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EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN
DIFFERENCE-DIFFERENTIAL EQUATIONS

BABURAO G. PACHPATTE

Abstract. In the present paper, existence and uniqueness theorems for the

solutions of certain nonlinear difference-differential equations are established.
The main tools employed in the analysis are based on the applications of the

Leray-Schauder alternative and the well known Bihari’s integral inequality.

1. Introduction

Let Rn denote the real n-dimensional Euclidean space with appropriate norm
denoted by | · | and J = [0, T ] (T > 0), R+ = [0,∞) be the given subsets of R, the
set of real numbers. In this paper, we consider the difference-differential equation
of the form

x′(t) = f(t, x(t), x(t− 1)), (1.1)

for t ∈ J under the initial conditions

x(t− 1) = φ(t) (0 ≤ t < 1), x(0) = x0, (1.2)

where f ∈ C(J × Rn × Rn, Rn) and φ(t) is a continuous function for 0 ≤ t < 1,
limt→1−0 φ(t) exists, for which we denote by φ(1− 0) = c0. If we consider the
solutions of (1.1) for t ∈ J , we obtain a function x(t− 1) which is unable to define
as a solution for 0 ≤ t < 1. Hence, we have to impose some condition, for example
the first condition in (1.2). We note that, if T is less than 1, the problem is reduced
to ordinary differential equation

x′(t) = f(t, x(t), φ(t)), (1.3)

for 0 ≤ t < 1, with the second condition in (1.2). Here, it is essential to obtain
the solutions of equation (1.1) for 0 ≤ t ≤ T , so that, we suppose, in the sequel,
T is not less than 1. It is easy to observe that the integral equations which are
equivalent to (1.1)-(1.2) are

x(t) = x0 +
∫ t

0

f(s, x(s), φ(s))ds, (1.4)
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for 0 ≤ t < 1 and

x(t) = x0 +
∫ 1

0

f(s, x(s), φ(s))ds +
∫ t

1

f(s, x(s), x(s− 1))ds, (1.5)

for 1 ≤ t ≤ T .
Problems of existence and uniqueness of solutions of equations of the form (1.1)

and its more general versions, under various initial conditions have been stud-
ied by many authors by using different techniques. The fundamental tools used
in the existence proofs, are essentially, the method of successive approximation,
Schauder-Tychonoff’s fixed point theorem, Banach contraction mapping principle
and comparison method, see [2,6,9,12,14,15] and the references cited therein. Our
main objective here is to investigate the global existence of solution to (1.1)-(1.2)
by using simple and classical application of the topological transversality theorem
of Granas [5, p. 61], also known as Leray-Schauder alternative. Osgood type
uniqueness result for the solutions of (1.1)-(1.2) is established by using the well
known Bihari’s integral inequality. Existence and uniqueness theorems for certain
perturbed difference-differential equation are also given.

2. Main Results

In proving existence of solution of (1.1)-(1.2), we use the following topological
transversality theorem given by Granas [5, p.61].

Lemma 2.1. Let B be a convex subset of a normed linear space E and assume
0 ∈ B. Let F : B → B be a completely continuous operator and let U(F ) =
{x : x = λFx} for some 0 < λ < 1. Then either U(F ) is unbounded or F has a
fixed point.

We also need the following integral inequality, often referred to as Bihari’s in-
equality [8, p. 107].

Lemma 2.2. Let u(t), p(t) ∈ C(R+, R+). Let w(u) be a continuous, nondecreasing
function defined on R+, w(u) > 0 for u > 0 and w(0) = 0. If

u(t) ≤ c +
∫ t

0

p(s)w(u(s))ds,

for t ∈ R+, where c ≥ 0 is a constant, then for 0 ≤ t ≤ t1,

u(t) ≤ W−1
[
W (c) +

∫ t

0

p(s)ds
]
,

where

W (r) =
∫ r

r0

ds

w(s)
, r > 0, r0 > 0,

W−1 is the inverse function of W and t1 ∈ R+ be chosen so that

W (c) +
∫ t

0

p(s)ds ∈ Dom(W−1),

for all t ∈ R+ lying in the interval 0 ≤ t ≤ t1.

