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A QUASI-BOUNDARY VALUE METHOD FOR REGULARIZING
NONLINEAR ILL-POSED PROBLEMS

DANG DUC TRONG, PHAM HOANG QUAN, NGUYEN HUY TUAN

Abstract. In this article, a modified quasi-boudary regularization method

for solving nonlinear backward heat equation is given. Sharp error estimates

for the approximate solutions, and numerical examples to illustrate the effec-
tiveness our method are provided. This work extends to the nonlinear case

earlier results by the authors [33, 34] and by Clark and Oppenheimer [6].

1. Introduction

For T be a positive number, we consider the problem of finding a function u(x, t),
the temperature, such that

ut − uxx = f(x, t, u(x, t)), (x, t) ∈ (0, π)× (0, T ), (1.1)

u(0, t) = u(π, t) = 0, t ∈ (0, T ), (1.2)

u(x, T ) = g(x), x ∈ (0, π), (1.3)

where g(x), f(x, t, z) are given functions. This problem is called backward heat
problem, backward Cauchy problem, and final value problem.

As is known, the nonlinear problem is severely ill-posed; i.e., solutions do not
always exist, and in the case of existence, these do not depend continuously on
the given data. In fact, from small noise contaminated physical measurements, the
corresponding solutions have large errors. It makes difficult to numerical calcula-
tions. Hence, a regularization is in order. In the mathematical literature various
methods have been proposed for solving backward Cauchy problems. We can no-
tably mention the method of quasi-solution (QS-method) by Tikhonov, the method
of quasi-reversibility (QR method) by Lattes and Lions, the quasi boundary value
method (Q.B.V method) and the C-regularized semigroups technique.

In the method of quasi-reversibility, the main idea consists in replacing operator
A by Aε = gε(A), where A[u] is the left-hand side of (1.1). In the original method,
Lattes and Lions [16] proposed gε(A) = A − εA2, to obtain well-posed problem
in the backward direction. Then, using the information from the solution of the
perturbed problem and solving the original problem, we get another well-posed
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problem and this solution sometimes can be taken to be the approximate solution
of the ill-posed problem.

Difficulties may arise when using the method quasi-reversibility discussed above.
The essential difficulty is that the order of the operator is replaced by an operator of
second order, which produces serious difficulties on the numerical implementation,
in addition, the error c(ε) introduced by small change in the final value g is of the
order eT/ε.

In 1983, Showalter [29] presented a method called the quasi-boundary value
(QBV) method to regularize that linear homogeneous problem which gave a sta-
bility estimate better than the one in the previous method. The main idea of the
method is of adding an appropriate “corrector” into the final data. Using this
method, Clark and Oppenheimer [6], and Denche-Bessila, [7], regularized the back-
ward problem by replacing the final condition by

u(T ) + εu(0) = g

and
u(T )− εu′(0) = g

respectively.
To the author’s knowledge, so far there are many papers on the linear homoge-

neous case of the backward problem, but we only find a few papers on the nonho-
mogeneous case, and especially, the nonlinear case of their is very scarce. In [32],
we used the Quasi-reversibility method to regularize a 1-D linear nonhomogeneous
backward problem. Very recently, in [27], the methods of integral equations and of
Fourier transform have been used to solved a 1-D problem in an unbounded region.

For recent articles considering the nonlinear backward-parabolic heat, we refer
the reader to [34, 35]. In [33], the authors used the QBV method to regularize the
latter problem. However, in [33], the authors showed that the error between the
approximate problem and the exact solution is

‖u(., t)− uε(., t)‖ ≤
√

M exp
(3k2T (T − t)

2
)
εt/T .

In [35], the error is also of similar form,

‖u(t)− uε(t)‖ ≤ Mβ(ε)t/T .

It is easy to see that two errors above are not near to zero, if ε fixed and t tend to
zero. Hence, the convergence of the approximate solution is very slow when t is in
a neighborhood of zero. Moreover, the regularization error in t = 0 is not given.

In the present paper, we shall regularize (1.1)-(1.3) using a modified quasi-
boundary method given in [34]. This regularization method is rather simple and
convenient for dealing with some ill-posed problems. The nonlinear backward prob-
lem is approximated by the following one dimensional problem

uε
t − uε

xx =
∞∑

k=1

e−Tk2

εk2 + e−Tk2 fk(uε)(t) sin(kx), (x, t) ∈ (0, π)× (0, T ), (1.4)

uε(0, t) = uε(π, t) = 0, t ∈ [0, T ], (1.5)

uε(x, T ) =
∞∑

k=1

e−Tk2

εk2 + e−Tk2 gk sin(kx), x ∈ [0, π], (1.6)
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where ε ∈ (0, eT ),

gk =
2
π
〈g(x), sin kx〉 =

2
π

∫ π

0

g(x) sin(kx)dx,

fk(u)(t) =
2
π
〈f(x, t, u(x, t)), sin kx〉 =

2
π

∫ π

0

f(x, t, u(x, t)) sin kxdx

and 〈·, ·〉 is the inner product in L2(0, π).
The paper is organized as follows. In Theorem 2.1 and 2.2, we shall show that

