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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF

SOLUTIONS TO NEUTRAL DELAY DYNAMIC EQUATIONS

BAŞAK KARPUZ, ÖZKAN ÖCALAN, RADHANATH RATH

Abstract. This article concerns the asymptotic behaviour of solutions to non-
linear first-order neutral delay dynamic equations involving coefficients with

opposite signs. We present necessary and sufficient conditions for the solutions

to oscillate or to converge to zero. The coefficient associated with the neutral
part is considered in three distinct ranges, in one of which the coefficient is

allowed to oscillate. Illustrative examples show that the existing results do not

apply to these examples and hence they show the significance of our results.
The results of this article are also new for the particular choices of the time

scale T = R and T = Z.

1. Introduction

In this paper, we study the asymptotic and oscillatory behaviour of solutions to
the equation[

x(t) + A(t)x(α(t))
]∆ + B(t)F (x(β(t)))− C(t)F (x(γ(t))) = ϕ(t) (1.1)

for t ∈ [t0,∞)T, where t0 ∈ T, sup{T} = ∞, A ∈ Crd([t0,∞)T, R), B,C ∈
Crd([t0,∞)T, R+), F ∈ Crd(R, R), α, β, γ ∈ C([t0,∞)T, T) are strictly increasing
and unbounded functions.

For the sake of completeness in the paper, we find it useful to recall the follow-
ing basic concepts related to the notion of time scale calculus. A time scale is a
nonempty closed subset of real numbers, and denoted by the notation T. On a time
scale T, the forward jump operator, the backward jump operator and the graininess
function are defined respectively by

σ(t) := inf(t,∞)T, ρ(t) := sup(−∞, t)T and µ(t) := σ(t)− t,

for t ∈ T. For convenience, the interval with a T index below is used to denote
the intersection of the usual interval with T. The delta derivative (or derivative in
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short) of a function f : T → R is defined by

f∆(t) :=


f(σ(t))− f(t)

µ(t)
, µ(t) > 0

lim
s→t

f(t)− f(s)
t− s

, µ(t) = 0,

where t ∈ Tκ (provided that limit exists), and Tκ := T\{sup T} if sup T = max T
and ρ(max T) 6= max T; otherwise, Tκ := T. A function f is called right-dense
continuous (or rd-continuous in short) provided that f is continuous at every right-
dense points in T, and has a finite limit at every left-dense point in T. The set of
rd-continuous functions are denoted by Crd(T, R), and C1

rd(T, R) denotes the set of
functions of which derivative is also in Crd(T, R). For s, t ∈ T and a differentiable
function f ∈ C1

rd(T, R), the Cauchy integral of f∆ is defined by∫ t

s

f∆(η)∆η = f(t)− f(s).

Table 1 displays the explicit forms of forward jump, delta derivative and delta
integral on the well-known time scales. For further details in the time scales, we
refer the readers to the books [6, 7] which summarize and organize most of the time
scale theory.

Table 1. Examples of some time scales

T σ(t) f∆(t)
∫ t

s
f(η)∆η

R t f ′(t)
∫ b

a
f(η)dη

Z t + 1 ∆f(t)
t−1∑
η=s

f(η)

qZ, (q > 1) qt
f(qt)− f(t)

(q − 1)t
(q − 1)

logq(t)−1∑
η=logq(s)

f(qη)qη

Nq
0, (q > 0)

(
t1/q + 1

)q f((t1/q + 1)q)− f(t)
(t1/q + 1)q − t

t1/q−1∑
η=s1/q

f(ηq)
(
(η + 1)q − ηq

)

In [4, 8, 9, 25, 29, 32, 33], the authors study the dynamic equation

x∆(t) + A(t)x(α(t)) = 0 (1.2)

for t ∈ [t0,∞)T, where A ∈ Crd([t0,∞)T, R+) and α ∈ Crd([t0,∞)T, T) satisfy
limt→∞ α(t) = ∞ and α(t) ≤ t for all sufficiently large t, and they present oscillation
and stability criteria for this equation.