The following theorem deals with the Wintner type global existence result for
the solution of (1.1)-(1.2).
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Theorem 2.3. Suppose that the function f in (1.1) satisfies the condition

|f(t, x, y)| ≤ h(t)[g(|x|) + g(|y|)], (2.1)

where h ∈ C(J,R) and g : R+ → (0,∞) is continuous and nondecreasing function.
Then (1.1)-(1.2) has a solution x(t) defined on J provided T satisfies

∫ T

0

[h(s) + h(s + 1)]ds <

∫ ∞

α

ds

g(s)
, (2.2)

where

α = |x0|+
∫ 1

0

h(s)g(|φ(s)|)ds. (2.3)

Proof. The proof will be given in three steps.
Step I. To use Lemma 1, we establish the priori bounds on the solutions of the
problem

x′(t) = λf(t, x(t), x(t− 1)), (2.4)

under the initial conditions (1.2) for λ ∈ (0, 1). Let x(t) be a solution of (2.4)-(1.2),
then we consider the following two cases.

Case 1: 0 ≤ t < 1. From the hypotheses, we have

|x(t)| =
∣∣x0 +

∫ t

0

λf(s, x(s), φ(s))ds
∣∣

≤ |x0|+
∫ t

0

h(s)[g(|x(s)|) + g(|φ(s)|)]ds

= α +
∫ t

0

h(s)g(|x(s)|)ds.

(2.5)

Let u(t) be defined by the right hand side of (2.5), then u(0) = α, |x(t)| ≤ u(t) and

u′(t) = h(t)g(|x(t)|) ≤ h(t)g(u(t));

that is,

u′(t)
g(u(t))

≤ h(t). (2.6)

Integration of (2.6) from 0 to t (0 ≤ t < 1), the change of variable, and the condition
(2.2) gives ∫ u(t)

α

ds

g(s)
≤

∫ t

0

h(s)ds ≤
∫ 1

0

h(s)ds <

∫ ∞

α

ds

g(s)
. (2.7)

From this inequality, we conclude that, there is a constant Q1 independent of
λ ∈ (0, 1) such that u(t) ≤ Q1 for 0 ≤ t < 1 and hence |x(t)| ≤ Q1.
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Case 2: 1 ≤ t ≤ T . From the hypotheses, we have

|x(t)| = |x0 +
∫ 1

0

λf(s, x(s), φ(s))ds +
∫ t

1

λf(s, x(s), x(s− 1))ds|

≤ |x0|+
∫ 1

0

h(s)[g(|x(s)|) + g(|φ(s)|)]ds

+
∫ t

1

h(s)[g(|x(s)|) + g(|x(s− 1)|)]ds

= |x0|+
∫ 1

0

h(s)g(|φ(s)|)ds +
∫ 1

0

h(s)g(|x(s)|)ds

+
∫ t

1

h(s)g(|x(s)|)ds +
∫ t

1

h(s)g(|x(s− 1)|)ds

= α +
∫ t

0

h(s)g(|x(s)|)ds + I1

(2.8)

where

I1 =
∫ t

1

h(s)g(|x(s− 1)|)ds. (2.9)

By the change of variable, from (2.9), we observe that

I1 =
∫ t−1

0

h(σ + 1)g(|x(σ)|)dσ ≤
∫ t

0

h(σ + 1)g(|x(σ)|)dσ. (2.10)

Using this inequality in (2.8), we obtain

|x(t)| ≤ α +
∫ t

0

[h(s) + h(s + 1)]g(|x(s)|)ds. (2.11)

Let v(t) be defined by the right hand side of (2.11), then v(0) = α, |x(t)| ≤ v(t)
and

v′(t) = [h(t) + h(t + 1)]g(|x(t)|) ≤ [h(t) + h(t + 1)]g(v(t));

that is,
v′(t)

g(v(t))
≤ [h(t) + h(t + 1)]. (2.12)

Integration of (2.12) from 0 to t, 1 ≤ t ≤ T , the change of variable, and the
condition (2.2) give∫ v(t)

α

ds

g(s)
≤

∫ t

0

[h(s) + h(s + 1)]ds ≤
∫ T

0

[h(s) + h(s + 1)]ds <

∫ ∞

α

ds

g(s)
. (2.13)