(1.4)-(1.6) is well-posed and that the unique solution uε(x, t) of it satisfies the
equality

uε(x, t) =
∞∑

k=1

(
εk2 + e−Tk2)−1

(
e−tk2

gk−
∫ T

t

e(s−t−T )k2
fk(uε)(s)ds

)
sin kx. (1.7)

Then, in theorem 2.3 and 2.4, we estimate the error between an exact solution u of
(1.1)-(1.3) and the approximation solution uε of (1.4)-(1.6). In fact, we shall prove
that

‖uε(., t)− u(., t)‖ ≤ Hεt/T−1
(
ln(T/ε)

) t
T −1 (1.8)

where ‖ · ‖ is the norm of L2(0, π) and H is the term depend on u. Note that the
above results are improvements of some results in [27, 32, 33, 34, 35]. In fact, in
most of the previous results, the errors often have the form Cεt/T . This is one
of their disadvantages in which t is zero. It is easy to see that from (1.8), the
convergence of the approximate solution at t = 0 is also proved. The notation
about the usefulness and advantages of this method can be founded in Remark 1
and Remark 2. Finally, a numerical experiment will be given in Section 4, which
proves the efficiency of our method.

2. Main results

For clarity of notation, we denote the solution of (1.1)-(1.3) by u(x, t), and the
solution of the problem (1.4)-(1.6) by uε(x, t). Let ε be a positive number such that
0 < ε < eT .

A function f is called a global Lipchitz function if f ∈ L∞([0, π] × [0, T ] × R)
and satisfies

|f(x, y, w)− f(x, y, v)| ≤ L|w − v| (2.1)

for a positive constant L independent of x, y, w, v. Throughout this paper, we
denote T1 = max{1, T}. The existence and uniqueness of the regularized solution
is stated as follows.

Theorem 2.1. Assume 0 < ε < eT and (2.1). Then (1.4)-(1.6) has a unique
weak solution uε ∈ W = C([0, T ];L2(0, π))∩L2(0, T ;H1

0 (0, π))∩C1(0, T ;H1
0 (0, π))

satisfying (1.7).

Regarding the stability of the regularized solution we have the following result.

Theorem 2.2. Let u and v be two solutions of (1.4)-(1.6) corresponding to the
final values g and h in L2(0, π). Then

‖u(., t)− v(., t)‖ ≤ T1 exp(L2T 2
1 (T − t)2)

(
ε ln(T/ε)

) t−T
T ‖g − h‖.
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We remark that in [1, 8, 9, 18, 32], the magnitude of stability inequality is eT/ε.
While in [6, 19, 29], it is ε−1. In [27, p. 5], in [33, p. 238], and in [35], the stability
estimate is of order ε

t
T −1, which is better than the some previous results.

Since Theorem 2.2 gives a estimate of the stability of order

Cε
t
T −1

(
ln(T/ε)

) t
T −1

. (2.2)

It is clear that this order of stability is less than the orders given in [27, 33, 35],
which is one advantage of our method. Despite the uniqueness, Problem (1.1)-(1.3)
is still ill-posed. Hence, we have to resort to a regularization. We have the following
result.

Theorem 2.3. Assume (2.1). (a) If u(x, t) ∈ W is a solution of (1.1)-(1.3) such
that ∫ T

0

∞∑
k=1

k4e2sk2
f2

k (u)(s)ds < ∞ (2.3)

and ‖uxx(., 0)‖ < ∞. Then

‖u(., t)− uε(., t)‖ ≤ CM εt/T
(
ln(T/ε)

) t
T −1

.

(b) If u(x, t) satisfies

Q = sup
0≤t≤T

( ∞∑
k=1

k4e2tk2
|〈u(x, t), sin kx〉|2

)
< ∞ (2.4)

then
‖u(., t)− uε(., t)‖ ≤ CQεt/T

(
ln(T/ε)

) t
T −1

for every t ∈ [0, T ], where

M = 3‖uxx(0)‖2 +
3π

2
T

∫ T

0

∞∑
k=1

k4e2sk2
f2

k (u)(s))ds,

CM =
√

MT 2
1 e3L2TT 2

1 (T−t), CQ =
√

QT 2
1 e2L2TT 2

1 (T−t).