Then later, in [14], the authors extend some of the results stated for (1.2) to the
equation

x∆(t) + A(t)x(α(t))−B(t)x(β(t)) = 0
for t ∈ [t0,∞)T, where A,B ∈ Crd([t0,∞)T, R+) and α, β ∈ C([t0,∞)T, T) satisfy
limt→∞ α(t) = limt→∞ β(t) = ∞ and α(t) ≤ β(t) ≤ t for all sufficiently large t. The
authors ([14]) unified some of the well-known results stated for the corresponding
difference and/or differential equations.
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In a very recent paper [16, 17], the authors study[
x(t) + A(t)x(α(t))

]∆ + B(t)F (x(β(t)))− C(t)G(x(γ(t))) = ϕ(t)

for t ∈ [t0,∞)T, where A ∈ Crd([t0,∞)T, R), B,C ∈ Crd([t0,∞)T, R+), F,G ∈
Crd(R, R), α, β, γ ∈ C([t0,∞)T, T) are unbounded strictly increasing functions such
that α(t), β(t), γ(t) ≤ t holds for all sufficiently large t. In this paper, we weaken the
assumptions on the coefficients that are assumed to hold for [10, 17, 24, 26, 27, 28],
and improve their results by providing necessary and sufficient conditions.

We go on with the following example, which shows the significance and applica-
bility of our results.

Example 1.1. Consider the neutral delay differential equation[
x(t) + 2x(t− π)

]′ + ( 1
tp

+ 1
)
x(t− 7π/2)− 1

tp
x(t− 3π/2) = 0 (1.3)

for t ∈ [1,∞)R, where p ∈ (0,∞)R is a constant. In view of (1.1), we have A(t) ≡ 2,
α(t) = t−π, B(t) = 1/tp+1, β(t) = t−7π/2, F (λ) = λ, C(t) = 1/tp, γ(t) = t−3π/2,
G(λ) = λ and ϕ(t) ≡ 0 for t ∈ [1,∞)R and λ ∈ R. To the best of our knowledge,
none of the existing results in the literature can be applied to this equation. For
instance, [17, Theorem 1], [21, Theorem 1] and [30, Theorem 1] can not be applied
since A(t) ≡ 2 6≤ 0, and [16, Theorem 1], [24, Theorem 4], [26, Theorem 2.2] and
[28, Theorem 2.1] can not be applied to this equation when p ∈ (0, 1]R holds since
the improper integral of C(t) = 1/tp is divergent, but our results (see Theorem 2.1)
do not fail revealing asymptotic properties of the solutions of this equation. It
is easy to see that x(t) = sin(t) and x(t) = cos(t) for t ∈ [1,∞)R are oscillating
solutions of (1.3).

As is seen from the example given above, our results can be employed in some
cases when the results in the literature fail to apply. Roughly speaking about
the technique of this paper, the work depends on revealing asymptotic behaviour of
nonoscillatory bounded solutions to (1.1), and then we introduce the conditions that
ensure nonexistence of unbounded nonoscillatory solutions to deal with unbounded
solutions. Therefore, the method applied here is a little bit different than the ones
employed in the literature.

Set t−1 := min{α(t0), β(t0), γ(t0)}. By a solution of (1.1), we mean a function
x : [t−1,∞)T → R with x + A(t)x ◦ α ∈ C1

rd([t0,∞)T, R) satisfying (1.1) identically
on [t0,∞)T. A solution of (1.1) is called nonoscillatory if it is eventually of constant
sign; otherwise, it is called oscillatory.

2. Main results

For an arbitrary function f : T → R, we define f±(t) := max{±f(t), 0} for
t ∈ T. It is easy to see that f+ ≡ f provided that f is nonnegative while f− ≡ −f
provided that f is nonpositive, and note that we have f+, f− ≥ 0, f ≡ f+ − f−

and f+ ≥ f ≥ −f−. Moreover, we have limt→∞ f+(t) = limt→∞ f−(t) = 0 if
limt→∞ f(t) = 0 is true.