From (2.13) we conclude that there is a constant Q2 independent of λ ∈ (0, 1) such
that v(t) ≤ Q2 and hence |x(t)| ≤ Q2 for 1 ≤ t ≤ T . Let Q = max{Q1, Q2}.
Obviously, |x(t)| ≤ Q for t ∈ J and consequently, ‖x‖ = sup{|x(t)| : t ∈ J} ≤ Q.
Step II. We define B = C(J, Rn) to be the Banach space of all continuous functions
from J into Rn endowed with sup norm defined above. We rewrite the problem
(1.1)-(1.2) as follows. If y ∈ B and x(t) = y(t) + x0, it is easy to see that

y(t) =
∫ t

0

f(s, y(s) + x0, φ(s))ds,
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for 0 ≤ t < 1 and

y(t) =
∫ 1

0

f(s, y(s) + x0, φ(s))ds +
∫ t

1

f(s, y(s) + x0, y(s− 1) + x0)ds,

for 1 ≤ t ≤ T , y(0) = y0 = 0 if and only if x(t) satisfies (1.1)-(1.2). Let B0 =
{y ∈ B : y0 = 0} and define F : B0 → B0 by

Fy(t) =
∫ t

0

f(s, y(s) + x0, φ(s))ds, (2.14)

for 0 ≤ t < 1 and

Fy(t) =
∫ 1

0

f(s, y(s) + x0, φ(s))ds +
∫ t

1

f(s, y(s) + x0, y(s− 1) + x0)ds, (2.15)

for 1 ≤ t ≤ T . Then F is clearly continuous. Now, we shall prove that F is
uniformly bounded. Let {bm} be a bounded sequence in B0, that is, ‖bm‖ ≤ b for
all m, where b > 0 is a constant. Let N = sup{h(t) : t ∈ J}. We have to consider
the two cases.

Case 1: 0 ≤ t < 1. From (2.14) and hypotheses, we have

|Fbm(t)| ≤
∫ t

0

|f(s, bm(s) + x0, φ(s))|ds

≤
∫ t

0

h(s)[g(|bm(s)|+ |x0|) + g(|φ(s)|)]ds

≤
∫ 1

0

h(s)g(|φ(s)|)ds +
∫ t

0

h(s)g(b + |x0|)ds

≤ γ +
∫ 1

0

Ng(b + |x0|)ds

= γ + Ng(b + |x0|).

(2.16)

where

γ =
∫ 1

0

h(s)g(|φ(s)|)ds. (2.17)

Case 2: 1 ≤ t ≤ T . From (2.15) and the hypotheses, we have

|Fbm(t)| ≤
∫ 1

0

|f(s, bm(s) + x0, φ(s))|ds +
∫ t

1

|f(s, bm(s) + x0, bm(s− 1) + x0)|ds

≤
∫ 1

0

h(s)[g(|bm(s)|+ |x0|) + g(|φ(s)|)]ds

+
∫ t

1

h(s)[g(|bm(s)|+ |x0|) + g(|bm(s− 1)|+ |x0|)]ds

=
∫ 1

0

h(s)g(|φ(s)|)ds +
∫ 1

0

h(s)g(|bm(s)|+ |x0|)ds

+
∫ t

1

h(s)g(|bm(s)|+ |x0|)ds +
∫ t

1

h(s)g(|bm(s− 1)|+ |x0|)ds

= γ +
∫ t

0

h(s)g(|bm(s)|+ |x0|)ds + I2,

(2.18)
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where γ is given by (2.17), and

I2 =
∫ t

1

h(s)g(|bm(s− 1)|+ |x0|)ds. (2.19)

By the change of variable, we have

I2 =
∫ t−1

0

h(σ + 1)g(|bm(σ)|+ |x0|)dσ ≤
∫ t

0

h(σ + 1)g(|bm(σ)|+ |x0|)dσ. (2.20)

Using (2.20) in (2.18), we have

|Fbm(t)| ≤ γ +
∫ t

0

[h(s) + h(s + 1)]g(|bm(s)|+ |x0|)ds

≤ γ +
∫ T

0

2Ng(b + |x0|)ds

= γ + 2NTg(b + |x0|).

(2.21)

From (2.16) and (2.21), it follows that {Fbm} is uniformly bounded.
Step III. We shall show that the sequence {Fbm} is equicontinuous. Let {bm} and
N be as in Step II. We must consider three cases.

Case 1: t and t′ are contained in 0 ≤ t < 1. From (2.14), it follows that

Fbm(t)− Fbm(t′) =
∫ t

0

f(s, bm(s) + x0, φ(s))ds−
∫ t′

0

f(s, bm(s) + x0, φ(s))ds

=
∫ t

t′
f(s, bm(s) + x0, φ(s))ds.