Remarks. 1. In [33, p. 241] and in [27], the error estimates between the ex-
act solution and the approximate solution is U(ε, t) = Cεt/T . So, if the time t
is near to the original time t = 0, the converges rate is very slowly. Thus,some
methods studied in [27, 33] are not useful to derive the error estimations in the
case t is in a neighbourhood of zero. To improve this, the convergence rate in
the present theorem is in slightly different form than given in [27, 33], defined

by V (ε, t) = Dεt/T
(
ln(T/ε)

) t
T −1. We note that limε→0

V (ε,t)
U(ε,t) = 0. Hence, this

error is the optimal error estimates which we know. Moreover, we also have
limε→0

(
limt→0 U(ε, t)

)
= C and limε→0

(
limt→0 V (ε, t)

)
= limε→0

(
D 1

ln(T/ε)

)
= 0.

This also proves that our method give a better approximation than the previous
case which we know. Comparing (2.3) with the results obtained in [33, 35], we
realize this estimate is sharp and the best known estimate. This is generalization
of many previous results in [1, 2, 6, 7, 8, 9, 17, 18, 19, 27, 29, 30, 31, 33, 35].

2. One superficial advantage of this method is that there is an error estimation in
the time t = 0, which does not appear in many recently known results in [27, 33, 35].
We have the following estimate

‖u(., 0)− uε(., 0)‖ ≤ H

ln(T/ε)
.
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where H is a term depending only on u. These estimates, as noted above, are very
seldom in the theory of ill-posed problems.

3. In the linear nonhomogeneous case f(x, t, u) = f(x, t), the error estimates
were given in [34]. And the assumption of f in (2.3) is not used. It is only in
L2(0, T ;L2(0, π)).

4. In theorem 2.3(a), we ask for the condition on the expansion coefficient fk.
We note that the solution u depend on the nonlinear term f and therefore fk, fk(u)
is very difficult to be valued. Such a obscurity makes this Theorem hard to be used
for numerical computations. To improve this, in Theorem 2.3(b), we require the
assumption of u, not to depend on the function f(u). In fact, we note that in the
simple case of the right-hand side f(u) = 0, the term Q becomes

∞∑
k=1

k4e2tk2
|〈u(x, t), sin kx〉|2 = ‖uxx(., 0)‖.

So, the condition (2.4) is acceptable.
In the case of non-exact data, one has the following result.

Theorem 2.4. Let the exact solution u of (1.1)-(1.3) corresponding to g. Let gε be
a measured data such that ‖gε − g‖ ≤ ε. Then there exists a function wε satisfying:
(a) for every t ∈ [0, T ],

‖wε(., t)− u(., t)‖ ≤ T1(1 +
√

M) exp(
3L2TT 2

1 (T − t)
2

)εt/T
(
ln(T/ε)

) t
T −1

,

where u is defined in Theorem 2.3(a).
(b) for every t ∈ [0, T ],

‖wε(., t)− u(., t)‖ ≤ T1(1 +
√

Q) exp(L2TT 2
1 (T − t))εt/T

(
ln(T/ε)

) t
T −1

,

where u is defined in Theorem 2.3(b), and M,Q is defined in Theorem 2.3.

3. Proof of the Main Theorems

First we give some assumptions and lemmas which will be useful in proving the
main Theorems.

Lemma 3.1. For 0 < ε < eT , denote h(x) = 1
εx+e−xT . Then it follows that

h(x) ≤ T

ε
(
1 + ln(T/ε)

) ≤ T

ε ln(T/ε)
.

The proof of the above lemma can be found in [34]. For 0 ≤ t ≤ s ≤ T , denote

Gε(s, t, k) =
e(s−t−T )k2

εk2 + e−Tk2 , Gε(T, t, k) =
e−tk2

εk2 + e−Tk2 , (3.1)

and T1 = max{1, T}.

Lemma 3.2.
Gε(s, t, k) ≤ T1

(
ε ln(T/ε)

) t−s
T .

Proof. We have

Gε(s, t, k) =
e(s−t−T )k2

εk2 + e−Tk2 =
e(s−t−T )k2

(εk2 + e−Tk2)
s−t
T (εk2 + e−Tk2)

T+t−s
T
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≤ e(s−t−T )k2

(e−Tk2)
T+t−s

T

1
(εk2 + e−Tk2)

s
T −

t
T

≤
( T

ε ln(T/ε)

) s
T −

t
T

= T
s−t
T ε

t−s
T

(
ln(T/ε)

) t−s
T

≤ max{1, T}
(
ε ln(T/ε)

) t−s
T .

�

Lemma 3.3. Let s = T in Lemma 3.2, to obtain

Gε(T, t, k) ≤ T1

(
ε ln(T/ε)

) t−T
T

. (3.2)

Proof of Theorem 2.1. Step 1. Existence and uniqueness of a solution of the inte-
gral equation (1.7). Put

F (w)(x, t) = P (x, t)−
∞∑

k=1

∫ T

t

Gε(s, t, k)fk(w)(s) ds sin(kx)

for w ∈ C([0, T ];L2(0, π)), where

P (x, t) =
∞∑

k=1

Gε(T, t, k)〈g(x), sin kx〉 sin kx.