We list our assumptions on the coefficient A as follows:
(R1) lim supt→∞A+(t) + lim supt→∞A−(t) < 1.
(R2) lim supt→∞A(t) < ∞ and lim inft→∞A(t) > 1.
(R3) lim inft→∞A(t) > −1.
(R4) lim supt→∞A(t) < −1 and lim inft→∞A(t) > −∞.
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Next, we list assumptions on the nonlinear function F and the forcing term ϕ:
(H1) F ∈ Crd(R, R) satisfies F (λ)/λ > 0 for all λ ∈ R\{0}.
(H2) there exists a function Φ ∈ C1

rd([t0,∞)T, R) such that Φ∆ = ϕ and that
limt→∞Φ(t) = 0 hold.

Set υ := γ−1 ◦ β and suppose that υ ∈ C1
rd([t0,∞)T, T) satisfies υ([s,∞)T) =

[υ(s),∞)T for some s ∈ [t0,∞)T, and it is trivial that υ is strictly increasing
because of the increasing nature of β and γ. From now on, we suppose that
D ∈ Crd([t0,∞)T, R) defined by

D(t) :=

{
B(t)− υ∆(t)C(υ(t)), t ∈ [υ−1(t0),∞)T

B(t)− υ∆(t0)C(υ(t0)), t ∈ [t0, υ−1(t0))T

is eventually nonnegative.
(H3) α(t) ≤ t for all sufficiently large t.
(H4) lim supλ→±∞

[
F (λ)/λ

]
< ∞.

(H5) there exists a bounded function Φ ∈ C1
rd([t0,∞)T, R) such that Φ∆ = ϕ.

We again list our additional assumptions on the coefficients B and C as follows:
(A1)

∫∞
t0

D(η)∆η = ∞.

(A2) limt→∞
∫ t

υ(t)
C(η)∆η = 0.

(A3) limt→∞
[ ∫ t

υ(t)
C(η)∆η

]+ = 0.

Our first result studies the asymptotic behaviour of bounded solutions of (1.1)
when A satisfies the condition (R1).

Theorem 2.1. Assume that (H1), (H2), (A1), (A2) hold. If A satisfies (R1), then
every nonoscillatory bounded solution of (1.1) tends to zero at infinity.

Proof. Let x be a nonoscillatiory bounded solution of (1.1). We may assume with-
out loss of generality that x is eventually positive, this is possible because of (H1)
and (H2). Say υ([t1,∞)T) = [υ(t1),∞)T and x(t), x(α(t)), x(β(t)), x(γ(t)) > 0 for
all t ∈ [t1,∞)T for some t1 ∈ [t0,∞)T. Now, for t ∈ [t1,∞)T, set

yx(t) := x(t) + A(t)x(α(t)) (2.1)

and

zx(t) := yx(t)−
∫ t

υ(t)

C(η)F (x(γ(η)))∆η − Φ(t). (2.2)

Obviously, yx and zx are bounded because of (A2), boundedness of x and A. Now,
considering [6, Theorem 1.98], for all t ∈ [t1,∞)T, we may rewrite zx in the following
form

zx(t) =yx(t)−
∫ t

υ(t1)

C(η)F (x(γ(η)))∆η −
∫ υ(t1)

υ(t)

C(η)F (x(γ(η)))∆η − Φ(t)

=yx(t)−
∫ t

υ(t1)

C(η)F (x(γ(η)))∆η −
∫ t1

t

υ∆(η)C(υ(η))F (x(β(η)))∆η − Φ(t).

Then, applying [6, Theorem 1.117] to the resulting and considering (1.1), we get

z∆
x (t) =y∆

x (t)− C(t)F (x(γ(t))) + υ∆(t)C(υ(t))F (x(β(t)))− ϕ(t)

=−D(t)F (x(β(t))) ≤ 0
(2.3)
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for all t ∈ [t2,∞)T. Therefore, zx is nonincreasing over [t2,∞)T; i.e., limt→∞ zx(t)
exists and is finite. This implies that limt→∞ yx(t) exists and moreover satisfies
limt→∞ yx(t) = limt→∞ zx(t) by (H2) and (A2), boundedness of x and A. Integrat-
ing (2.3) over [t2,∞)T, we get

∞ > zx(t2)− lim
t→∞

zx(t) =
∫ ∞

t2

D(η)F (x(β(η)))∆η,

which implies
lim inf
t→∞

x(t) = 0 (2.4)

by (H1), (A1) and boundedness of x. Set

Mx := lim sup
t→∞

x(t). (2.5)