(2.22)
From the above equality and hypotheses, we have

|Fbm(t)− Fbm(t′)| ≤ |
∫ t

t′
|f(s, bm(s) + x0, φ(s))|ds|

≤ |
∫ t

t′
h(s)[g(|bm(s)|+ |x0|) + g(|φ(s)|)]ds|

≤ |
∫ t

t′
N [g(b + |x0|) + g(|c0|)]ds|

= N [g(b + |x0|) + g(|c0|)]|t− t′|.

(2.23)

Case 2: t and t′ are contained in 1 ≤ t ≤ T . From (2.15), it follows that

Fbm(t)− Fbm(t′)

=
∫ 1

0

f(s, bm(s) + x0, φ(s))ds +
∫ t

1

f(s, bm(s) + x0, bm(s− 1) + x0)ds

−
∫ 1

0

f(s, bm(s) + x0, φ(s))ds−
∫ t′

1

f(s, bm(s) + x0, bm(s− 1) + x0)ds

=
∫ t

t′
f(s, bm(s) + x0, bm(s− 1) + x0)ds.

(2.24)
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From this equality and the hypotheses, we have

|Fbm(t)− Fbm(t′)| ≤ |
∫ t

t′
|f(s, bm(s) + x0, bm(s− 1) + x0)|ds|

≤ |
∫ t

t′
h(s)[g(|bm(s)|+ |x0|) + g(|bm(s− 1)|+ |x0|)]ds|

≤ |
∫ t

t′
Ng(|bm(s)|+ |x0|)ds + I3|

(2.25)

where

I3 =
∫ t

t′
Ng(|bm(s− 1)|+ |x0|)ds. (2.26)

By the change of variable, we have

I3 =
∫ t−1

t′−1

Ng(|bm(σ)|+ |x0|)dσ ≤ Ng(b + |x0|)(t− t′). (2.27)

Using the above inequality in (2.25), we obtain

|Fbm(t)− Fbm(t′)| ≤ 2Ng(b + |x0|)|t− t′|. (2.28)

Case 3: t and t′ are respectively contained in [0, 1) and [1, T ]. From (2.14) and
(2.15), it follows that

Fbm(t)− Fbm(t′)

=
∫ t

0

f(s, bm(s) + x0, φ(s))ds

−
∫ 1

0

f(s, bm(s) + x0, φ(s))ds−
∫ t′

1

f(s, bm(s) + x0, bm(s− 1) + x0)ds

= −
∫ 0

t

f(s, bm(s) + x0, φ(s))ds−
∫ 1

0

f(s, bm(s) + x0, φ(s))ds

−
∫ t′

1

f(s, bm(s) + x0, bm(s− 1) + x0)ds.

(2.29)

From (2.29) and using the hypotheses, we have

|Fbm(t)− Fbm(t′)|

≤
∫ 1

t

|f(s, bm(s) + x0, φ(s))|ds

+
∫ t′

1

|f(s, bm(s) + x0, bm(s− 1) + x0)|ds

≤
∫ 1

t

h(s)[g(|bm(s)|+ |x0|) + g(|φ(s)|)]ds

+
∫ t′

1

h(s)[g(|bm(s)|+ |x0|) + g(|bm(s− 1)|+ |x0|)]ds

≤
∫ 1

t

N [g(b + |x0|) + g(|c0|)]ds +
∫ t′

1

N [g(b + |x0|) + g(b + |x0|)]ds

≤ M(t′ − t),

(2.30)
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where
M = max{N [g(b + |x0|) + g(|c0|)], 2Ng(b + |x0|)}.

From (2.23), (2.28), (2.30), we conclude that {Fbm} is equicontinuous. By Arzela-
Ascoli theorem (see [4,7]), the operator F is completely continuous.