Note that by Lemma 3.2, we have

Gε(s, t, k) ≤ max{1, T}
(
ε ln(T/ε)

) t−s
T

≤ max{1, T}1
ε

= max{1
ε
,
T

ε
} = Bε.

(3.3)

We claim that, for every w, v ∈ C([0, T ];L2(0, π)), p ≥ 1, we have

‖F p(w)(., t)− F p(v)(., t)‖2 ≤ (LBε)2p (T − t)pCp

p!
|||w − v|||2, (3.4)

where C = max{T, 1} and |||.||| is supremum norm in C([0, T ];L2(0, π)). We shall
prove this inequality by induction. For p = 1, and using Lemma 3.2, we have

‖F (w)(., t)− F (v)(., t)‖2

=
π

2

∞∑
k=1

[ ∫ T

t

Gε(s, t, k) (fk(w)(s)− fk(v)(s)) ds
]2

≤ π

2

∞∑
k=1

∫ T

t

( e(s−t−T )k2

εk2 + e−Tk2

)2

ds

∫ T

t

(fk(w)(s)− fk(v)(s))2 ds

≤ π

2

∞∑
k=1

B2
ε (T − t)

∫ T

t

(fk(w)(s)− fk(v)(s))2 ds

=
π

2
B2

ε (T − t)
∫ T

t

∞∑
k=1

(fk(w)(s)− fk(v)(s))2 ds
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= B2
ε (T − t)

∫ T

t

∫ π

0

(f(x, s, w(x, s))− f(x, s, v(x, s)))2 dxds

≤ L2B2
ε (T − t)

∫ T

t

∫ π

0

|w(x, s)− v(x, s)|2dxds

= CL2B2
ε (T − t)|||w − v|||2.

Thus (3.4) holds. Suppose that (3.4) holds for p = m. We prove that (3.4) holds
for p = m + 1. We have

‖Fm+1(w)(., t)− Fm+1(v)(., t)‖2

=
π

2

∞∑
k=1

[ ∫ T

t

Gε(s, t, k) (fk(Fm(w))(s)− fk(Fm(v))(s)) ds
]2

≤ π

2
B2

ε

∞∑
k=1

[ ∫ T

t

|fk(Fm(w))(s)− fk(Fm(v))(s)|ds
]2

≤ π

2
B2

ε (T − t)
∫ T

t

∞∑
k=1

|fk(Fm(w))(s)− fk(Fm(v))(s)|2ds

≤ B2
ε (T − t)

∫ T

t

‖f(., s, Fm(w)(., s))− f(., s, Fm(v)(., s))‖2ds

≤ B2
ε (T − t)L2

∫ T

t

‖Fm(w)(., s)− Fm(v)(., s)‖2ds

≤ B2
ε (T − t)L2m+2B2m

ε

∫ T

t

(T − s)m

m!
dsCm|||w − v|||2

≤ (LBε)2m+2 (T − t)m+1

(m + 1)!
Cm+1|||w − v|||2.

Therefore, by the induction principle, we have

|||F p(w)− F p(v)||| ≤ (LBε)p T p/2

√
p!

Cp/2|||w − v|||

for all w, v ∈ C([0, T ];L2(0, π)).
We consider F : C([0, T ];L2(0, π)) → C([0, T ];L2(0, π)). Since

lim
p→∞

(LBε)p T p/2Cp/2

√
p!

= 0,

there exists a positive integer number p0 such that

(LBε)p0
T p0/2Cp0/2√

(p0)!
< 1,

and F p0 is a contraction. It follows that the equation F p0(w) = w has a unique
solution uε ∈ C([0, T ];L2(0, π)).

We claim that F (uε) = uε. In fact, one has F (F p0(uε)) = F (uε). Hence
F p0(F (uε)) = F (uε). By the uniqueness of the fixed point of F p0 , one has F (uε) =
uε; i.e., the equation F (w) = w has a unique solution uε ∈ C([0, T ];L2(0, π)).
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Step 2. If uε ∈ W satisfies (1.7) then uε is solution of (1.4)-(1.6). For 0 ≤ t ≤ T ,
we have

uε(x, t) =
∞∑

k=1

(
εk2 + e−Tk2

)−1 (
e−tk2

gk −
∫ T

t

e(s−t−T )k2
fk(uε)(s)ds

)
sin kx,

We can verify directly that

uε ∈ C([0, T ];L2(0, π) ∩ C1((0, T );H1
0 (0, π)) ∩ L2(0, T ;H1

0 (0, π))).