Let {ςk}k∈N, {ζk}k∈N ∈ [t1,∞)T be two increasing divergent sequences such that
as k tends to infinity, x(ςk) tends to the inferior limit 0, while x(ζk) tends to the
superior limit Mx. Because of (R1), we may pick L, l ∈ [0, 1)R with L + l < 1 such
that L ≥ A+(t) and l ≥ A−(t) for all sufficiently large t. Since x is bounded, we
may suppose that x(α(ςk)) and x(α(ζk)) converge to a limit which can not exceed
Mx (due to Bolzano-Weierstrass theorem, such subsequences of {x(α(ςk))}k∈N and
{x(α(ζk))}k∈N always exit). Now, we prove Mx = 0, but first, recall that yx has a
finite limit. Indeed, for all k ∈ N, we have

yx(ςk)− yx(ζk) ≤x(ςk) + A+(ςk)x(α(ςk))− x(ζk) + A−(ζk)x(α(ζk))

≤x(ςk) + Lx(α(ςk))− x(ζk) + lx(α(ζk)),

which yields 0 ≤ (L + l − 1)Mx by letting k tend to infinity, and this shows that
Mx = 0 since L + l < 1. The proof is hence completed. �

The following two examples illustrate the significance of Theorem 2.1.

Example 2.2. Let T = Z. Consider the neutral difference equation[
x(t) +

(−1)t

3
x(t + 3)

]∆

+
(
2 +

2
t

)
3
√

x(t)− 2
t

3
√

x(t + 2) = 0 (2.6)

for t ∈ [1,∞)Z. Here, we have A(t) = (−1)t/3, α(t) = t + 3, F (λ) = 3
√

λ, B(t) =
2 + 2/t, β(t) = t, C(t) = 2/t, γ(t) = t + 2 and ϕ(t) ≡ 0 for t ∈ [1,∞)Z and λ ∈ R.
In this case, we have ν(t) = t − 2, D(t) = 2 + 2/t − 2/(t − 2) and ϕ(t) ≡ 0 for
t ∈ [1,∞)Z. In the literature, none of the existing results can be applied to this
equation since A(t) = (−1)t/3 for [1,∞)Z is oscillatory but not tending to zero
at infinity and/or the infinite series of C(t) = 2/t is not convergent on [1,∞)Z.
Clearly, A is in (R1) since

lim sup
t→∞

[ (−1)t

3

]+

+ lim sup
t→∞

[ (−1)t

3

]−
=

1
3

+
1
3

=
2
3

< 1.

The forcing term ϕ = 0 satisfies (H2) with Φ = 0, and nonlinear term F satisfies
both (H1) and (H4). On the other hand, we have

∞∑
η=3

(
2 +

2
η
− 2

η − 2

)
= ∞ and lim

t→∞

t−1∑
η=t−2

2
η

= 0.

Due to Theorem 2.1, we know that every bounded solution of (2.6) is oscillatory or
asymptotically convergent to zero, and x(t) = (−1)t for t ∈ [1,∞)Z is an oscillating
bounded solution of (2.6).
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Example 2.3. Let T = R. Consider the following neutral differential equation:[
x(t) +

sin(t)
4

x(t + 1/t2)
]∆

+ 2x(t− 1/t)− x(t) = 0 (2.7)

for t ∈ [1,∞)R. Here, we have A(t) = sin(t)/4, α(t) = t+1/t2, F (λ) = λ, B(t) ≡ 2,
β(t) = t − 1/t, C(t) ≡ 1, γ(t) = t and ϕ(t) ≡ 0 for t ∈ [1,∞)R and λ ∈ R.
Obviously, υ(t) = t − 1/t, D(t) = 1 − 1/t2 and Φ(t) ≡ 0 for t ∈ [1,∞)R. So that,
the arguments of this equation satisfy all the assumptions of Theorem 2.1, and
hence every bounded solution of (2.7) is oscillatory or asymptotically convergent
to zero.

Next, we state Theorem 2.1 for (R2).

Theorem 2.4. Assume that (H1), (H2), (A1), (A2) hold. If A satisfies (R2), then
every nonoscillatory bounded solution of (1.1) tends to zero at infinity.

