξ)|2

+ 2
∫

R≤|y|≤2R

χ2(y)φ(y + ξ)∇χ2(y) · ∇φ(y + ξ)
)

+ α2ε
2

∫
|y|≥R

|χ2(y)φ(y + ξ)|2
]

≤ G(ε)
[
αε‖φ2‖2 + oR(1)‖φ‖2

]
.

One finds

α2 = (Lε,σ,ξφ2|φ2) ≥ c3‖φ2‖2 + oR(1)‖φ‖2 −G(ε)
[
αε‖φ2‖2 + oR(1)‖φ‖2

]
(3.10)

In a quite similar way one shows that

α3 = (Lε,σ,ξφ1|φ2) ≥ c4Iφ + oR(1)‖φ‖2

−G(ε)
[(
αε‖φ1‖2 + oR(1)‖φ‖2

)1/2 (
αε‖φ2‖2 + oR(1)‖φ‖2

)1/2
] (3.11)

Indeed, by the change of variable y = εx, assumption (W1) and Hölder inequality

γ(ε)
∫

RN

W (εx)|φ1(x)||φ2(x)|

≤ γ(ε)
εN

[( ∫
RN

W (y)
∣∣∣φ1

(y
ε

)∣∣∣2 )1/2( ∫
RN

W (y)
∣∣∣∣φ2

(y
ε

)∣∣∣∣2 )1/2]
≤ γ(ε)

ε2

[(
α1

∫
RN

|∇|χ1(x− ξ)φ‖2 + α2ε
2

∫
RN

|χ1(x− ξ)φ|2
)1/2

×
(
α1

∫
RN

|∇|χ2(x− ξ)φ‖2 + α2ε
2

∫
RN

|χ2(x− ξ)φ|2
)1/2]

≤ G(ε)
[(
αε‖φ1‖2 + oR(1)‖φ‖2

)1/2 (
αε‖φ2‖2 + oR(1)‖φ‖2

)1/2
]

where in the last inequality we have used previous calculations. Finally, (3.9),
(3.10), (3.11) and the fact that Iφ ≥ 0, yield

(Lε,σ,ξφ|φ) = α1 + α2 + 2α3

≥ c5
[
‖φ1‖2 + ‖φ2‖2 + 2Iφ

]
− c6Rε‖φ‖2 + oR(1)‖φ‖2

−G(ε)αε

[
‖φ1‖2 + ‖φ2‖2 + 2

(
‖φ1‖2 + oR(1)‖φ‖2

)1/2

×
(
‖φ2‖2 + oR(1)‖φ‖2

)1/2 + oR(1)‖φ‖2
]

Recalling (3.7), we infer that

(Lε,σ,ξφ|φ) ≥ c7‖φ‖2 − c8Rε‖φ‖2 + oR(1)‖φ‖2

−G(ε)αε

[
‖φ1‖2 + ‖φ2‖2 + 2

(
‖φ1‖2 + oR(1)‖φ‖2

)1/2

×
(
‖φ2‖2 + oR(1)‖φ‖2

)1/2
+ oR(1)‖φ‖2

]
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Taking R = ε−1/2, and choosing ε small, equation (3.4) follows. This completes
the proof. �

4. The finite-dimensional reduction

In this section we will show that the existence of critical points of fε can be
reduced to the search of critical points of an auxiliary finite-dimensional func-
tional. The proof will be carried out in two subsections dealing, respectively, with
a Liapunov-Schmidt reduction, and with the behavior of the auxiliary finite dimen-
sional functional.

4.1. A Liapunov-Schmidt type reduction. The main result of this section is
the following lemma.

Lemma 4.1. For ε > 0 small, |ξ| ≤ ξ and σ ∈ [0, 2π], there exists a unique
w = w(ε, σ, ξ) ∈ (Tzεξ,σZε)⊥ such that ∇fε(zεξ,σ +w) ∈ Tzεξ,σZε. Such a w(ε, σ, ξ)
is of class C2, respectively C1,p−1, with respect to ξ, provided that p ≥ 2, respectively
1 < p < 2. Moreover, the functional Φε(σ, ξ) = fε(zεξ,σ + w(ε, σ, ξ)) has the same
regularity as w and satisfies:

∇Φε(σ0, ξ0) = 0 ⇐⇒ ∇fε(zξ0 + w(ε, σ0, ξ0)) = 0.

For the proof of the above lemma, we refer to [23, Lemma 4.1].

Remark 4.2. Since fε(zεξ,σ) is independent of σ, the implicit function w is con-
stant with respect to that variable. Consequently, there exists a functional Ψε :
RN → R such that

Φε(σ, ξ) = Ψε(ξ), ∀σ ∈ [0, 2π], ∀ξ ∈ RN .