In fact, uε ∈ C∞((0, T ];H1
0 (0, π))). Moreover, by direct computation, one has

uε
t(x, t)

=
∞∑

k=1

−k2
(
εk2 + e−Tk2)−1

(
e−tk2

gk −
∫ T

t

e(s−t−T )k2
fk(uε)(s)ds

)
sin kx

+
∞∑

k=1

e−Tk2
(εk2 + e−Tk2

)−1fk(uε)(t) sin kx

= − 2
π

∞∑
k=1

k2〈uε(x, t), sin kx〉 sin kx +
∞∑

k=1

e−Tk2
(εk2 + e−Tk2

)−1fk(uε)(t) sin kx

= uε
xx(x, t) +

∞∑
k=1

e−Tk2
(εk2 + e−Tk2

)−1fk(uε)(t) sin kx

and

uε(x, T ) =
∞∑

k=1

e−Tk2
(εk2 + e−Tk2

)−1gk sin(kx). (3.5)

So uε is the solution of (1.4)-(1.6).
Step 3. The problem (1.4)-(1.6) has at most one (weak) solution uε ∈ W . In

fact, let uε and vε be two solutions of (1.4)-(1.6) such that uε, vε ∈ W . Putting
wε(x, t) = uε(x, t)− vε(x, t), then wε satisfies

wε
t − wε

xx =
∞∑

k=1

e−Tk2
(εk2 + e−Tk2

)−1 (fk(uε)(t)− fk(vε)(t)) sin(kx).

It follows that

‖wε
t − wε

xx‖2 ≤ 1
ε2

∞∑
k=1

(fk(uε)(t)− fk(vε)(t))2

≤ 1
ε2
‖f(., t, uε(., t)− f(., t, vε(., t))‖2

≤ L2

ε2
‖uε(., t)− vε(., t)‖2

=
L2

ε2
‖wε(., t)‖2.

Using a result in Lees-Protter [17], we get wε(., t) = 0. This completes proof of
Step 3. Combining three Step 1,2,3, we complete the proof of Theorem 2.1. �
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Proof of Theorem 2.2. From (1.7) one has in view of the inequality (a + b)2 ≤
2(a2 + b2),

‖u(., t)− v(., t)‖2

=
π

2

∞∑
k=1

∣∣Gε(T, t, k)(gk − hk)−
∫ T

t

Gε(s, t, k)(fk(u)(s)− fk(v)(s)ds)
∣∣2

≤ π
∞∑

k=1

(Gε(T, t, k)|gk − hk|)2 + π
∞∑

k=1

(
∫ T

t

Gε(s, t, k)|fk(u)(s)− fk(v)(s)|ds)2.

(3.6)
Combining Lemma 3.2, Lemma 3.3 and (3.6), we get

‖u(., t)− v(., t)‖2

≤ max{1, T 2}
(
ε ln(T/ε)

) 2t−2T
T ‖g − h‖2

+ 2L2(T − t) max{1, T 2}
(
ε ln(T/ε)

) 2t
T

∫ T

t

(
ε ln(T/ε)

)−2s
T ‖u(., s)− v(., s)‖2ds.

(3.7)
It follows that(

ε ln(T/ε)
)−2t

T ‖u(., t)− v(., t)‖2

≤ max{1, T 2}
(
ε ln(T/ε)

)−2‖g − h‖2

+ 2 max{1, T 2}L2(T − t)
∫ T

t

(
ε ln(T/ε)

)−2s
T ‖u(., s)− v(., s)‖2ds.

Using Gronwall’s inequality we have

‖u(., t)− v(., t)‖ ≤ T1 exp(L2T 2
1 (T − t)2)

(
ε ln(T/ε)

) t−T
T ‖g − h‖.

This completes the proof. �

Proof of Theorem 2.3. Part (a): Suppose the Problem (1.1)-(1.3) has an exact so-
lution u, then u can be rewritten as

u(x, t) =
∞∑

k=1

(e−(t−T )k2
gk −

∫ T

t

e−(t−s)k2
fk(u)(s)ds) sin kx. (3.8)

Since

uk(0) = eTk2
gk −

∫ T

0

esk2
fk(u)(s)ds,

implies

gk = e−Tk2
uk(0) +

∫ T

0

e(s−T )k2
fk(u)(s)ds,

we get

u(x, T ) =
∞∑

k=1

gk sin kx

=
∞∑

k=1

(e−Tk2
uk(0) +

∫ T

0

e−(T−s)k2
fk(u)(s)ds) sin kx.
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From (1.7) and (3.8), we have

uε
k(t) =

(
εk2 + e−Tk2)−1

(
e−tk2

gk −
∫ T

t

e(s−t−T )k2
fk(uε)(s)ds

)
(3.9)

uk(t) = eTk2
(
e−tk2

gk −
∫ T

t

e(s−t−T )k2
fk(u)(s)ds

)
. (3.10)

From (3.1), (3.9) and (3.10), we have

uk(t)− uε
k(t) =

(
eTk2

− 1
εk2 + e−Tk2

)(
e−tk2

gk −
∫ T

t

e(s−t−T )k2
fk(u)(s)ds

)
+

∫ T

t

Gε(s, t, k) (fk(uε)(s)− fk(u)(s)) ds

=
εk2e−tk2

εk2 + e−Tk2

(
eTk2

gk −
∫ T

t

esk2
fk(u)(s)ds

)
+

∫ T

t

Gε(s, t, k)(fk(uε)(s)− fk(u)(s)ds.