Moreover, the set U(F ) = {y ∈ B0 : y = λFy, λ ∈ (0, 1)} is bounded, since for
every y in U(F ) the function x(t) = y(t) + x0 is a solution of (2.4)-(1.2), for which
we have proved ‖x‖ ≤ Q and hence ‖y‖ ≤ Q+ |x0|. Now, an application of Lemma
1, the operator F has a fixed point in B0. This means that (1.1)-(1.2) has a solution.
The proof is complete. �

Remark. We note that the advantage of our approach here is that, it yields simu-
taneously the existence of solution of (1.1)-(1.2) and maximal interval of existence.
In the special case, if we take h(t) = 1 in (2.2) and the integral on the right hand
side in (2.2) is assumed to diverge, then the solution of (1.1)-(1.2) exists for every
T < ∞; that is, on the entire interval R+. Our result in Theorem 1 yields exis-
tence of solution of (1.1)-(1.2) on R+, if the integral on the right hand side in (2.2)
is divergent i.e.,

∫∞
α

ds
g(s) = ∞. Thus Theorem 1 can be considered as a further

extension of the well known theorem on global existence of solution of ordinary
differential equation due to Wintner given in [16].

The next theorem deals with the Osgood type uniqueness result for the solutions
of (1.1)-(1.2).

Theorem 2.4. Consider (1.1) with f ∈ C(R+ × Rn × Rn, Rn), under the initial
conditions in (1.2). Suppose that:

(i) the function f satisfies

|f(t, x, y)− f(t, x̄, ȳ)| ≤ h(t)[g(|x− x̄|) + g(|y − ȳ|)], (2.31)

where h ∈ C(R+, R+), g(u) is a continuous, nondecreasing function for
u ≥ 0, g(0) = 0;

(ii) let

G(r) =
∫ r

r0

ds

g(s)
, (0 < r0 ≤ r),

with G−1 being the inverse function of G and assume that limr0→+0 G(r) =
∞, for any fixed r.

Then (1.1)-(1.2) has at most one solution on R+.

Proof. Let x(t), y(t) be two solutions of equation (1.1), under the initial conditions

x(t− 1) = y(t− 1) = φ(t), (0 ≤ t < 1), x(0) = y(0) = x0, (2.32)

and let u(t) = |x(t)− y(t)|, t ∈ R+. We consider the following two cases.
Case 1: 0 ≤ t < 1. From the hypotheses, we have

u(t) ≤
∫ t

0

|f(s, x(s), φ(s))− f(s, y(s), φ(s))|ds

≤
∫ t

0

h(s)g(|x(s)− y(s)|)ds

≤ ε1 +
∫ t

0

h(s)g(u(s))ds,

(2.33)
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where ε1 > 0 is sufficiently small constant. Now, an application of Lemma 2 to
(2.33) yields

|x(t)− y(t)| ≤ G−1
[
G(ε1) +

∫ t

0

h(s)ds
]
. (2.34)

Case 2: 1 ≤ t < ∞. From the hypotheses, we have

u(t) ≤
∫ 1

0

|f(s, x(s), φ(s))− f(s, y(s), φ(s))|ds

+
∫ t

1

|f(s, x(s), x(s− 1))− f(s, y(s), y(s− 1))|ds

≤
∫ 1

0

h(s)g(u(s))ds +
∫ t

1

h(s)[g(u(s)) + g(u(s− 1))]ds

=
∫ 1

0

h(s)g(u(s))ds +
∫ t

1

h(s)g(u(s))ds +
∫ t

1

h(s)g(u(s− 1))ds

=
∫ t

0

h(s)g(u(s))ds + I4,

(2.35)

where

I4 =
∫ t

1

h(s)g(u(s− 1))ds. (2.36)

By the change of variable, we observe that

I4 ≤
∫ t

0

h(s + 1)g(u(s))ds. (2.37)

Using (2.37) in (2.35), we obtain

u(t) ≤
∫ t

0

[h(s) + h(s + 1)]g(u(s))ds ≤ ε2 +
∫ t

0

[h(s) + h(s + 1)]g(u(s))ds, (2.38)

where ε2 > 0 is sufficiently small constant. Now, an application of Lemma 2 to
(2.38) yields

|x(t)− y(t)| ≤ G−1[G(ε2) +
∫ t

0

[h(s) + h(s + 1)]ds]. (2.39)

To apply the estimations in (2.34), (2.39) to the uniqueness problem, we use the
notation G(r, r0) instead of G(r) and impose the assumption limr0→+0 G(r, r0) =
+∞, for fixed r, then we obtain limr0→+0 G−1(r, r0) = 0, see [15, p. 77]. From
(2.34), (2.39), it follows that |x(t)− y(t)| ≤ 0 for t ∈ R+ and hence x(t) = y(t) on
R+. Thus, there is at most one solution to (1.1)-(1.2) on R+. �

Remark. We note that the condition (2.31) corresponds to the Osgood type condi-
tion concerning the uniqueness of solutions in the theory of differential equations
(see [4, p. 35]).