Proof. Without loss of generality suppose that x is an eventually positive solution.
Say x(t), x(α(t)), x(β(t)), x(γ(t)) > 0 for all t ∈ [t1,∞)T for some t1 ∈ [t0,∞)T. For
t ∈ [t1,∞)T, define yx and zx as in (2.1) and (2.2), respectively. Then, following
similar arguments to that in the proof of Theorem 2.1, we get (2.4). Considering
(R2), we may pick L, l ∈ (1,∞)R satisfying L ≥ A(α−1(t)) ≥ l for all sufficiently
large t. We may suppose that x(α−1(ςk)) tends to limits which is not greater than
Mx defined by (2.5). Then, for all k ∈ N, we get

yx(α−1(ςk))− yx(α−1(ζk)) ≤x(α−1(ςk)) + A(α−1(ςk))x(ςk)−A(α−1(ζk))x(ζk)

≤x(α−1(ςk)) + Lx(ςk)− lx(ζk),

which says that 0 ≤ (1 − l)Mx holds by letting k tend to infinity. Thus, we have
Mx = 0 because of l > 1, and this completes the proof. �

The following result is inferred from Theorem 2.1 and Theorem 2.4.

Corollary 2.5. Assume that (H1), (H2), (A1), (A2) hold, A satisfies (R1) or (R2).
Then, every bounded solution oscillates or converges to zero asymptotically.

With the following example, we show applicability of Theorem 2.4 on the non-
standard time scale quantum set.

Example 2.6. Let T = 2Z. For t ∈ [1,∞)
2Z , consider the neutral dynamic equation

[
x(t) + 2x(t/2)

]∆ +
9
4t

x(t/2)− 1
t2

x(t) = − 1
t3

. (2.8)

Here, we have A(t) ≡ 2, α(t) = t/2, F (λ) = λ, B(t) = 9/(4t), β(t) = t/2, C(t) =
1/t2, γ(t) = t and ϕ(t) = −1/t3 for t ∈ [1,∞)

2Z and λ ∈ R. For t ∈ [1,∞)
2Z , we

have ν(t) = t/2, D(t) = 9/(4t)− 2/t2 and Φ(t) = 2/(3t2). Moreover, we calculate
∞∑

η=0

(9
4
− 2

2η

)
= ∞ and lim

t→∞

2
t

= 0,

which show (A1) and (A2) hold. By Theorem 2.4 since A is in (R2), every bounded
solution of (2.8) oscillates or asymptotically converges to zero. Clearly, x(t) = 1/t
for t ∈ [1,∞)

2Z is a solution, which tends to zero at infinity. With the initial
conditions x(1/2) = x(1) = 1, we get the graphics shown in Figure 1 for the
solution with 50 iterates.
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-2. ´ 1015

-1.5 ´ 1015

-1. ´ 1015

-5. ´ 1014

5. ´ 1014

1. ´ 1015

-5. ´ 1014 5. ´ 1014 1. ´ 1015

-2. ´ 1015

-1.5 ´ 1015

-1. ´ 1015

-5. ´ 1014

5. ´ 1014

1. ´ 1015

Figure 1. Graphs of (t, x(t)) (left), and of (x(t), x(2t)) (right)

We may guess that this solution oscillates unboundedly. However, Theorem 2.4
is not yet stated for unbounded solutions.

The following result ensures nonexistence of unbounded nonoscillatory solutions
when A satisfies (R3).

Theorem 2.7. Let A satisfy (R3). If (H1), (H3)–(H5), (A3) hold. Then (1.1) has
no unbounded nonoscillatory solutions.