From (3.2) and

T1

(
ε ln(T/ε)

) t−T
T .

(
ε ln(T/ε)

)1− s
T = T1

(
ε ln(T/ε)

) t−s
T

we have

|uk(t)− uε
k(t)|

≤
∣∣εGε(T, t, k)

(
k2eTk2

gk −
∫ T

0

k2esk2
fk(u)(s)ds

)∣∣
+ εGε(T, t, k)

∣∣ ∫ t

0

k2esk2
fk(u)(s)ds

∣∣ +
∫ T

t

Gε(s, t, k)|fk(u)(s)− fk(uε)(s)|ds

≤ εT1

(
ε ln(T/ε)

) t−T
T

(
|k2uk(0)|+

∫ t

0

∣∣k2esk2
fk(u)(s)

∣∣ds
)

+
∫ T

t

T1

(
ε ln(T/ε)

) t−s
T |fk(u)(s)− fk(uε)(s)|ds

= εT1

(
ε ln(T/ε)

) t−T
T

(
|k2uk(0)|+

∫ T

0

∣∣k2esk2
fk(u)(s)

∣∣ds
)

+ εT1

(
ε ln(T/ε)

) t−T
T

∫ T

t

ε−
s
T

(
ln(T/ε)

)1− s
T |fk(u)(s)− fk(uε)(s)|ds.

Applying the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), we get

‖u(., t)− uε(., t)‖2

=
π

2
T 2

1

∞∑
k=1

|uk(t)− uε
k(t)|2

≤ 3π

2
T 2

1

∞∑
k=1

ε2
(
ε ln(T/ε)

) 2t−2T
T |k2uk(0)|2 +

3π

2
T 2

1

∞∑
k=1

ε2
(
ε ln(T/ε)

) 2t−2T
T

×
( ∫ T

0

|k2esk2
fk(u)(s)|ds

)2

+
3π

2
T 2

1

∞∑
k=1

ε2
(
ε ln(T/ε)

) 2t−2T
T
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×
( ∫ T

t

ε−
s
T

(
ln(T/ε)

)1− s
T |fk(u)(s)− fk(uε)(s)|ds

)2

= T 2
1 (I1 + I2 + I3),

where

I1 =
3π

2

∞∑
k=1

ε2
(
ε ln(T/ε)

) 2t−2T
T |k2uk(0)|2,

I2 =
3π

2

∞∑
k=1

ε2
(
ε ln(T/ε)

) 2t−2T
T

( ∫ T

0

|k2esk2
fk(u)(s)|ds

)2

,

I3 =
3π

2

∞∑
k=1

ε2
(
ε ln(T/ε)

) 2t−2T
T

( ∫ T

t

ε−
s
T

(
ln(T/ε)

)1− s
T |fk(u)(s)− fk(uε)(s)|ds

)2

.

The terms I1, I2, I3 can be estimated as follows:

I1 ≤ 3ε2
(
ε ln(T/ε)

) 2t−2T
T ‖uxx(0)‖2

≤ 3ε
2t
T

(
ln(T/ε)

) 2t
T −2‖uxx(0)‖2.

(3.11)

I2 ≤
3π

2
Tε2

(
ε ln(T/ε)

) 2t−2T
T

∫ T

0

∞∑
k=1

(
k2esk2

fk(u)(s)
)2

ds

≤ 3π

2
Tε2

(
ε ln(T/ε)

) 2t−2T
T

∫ T

0

∞∑
k=1

k4e2sk2
f2

k (u)(s)ds.

≤ 3π

2
Tε2

(
ε ln(T/ε)

) 2t−2T
T

∫ T

0

∞∑
k=1

k4e2sk2
f2

k (u)(s)ds.

(3.12)

I3 ≤
3π

2
(T − t)ε2

(
ε ln(T/ε)

) 2t−2T
T

∫ T

t

ε−
2s
T

(
ln(T/ε)

)2− 2s
T

×
∞∑

k=1

(fk(u)(s)− fk(uε)(s))2ds

≤ 3(T − t)ε2
(
ε ln(T/ε)

) 2t−2T
T

∫ T

t

ε−
2s
T

(
ln(T/ε)

)2− 2s
T

× ‖f(., s, u(., s))− f(., s, uε(., s))‖2ds

≤ 3L2Tε
2t
T

(
ln(T/ε)

) 2t
T −2

∫ T

t

ε−
2s
T

(
ln(T/ε)

)2− 2s
T ‖u(., s)− uε(., s)‖2ds.