3. Perturbed equations

In this section, we consider the difference-differential equation of the form

x′(t) = A(t)x(t) + B(t)x(t− 1) + f(t, x(t), x(t− 1)), (3.1)



10 B. G. PACHPATTE EJDE-2009/49

for t ∈ J with the initial conditions (1.2). The equation (3.1) is treated as a
perturbation of the linear system

x′(t) = A(t)x(t) + B(t)x(t− 1), (3.2)

for t ∈ J with the initial conditions (1.2), where A(t), B(t) are continuous functions
on J and f, φ are the functions as in (1.1), (1.2). Following Sugiyama [14], let
K(t, s) be a matrix solution of equations:

∂

∂t
K(t, s) = A(t)K(t, s) + B(t)K(t− 1, s) (0 ≤ s < t− 1),

∂

∂t
K(t, s) = A(t)K(t, s) (0 < t− 1 < s < t, 0 ≤ s < t < 1),

K(t, t) = 1,

K(t, s) = 0 (−1 ≤ t < 0).

The function K(t, s) satisfying the above properties is called the kernel function
for equation (3.2). For more details concerning the kernel function and its use in
the study of various properties of solutions of difference-differential equations with
perturbed terms, see Bellman and Cooke [1,2]. By means of the kernel function
K(t, s), it follows that the solution of (3.1) with (1.2) considered as a perturbation
of (3.2) with (1.2) is represented by (see [13, p.457])

x(t) = x0(t) +
∫ t

0

K(t, s)f(s, x(s), x(s− 1))ds, (3.3)

where x0(t) is a unique solution of (3.2) with (1.2). It is easy to observe that (see
[13]) the integral equations which are equivalent to (3.3) are

x(t) = x0(t) +
∫ t

0

K(t, s)f(s, x(s), φ(s))ds, (3.4)

for 0 ≤ t < 1 and

x(t) = x0(t)+
∫ 1

0

K(t, s)f(s, x(s), φ(s))ds+
∫ t

1

K(t, s)f(s, x(s), x(s− 1))ds, (3.5)

for 1 ≤ t ≤ T .
The following theorems concerning the existence and uniqueness of solutions of

(3.1)-(1.2) hold.

Theorem 3.1. Suppose that:
(i) the function f in (3.1) satisfies (2.1),
(ii) the unique solution x0(t) of (3.2)-(1.2) is bounded, that is

|x0(t)| ≤ c, (3.6)

for t ∈ J , where c is a positive constant,
(iii) the kernel function K(t, s) for (3.2) is bounded; that is,

|K(t, s)| ≤ L, (3.7)

for 0 ≤ s ≤ t ≤ T , where L ≥ 0 is a constant, and for each t′ ∈ J ,

lim
t→t′

∫ T

0

|K(t, s)−K(t′, s)|ds = 0, (3.8)

is satisfied for t ∈ J .
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Then (3.1)-(1.2) has a solution x(t) defined on J provided T satisfies∫ T

0

L[h(s) + h(s + 1)]ds <

∫ ∞

β

ds

g(s)
, (3.9)

where

β = c +
∫ 1

0

Lh(s)g(|φ(s)|)ds. (3.10)

Theorem 3.2. Consider (3.1) with f ∈ C(R+ × Rn × Rn, Rn) and the conditions
in (1.2), as a perturbation of (3.2) for t ∈ R+ with (1.2). Suppose that:

(i) the condition (i) of Theorem 3 holds and the kernel function K(t, s) satisfies
the condition (3.7),

(ii) the conditions (i)-(ii) of Theorem 2 hold.
Then (3.1)-(1.2) has at most one solution on R+.

The proofs of Theorems 3 and 4 can be completed by following the proofs of
Theorems 1 and 2 given above, with suitable modifications and closely looking at
the proofs of existence results given in [9,10]. We omit the details here.
Remark. We note that our approach to the existence study of (1.1)-(1.2) and (3.1)-
(1.2) is different from those used in [11-15] and we believe that the results given
here are of independent interest. For the study of numerical solution of general
Volterra integral equation with delay arguments of the form (3.3), see [3].
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