Proof. For the sake of contradiction, suppose that x is a nonoscillatiory unbounded
solution of (1.1), which can be assumed to be eventually positive. Clearly, following
the steps in Theorem 2.1, we obtain (2.3) on [t1,∞)T. Thus, zx is eventually
nonincreasing; i.e., limt→∞ zx(t) < ∞. Since A is in (R3), we may pick l ∈ [0, 1)R
such that A(t) ≥ −l for all t ∈ [t2,∞)T for some t2 ∈ [t1,∞)T. Now, define the sets
I(t) := {η ∈ [υ(t), t)T : x(γ(η)) ≤ 1} and J (t) := {η ∈ [υ(t), t)T : x(γ(η)) > 1} for
t ∈ [t2,∞)T (see [5, § 6]). Note that I(t)∩J (t) = ∅ and I(t)∪J (t) = [υ(t), t)T for all
t ∈ [t2,∞)T. Let {ξk}k∈N ⊂ [t0,∞)T be an increasing divergent sequence such that
{x(ξk)}k∈N is increasing and divergent and x(ξk) ≥ sup{x(η) : η ∈ [t0, ξk)T} ≥ 1 is
true for all k ∈ N. On one hand, for all sufficiently large k, we have

∫
I(ξk)

C(η)F (x(γ(η)))∆η ≤ 1
3
(1− l) ≤ 1

3
(1− l)x(ξk) (2.9)

since x ◦ γ is bounded above by 1 on I(t) for all t ∈ [t2,∞)T and (A3) is true.
On the other hand, since for λ ∈ (1,∞)R, F (λ)/λ has no discontinuities, we learn
that supλ∈(1,∞)R

{F (λ)/λ} is a finite constant by (H4). Thus, by this reasoning and
(A3), for all sufficiently large k, we have

sup
λ∈(1,∞)R

{F (λ)
λ

}[ ∫ ξk

υ(ξk)

C(η)∆η
]+

≤ 1
3
(1− l). (2.10)
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Therefore, using (2.10), for all k sufficiently large, we deduce∫
J (ξk)

C(η)F (x(γ(η)))∆η ≤
[ ∫ ξk

υ(ξk)

C(η)F (x(γ(η)))∆η
]+

=
[ ∫ ξk

υ(ξk)

C(η)
F (x(γ(η)))

x(γ(η))
x(γ(η))∆η

]+

≤ sup
λ∈(1,∞)R

{F (λ)
λ

}[ ∫ ξk

υ(ξk)

C(η)x(γ(η))∆η
]+

≤ sup
λ∈(1,∞)R

{F (λ)
λ

}[ ∫ ξk

υ(ξk)

C(η)∆η
]+

x(ξk)

≤1
3
(1− l)x(ξk). (2.11)

Summing (2.9) and (2.11), for all sufficiently large k, we get∫ ξk

υ(ξk)

C(η)F (x(γ(η)))∆η ≤ 2
3
(1− l)x(ξk). (2.12)

Then, taking (H3), (H5), (2.1), (2.2) and (2.12) into account, as k →∞, we obtain

zx(ξk) ≥yx(ξk) +
2
3
(1− l)x(ξk)− Φ(ξk)

≥(1− l)x(ξk) +
2
3
(1− l)x(ξk)− Φ(ξk)

=
1
3
(1− l)x(ξk)− Φ(ξk) →∞,

which contradicts to limt→∞ zx(t) < ∞. Hence, every nonoscillatory solution of
(1.1) is bounded. �

Remark 2.8. Under the assumptions of Theorem 2.7, every unbounded solution
of (1.1) is oscillatory.

By Theorem 2.1, Theorem 2.4 and Theorem 2.7, we have the following result.

Corollary 2.9. Assume that (H1)–(H4), (A1), (A2) hold. If A satisfies either (R1)
or (R2), then every solution oscillates or converges to zero asymptotically.

We give the following example, which is an application of Theorem 2.7.

Example 2.10. Let T =
√

N0, and for t ∈ [2,∞)√N0
, consider the dynamic equa-

tion [
x(t) +

t
[
(−1)t2

]+ − [
(−1)t2

]−
2

x(
√

t2 − 2)
]∆

+
1

t2(
√

t2 + 1− t)
x(

√
t2 − 1)− 1

t4(
√

t2 + 1− t)
x(t) = 0.