(3.13)

Combining (3.11), (3.12), (3.13), we obtain

‖u(., t)− uε(., t)‖2

≤ T 2
1 ε

2t
T

(
ln(T/ε)

) 2t
T −2

(
3‖uxx(0)‖2 +

3π

2
T

∫ T

0

∞∑
k=1

k4e2sk2
f2

k (u)(s)ds
)

+ T 2
1 3L2Tε

2t
T

(
ln(T/ε)

) 2t
T −2

∫ T

t

ε−
2s
T

(
ln(T/ε)

)2− 2s
T ‖u(., s)− uε(., s)‖2ds.

It follows that

ε
−2t
T

(
ln(T/ε)

)2− 2t
T ‖u(., t)− uε(., t)‖2
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≤ MT 2
1 + 3L2TT 2

1

∫ T

t

ε−
2s
T

(
ln(T/ε)

)2− 2s
T ‖u(., s)− uε(., s)‖2ds.

Using Gronwall’s inequality, we obtain

ε
−2t
T

(
ln(T/ε)

)2− 2t
T ‖u(., t)− uε(., t)‖2 ≤ MT 2

1 e3L2TT 2
1 (T−t).

So that
‖u(., t)− uε(., t)‖2 ≤ MT 2

1 e3L2TT 2
1 (T−t)ε

2t
T

(
ln(T/ε)

) 2t
T −2

.

This completes the proof part (a) in Theorem 2.3.
Proof of part (b) in Theorem 2.3. From (3.7), we have

|uk(t)− uε
k(t)|

≤
∣∣(eTk2

− 1
εk2 + e−Tk2

)(
e−tk2

gk −
∫ T

t

e(s−t−T )k2
fk(u)(s)ds

)∣∣
+

∣∣ ∫ T

t

Gε(s, t, k)(fk(uε)(s)− fk(u)(s))ds)
∣∣

≤
∣∣ εk2e−tk2

εk2 + e−Tk2

(
eTk2

gk −
∫ T

t

esk2
fk(u)(s)ds

)∣∣
+

∫ T

t

Gε(s, t, k)|fk(uε)(s)− fk(u)(s)|ds

≤
∣∣ εe−tk2

εk2 + e−Tk2 k2etk2
uk(t)

∣∣ +
∫ T

t

Gε(s, t, k)|fk(u)(s)− fk(uε)(s)|ds

≤ εT1

(
ε ln(T/ε)

) t−T
T |k2etk2

uk(t)|+
∫ T

t

T1

(
ε ln(T/ε)

) t−s
T |fk(u)(s)− fk(uε)(s)|ds.

This implies

‖u(., t)− uε(., t)‖2

=
π

2

∞∑
k=1

|uk(t)− uε
k(t)|2

≤ π

∞∑
k=1

ε2.T 2
1

(
ε ln(T/ε)

) 2t−2T
T |k2etk2

uk(t)|2

+ π
∞∑

k=1

ε2.T 2
1

(
ε ln(T/ε)

) 2t−2T
T

( ∫ T

t

ε−
s
T

(
ln(T/ε)

)1− s
T |fk(u)(s)− fk(uε)(s)|ds

)2

.

This implies

‖u(., t)− uε(., t)‖2

≤ T 2
1 ε

2t
T

(
ln(T/ε)

) 2t
T −2

∞∑
k=1

k4e2tk2
u2

k(t)

+ 2L2TT 2
1 ε

2t
T

(
ln(T/ε)

) 2t
T −2

∫ T

t

ε
−2s

T

(
ln(T/ε)

)2− 2s
T ‖u(., s)− uε(., s)‖2ds.

Using again Gronwall’s inequality,

ε
−2t
T

(
ln(T/ε)

)2− 2t
T ‖u(., t)− uε(., t)‖2 ≤ Qe2L2TT 2

1 (T−t).

This completes the proof. �
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Proof of Theorem 2.4. Let uε be the solution of (1.4)-(1.6) corresponding to g.
Recall that wε be the solution of (1.4)-(1.6) corresponding to gε.

Part (a) of Theorem 2.4: Using Theorem 2.2 and Theorem 2.3(a) , we have

‖wε(., t)− u(., t)‖ ≤ ‖wε(., t)− uε(., t)‖+ ‖uε(., t)− u(., t)‖

≤ T1 exp(L2T 2
1 (T − t)2)

(
ε ln(T/ε)

) t−T
T ‖gε − g‖

+
√

MT 2
1 e3L2TT 2

1 (T−t)εt/T
(
ln(T/ε)

) t
T −1

≤ T1(1 +
√

M) exp
(3L2TT 2

1 (T − t)
2

)
εt/T

(
ln(T/ε)

) t
T −1

,

for every t ∈ [0, T ]. The proof of part (b) Theorem 2.4 is similar to part (a) and it
is omitted. �

4. Numerical experiments

We consider the equation

−uxx + ut = f(u) + g(x, t)

where

f(u) = u4, g(x, t) = 2et sinx− e4t sin4 x, u(x, 1) = ϕ0(x) ≡ e sinx.