For this reason, in the sequel we will omit the dependence of w on σ, even it is
defined over S1 × RN .

Remark 4.3. From the proof of Lemma 4.1 (see [23]) and Lemma 2.1, it follows
that:

‖w‖ ≤ C
(
ε|∇V (εξ)|+ ε|∇K(εξ)|+ ε|JA(εξ)|+ ε2 + C(εξ)G(ε)

)
, (4.1)

where C > 0.

For future reference, it is also convenient to estimate the gradient ∇ξw.

Lemma 4.4. It results

‖∇ξw‖ ≤ c
(
ε|∇V (εξ)|+ ε|∇K(εξ)|+ ε|JA(εξ)|+O(ε2)

)γ
, (4.2)

where γ = min{1, p− 1} and c > 0 is some constant.

Proof. For the details, we refer to [2, Lemma 4] and [23, Lemma 4.2]. We will
denote by ẇi the components of ∇ξw and żi = ∂ξi

z. Since w satisfies the equation
〈P∇fε(zεξ,σ + w), v〉 = 0 for all v ∈ (Tzεξ,σZε)⊥ (with P = the projection onto
(Tzεξ,σZε)⊥), we find that ẇi verifies

∂ξi
(〈Lε,σ,ξw, v〉+ 〈P∇fε(z), v〉+ 〈R(z, w), v〉) = 0

with R(z, w) = ‖o(w)‖. Taking into account [23, Lemma 4.2], we limit to estimate
the ∂ξi of ∇Wε(z)[v], namely

∂ξi

(
− γ(ε) Re

∫
RN

W (εx)zv
)

= −γ(ε) Re
∫

RN

W (εx)żiv.
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As in (2.13), by (W1) and the expression of żi in (2.10) we get

γ(ε)
∣∣∣∣ ∫

RN

W (εx)żiv

∣∣∣∣ ≤ γ(ε)
∫

RN

W (εx) |żi| |v| ≤ C̃(εξ)εG(ε)‖v‖

where C̃(εξ) depends on α and β. From [2, Lemma 4], Inequality (4.2) follows
without effort. �

4.2. The finite-dimensional functional. The purpose of this subsection is to
give an explicit form to the finite dimensional functional Φε(σ, ξ) = Ψε(ξ) =
fε(zεξ,σ + w(ε, ξ)). For brevity, we set in the sequel z = zεξ,σ and w = w(ε, ξ).
Since z satisfies (2.5) and K ′′ is bounded we get

Φε(σ, ξ) = fε(zεξ,σ + w(ε, σ, ξ))

= K(εξ)
(

1
2
− 1
p+ 1

) ∫
RN

|z|p+1 +
1
2

∫
RN

|A(εξ)−A(εx)|2 z2

+ Re
∫

RN

(A(εξ)−A(εx)) z · (A(εξ)−A(εx))w

+ εRe
∫

RN

1
i
zw divA(εx) +

1
2

∫
RN

∣∣∣∣(∇i −A(εx)
)
w

∣∣∣∣2
+ Re

∫
RN

[V (εx)− V (εξ)] zw +
1
2

∫
RN

[V (εx)− V (εξ)] |w|2

+
1
2

∫
RN

[V (εx)− V (εξ)] |z|2 +
1
2
V (εξ)

∫
RN

|w|2

− γ(ε)
2

∫
RN

W (εx)|z|2 − γ(ε) Re
∫

RN

W (εx)zw

− γ(ε)
2

∫
RN

W (εx)|w|2

− 1
p+ 1

Re
∫

RN

K(εx)
(
|z + w|p+1 − |z|p+1 − (p+ 1)|z|p−1zw

)
+ ReK(εξ)

∫
RN

|z|p−1zw +O(ε2).

(4.3)

By the definition of α(εξ) and β(εξ) we get immediately∫
RN

|zεξ,σ|p+1 = C0Λ(εξ) [K(εξ)]−1 (4.4)

where we define the auxiliary function

Λ(x) =
(1 + V (x))θ

K(x)2/(p−1)
, θ =

p+ 1
p− 1

− N

2
(4.5)

for all x ∈ RN since, by (K1), K is strictly positive on RN and C0 =
∫

RN |U |p+1.
Now we can estimate the various terms in (4.3) by means of (4.1) and (4.2) as in
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[23]. In particular,

γ(ε)
∫

RN

W (εx)|z|2 ≤ γ(ε)
ε2

αεC
1,2(εξ)‖U‖2 ≤ G(ε)C(εξ)C1,

γ(ε)
∫

RN

W (εx)|z||w| ≤ γ(ε)
ε2

αεC
′(εξ)C ′2‖U‖‖w‖ ≤ G(ε)C ′′(εξ)C2‖w‖,

γ(ε)
∫

RN

W (εx)|w|2 ≤ γ(ε)
ε2

αεC3‖w‖2 ≤ G(ε)αεC3‖w‖2

where
C(εξ) = αεC

1,2(εξ) = αεα
2(εξ)β(εξ)−N max{1, β2(εξ)}

and C ′′(εξ) = αεC
′(εξ) with C ′(εξ) = (C1,2(εξ))1/2. So it results

Φε(σ, ξ) = Ψε(ξ) = C1Λ(εξ) +O(ε). (4.6)

Similarly,
∇Ψε(ξ) = C1∇Λ(εξ) + ε1+γO(1) (4.7)

where C1 = ( 1
2 −

1
p+1 )C0. Indeed, taking account of the result in [23], we limit to

consider

∇ξWε(z + w) = ∇ξ

(
−γ(ε)

2

∫
RN

W (εx)|z + w|2
)

= 〈W ′
ε(z + w), (∇ξz +∇ξw)〉

= −γ(ε) Re
∫

RN

W (εx)(z + w) ∇ξz +∇ξw

= −γ(ε) Re
∫

RN

W (εx)z∇ξz − γ(ε) Re
∫

RN

W (εx)z∇ξw

− γ(ε) Re
∫

RN

W (εx)w∇ξz − γ(ε) Re
∫

RN

W (εx)w∇ξw.

whose last four terms can be estimated as in (2.13) by means of (4.1) and (4.2)
again so that (4.7) holds.

5. Statement and proof of the main results

In this section we obtain existence and multiplicity of solutions to (1.5) by means
of the finite-dimensional reduction performed in the previous section. Recalling
Lemma 4.1, we have to look for critical points of Φε as a function of the variables
(σ, ξ) ∈ [0, 2π]× RN (or, equivalently, (η, ξ) ∈ S1 × RN ).

We use the following notation: given a set M ⊂ RN and a number δ > 0,

Mδ := {x ∈ RN : dist(x,Ω) < δ}.

If M ⊂ N , cat(M,N) denotes the Ljusternik-Schnirelman category of M with
respect to N , namely the least integer k such that M can be covered by k closed
subsets of N , contractible to a point in N . We set cat(M) = cat(M,M). We start
with the following result, which deals with local extrema.

Theorem 5.1. Suppose we are in the hypotheses of Theorem 1.1. Assume moreover
that there is a compact set M ⊂ RN over which Λ achieves an isolated strict local
minimum, resp. maximum, with value a, resp. b, in the sense that for some δ > 0,

b := inf
x∈∂Mδ

Λ(x) > a, resp. a := sup
x∈∂Mδ

Λ(x) < b.
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Then there exists εδ > 0 such that (1.6) has at least cat(M,Mδ) (orbits of) solutions
concentrating near Mδ, for all 0 < ε < εδ.

For the sake of completeness, we rewrite the proof as in [2, 23].

Proof. Recall that Φε(η, ξ) = Ψε(ξ) and choose ξ > 0 such that Mδ ⊂ {x ∈
RN | |x| < ξ}. Set Nε = {ξ ∈ RN | εξ ∈ M}, Nε

δ = {ξ ∈ RN | εξ ∈ Mδ} and
Θε = {ξ ∈ RN | Ψε(ξ) ≤ C1

a+b
2 }. From (4.6) we get some εδ > 0 such that

Nε ⊂ Θε ⊂ Nε
δ , (5.1)

for all 0 < ε < εδ. To apply standard category theory, it suffices to prove that Θε

cannot touch ∂Nε
δ so that Θε is compact. But if εξ ∈ ∂Nε

δ , one has Λ(εξ) ≥ b by
the definition of δ, and so

Ψε(ξ) ≥ C1Λ(εξ) + oε(1) ≥ C1b+ oε(1).

On the other hand, for all ξ ∈ Θε one has also Ψε(ξ) ≤ C1
a+b
2 . From (5.1) and

elementary properties of the Ljusternik-Schnirelman category we can conclude that
Ψε has at least

cat(Θε,Θε) ≥ cat(Nε, Nε
δ ) = cat(N,Nδ)

critical points in Θε, which correspond to at least cat(M,Mδ) orbits of solutions to
(1.6). Now, let (η∗, ξ∗) ∈ S1 ×Mδ a critical point of Φε. By Lemma 4.1, this point
localizes a solution uε,η∗,ξ∗(x) = zεξ∗,η∗(x) +w(ε, η∗, ξ∗) of (1.6). By the change of
variable which allowed us to pass from (1.5) to (1.6) we find that

uε,η∗,ξ∗(x) ≈ zεξ∗,η∗
(
x− ξ∗

ε

)
(5.2)

satisfies (1.5) where ≈ stands for the concept of “near” or “close” whose sense is
explained in the following Remark 5.2. The concentration statement follows as in
[2] from standard arguments. The proof of the second part follows with analogous
arguments. �

Remark 5.2. By means of a Liapunov-Schmidt type reduction, we have found that
a solution of (1.6) has the form uε,η∗,ξ∗(x) = zεξ∗,η∗(x)+w(ε, η∗, ξ∗). From this and
the properties of the function w(ε, η∗, ξ∗), it follows that ‖uε,η∗,ξ∗ − zεξ∗,η∗‖ → 0
as ε → 0. In this sense, we say that the complex solutions uε,η∗,ξ∗(x) of (1.6)
are found “near” or “close” to the least energy solutions zεξ∗,η∗ of (1.7) and this
corresponds, after the change of variable, to (5.2).

Observe that Theorem 1.1 in the Introduction is an immediate corollary of the
previous one when x0 is either a nondegenerate local maximum or minimum for Λ.
When Λ has a maximum, the direct variational approach and the arguments in [7]
cannot be applied.

To treat the general case, we refer to some topological concepts as the cup long
of a set M ⊂ RN which is by definition

l(M) = 1 + sup{k ∈ N | (∃α1, . . . , αN ∈ Ȟ∗(M) \ {1})(α1 ∪ · · · ∪ αk 6= 0)},

where Ȟ∗(M) is the Alexander cohomology of M with real coefficients and ∪ de-
notes the cup product. In some cases as M = SN−1, TN , we have l(M) = cat(M),
but in general l(M) ≤ cat(M). Furthermore we recall the following definition which
dates back to Bott [12]:
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Definition 5.3. We say that M is non-degenerate for a C2 function I : RN → R if
M consists of Morse theoretically non-degenerate critical points for the restriction
I|M⊥ .

To prove our existence result, we recall the following result which is an adaptation
of [18, Theorem 6.4, Chapter II] and fits into the frame of the Conley theory [27].

Theorem 5.4. Let I ∈ C1(V ) and J ∈ C2(V ) be two functionals defined on the
Riemannian manifold V , and let Σ ⊂ V be a smooth, compact, non-degenerate
manifold of critical points of J . Denote by U a neighborhood of Σ. If ‖I − J‖C1(U)

is small enough, then the functional I has at least l(Σ) critical points contained in
U .

At this point, we can prove an existence and multiplicity result for (1.5).

Theorem 5.5. Let (K1), (V1), (W1), (A1), (G1) hold. If the auxiliary function
Λ has a smooth, compact, non-degenerate manifold of critical points M , then for
ε > 0 small, the problem (1.6) has at least l(M) (orbits) of solutions concentrating
near points of M .

Proof. By Remark 4.2, we have to find critical points of Ψε = Ψε(ξ). Since M is
compact, we can choose and fix ξ > 0 so that |x| < ξ for all x ∈ M . {η∗} ×M is
obviously a non-degenerate critical manifold. We set V = RN , J = Λ, Σ = M and
I(ξ) = Ψε(η, ξ/ε). Select δ > 0 so that Mδ ⊂ {x ∈ RN | |x| < ξ}, and no critical
points of Λ are in Mδ, except for those of M . Set U = Mδ. By the definition of (4.6)
and (4.7) and hypotheses (K1) and (V1), it follows that J ∈ C2(U). As concerns
as the regularity of the functional I, we have to prove that the functional

W̃ (ξ) = W̃ε(η, ξ/ε)

= −γ(ε)
2

∫
RN

W (εx)|zξ,η|2 − γ(ε) Re
∫

RN

W (εx)zξ,ηw(ε, η, ξ/ε)

− γ(ε)
2

∫
RN

W (εx)|w(ε, η, ξ/ε)|2

is of class C1(V ). Indeed, by its definition, zξ,η depends on the functions α(ξ) and
β(ξ) so on the potentials V (ξ) and K(ξ) which are both in C1(RN ) (with respect
to ξ) by hypotheses (K1) and (V1). Furthermore, by Lemma 4.1, w is of class C2

(if p ≥ 2) or C1,p−1 (if 1 < p < 2) and the result follows without effort. Again by
(4.6) and (4.7), it results that I is close to J in C1(U) when ε is very small. We
can apply Theorem 5.4 to find at least l(M) critical points {ξ1, . . . , ξl(M)} for Ψε,
provided ε is small enough. Hence the orbits S1 ×{ξ1}, . . . , S1 ×{ξl(M)} consist of
critical points for Φε which produce solutions of (1.6). The concentration statement
follows as in [2]. �
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