The exact solution of this equation is u(x, t) = et sinx. In particular,

u
(
x,

99
100

)
≡ u(x) = exp

( 99
100

)
sinx.

Let ϕε(x) ≡ ϕ(x) = (ε + 1)e sinx. We have

‖ϕε − ϕ‖2 =
( ∫ π

0

ε2e2 sin2 xdx
)1/2

= εe
√

π/2.

We find the regularized solution uε(x, 99
100 ) ≡ uε(x) having the form

uε(x) = vm(x) = w1,m sinx + w2,m sin 2x + w3,m sin 3x,

where v1(x) = (ε + 1)e sinx, w1,1 = (ε + 1)e, w2,1 = 0, w3,1 = 0, a = 1
10000 ,

tm = 1− am, for m = 1, 2, . . . , 100, and

wi,m+1 =
e−tm+1i2

εi2 + e−tmi2
wi,m − 2

π

∫ tm

tm+1

e−tm+1i2

εi2 + e−tmi2
e(s−tm)i2

×
(∫ π

0

(
v4

m(x) + g(x, s)
)
sin ix dx

)
ds,

for i = 1, 2, 3. Table 1 shows the the error between the regularization solution uε

and the exact solution u, for three values of ε:

Table 1.

ε uε ‖uε − u‖
10−5 2.685490624 sin(x)− 0.00009487155350 sin(3x) 0.005744631447
10−7 2.691122866 sin(x) + 0.00001413193606 sin(3x) 0.0001124971593
10−11 2.691180223 sin(x) + 0.00002138991088 sin(3x) 0.00005831365439

Table 2 shows the error table in [33, p. 214].
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Table 2.

ε uε ‖uε − u‖
10−5 2.430605996 sinx− 0.0001718460902 sin 3x 0.3266494251
10−7 2.646937077 sinx− 0.002178680692 sin 3x 0.05558566020
10−11 2.649052245 sinx− 0.004495263004 sin 3x 0.05316693437

By applying the stabilized quasi-reversibility method in [35], we have the ap-
proximate solution uε

(
x, 99

100

)
≡ uε(x) having the form

uε(x) = vm(x) = w1,m sinx + w6,m sin 6x ,

where v1(x) = (ε + 1)e sinx, w1,1 = (ε + 1)e, w6,1 = 0, and a = 1
10000 , tm = 1− am

for m = 1, 2, . . . , 100, and

wi,m+1 = (ε + e−tmi2)
tm+1−tm

tm wi,m − 2
π

∫ tm

tm+1

e(s−tm+1)i
2

×
(∫ π

0

(
v4

m(x) + g(x, s)
)
sin ix dxds

)
,

for i = 1, 6. Table 3 shows the approximation error in this case.

Table 3.

ε uε ‖uε − u‖
10−5 2.690989330 sin(x)− 0.06078794774 sin(6x) 0.003940316590
10−7 2.691002638 sin(x)− 0.05797060493 sin(6x) 0.003592425036
10−11 2.691023938 sin(x)− 0.05663820292 sin(6x) 0.003418420030

By applying the method of integral equation in [36], we find the regularized
solution uε(x, 99

100 ) ≡ uε(x) having the form

uε(x) = vm(x) = w1,m sinx + w6,m sin 6x

where
v1(x) = (ε + 1)e sinx, w1,1 = (ε + 1)e, w6,1 = 0,

and a = 1
5000 , tm = 1− am for m = 1, 2, . . . , 5, and

wi,m+1 = (εi2 + e−tmi2)
tm+1−tm

tm

×
(
wi,m − 2

π

∫ tm

tm+1

e(s−tm)i2
(∫ π

0

(
v4

m(x) + g(x, s)
)
sin ixdx

)
ds

)
,

for i = 1, 6. Table 4 shows the approximation errors in this case.

Table 4.

ε uε ‖uε − u‖
10−5 2.690968476 sin(x)− 0.05677543898 sin(6x) 0.03489446471
10−7 2.690947247 sin(x)− 0.05809747108 0.003662541146
10−11 2.6912344727 sin(x)− 0.0060809747108 sin(6x) 0.0003371512534
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Looking at the four tables, we see that the error of the second and third tables are
smaller than in the first table. This shows that our approach has a nice regularizing
effect and give a better approximation than the previous methods in [33, 35, 36].
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