(2.13)

For this equation, we see that A(t) = (t[(−1)t2 ]+ − [(−1)t2 ]−)/2, α(t) =
√

t2 − 2,
B(t) = 1/(t2(

√
t2 + 1− t)), β(t) =

√
t2 − 1, C(t) = 1/(t4(

√
t2 + 1− t)) and γ(t) = t

for t ∈ [2,∞)√N0
. Thus, we obtain υ(t) =

√
t2 − 1 and

D(t) =
1

t2(
√

t2 + 1− t)
− t−

√
t2 − 1

(
√

t2 + 1− t)(t4 − 2t2 + 1)(t−
√

t2 − 1)
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for t ∈ [2,∞)√N0
. Note here that υ([2,∞)√N0

) = [
√

3,∞)√N0
= [υ(2),∞)√N0

. One
can show that all the conditions of Theorem 2.7 hold, and thus every unbounded
solution of (2.13) is oscillatory. The following graphics belong to a solution with the
initial conditions x(

√
2) = x(

√
3) = x(2) = 1 and 40 iterates are shown in Figure 2

below.

1 2 3 4 5 6

-2. ´ 106

2. ´ 106

4. ´ 106

6. ´ 106

-2. ´ 106 -1.5 ´ 106 -1. ´ 106 -500 000 500 000

-2. ´ 106

2. ´ 106

4. ´ 106

6. ´ 106

Figure 2. Graphs of (t, x(t)) (left), and of (x(t), x(
√

t2 + 1)) (right).

We may guess from this graphic that this solution is unboundedly oscillating.
Since the solution grows very rapidly, in the first graphic, the preceding the points
seem very closer to the horizontal axis.

The following result states the asymptotic behaviour for nonoscillatory bounded
solutions of (1.1) when A satisfies (R4).

Theorem 2.11. Assume that (H1), (H2), (A1), (A2) hold, A satisfies of (R4).
Then, every nonoscillatory bounded solution of (1.1) tends to zero at infinity.

Proof. Suppose without loss of generality that x is an eventually positive solution.
There exists t1 ∈ [t0,∞)T such that x(t), x(α(t)), x(β(t)), x(γ(t)) > 0 for all t ∈
[t1,∞)T. For t ∈ [t1,∞)T, define yx and zx as in (2.1) and (2.2), respectively.
As in the proof of Theorem 2.1, we obtain (2.4). Set Mx as in (2.5). Following
similar arguments to those in the proofs of Theorem 2.1 and/or Theorem 2.4, we
get 0 ≥ (1 − l)Mx, where L, l ∈ (1,∞)R and −l ≥ A(t) ≥ −L for all sufficiently
large t by (R4). In this present case, we again have Mx = 0 since l > 1. The proof
is completed. �

Example 2.12. For T = R, consider the dynamic equation[
x(t)− 3

2
x(t + cos(t)/2)

]∆

+
2
t

arctan(x(t + sin(t)/2))− 1
t

arctan(x(t)) = 0 (2.14)

for t ∈ [1,∞)R. For this equation, the parameters are A(t) ≡ −3/2, α(t) = t +
cos(t)/2, F (λ) = arctan(λ), B(t) = 2/t, β(t) = t+sin(t)/2, C(t) = 1/t and γ(t) = t
for t ∈ [1,∞)R and λ ∈ R. Hence, for t ∈ [1,∞)R, we obtain υ(t) = t + sin(t)/2
(strictly increasing) and D(t) = 2/t− (2 + cos(t))/(2t + sin(t)). It is easy to verify
that ∫ ∞

1

(2
η
− 2 + cos(η)

2η + sin(η)

)
dη = ∞ and lim

λ→±∞

arctan(λ)
λ

= 0.

Moreover, we have

lim
t→∞

[
ln

( 2t

2t + sin(t)

)]+

= 0.
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Since all the conditions of Theorem 2.11 are satisfied, every bounded solution of
(2.14) oscillates or tends to zero at infinity.

Theorem 2.11 cannot be stated for unbounded solutions in its present form, this
fact is shown with the following example which possesses an unbounded nonoscil-
latory solution and satisfies all the assumptions of Theorem 2.11 .

Example 2.13. Let T = P1,1, where Pa,b := ∪`∈Z[(a+b)`, (a+b)`+a]R for a, b > 0.
And consider the following dynamic equation[

x(t)− 2x(t− 6)
]∆ +

2
t− 4

x(t− 4)− 1
t− 2

x(t− 2) = 0 (2.15)

for t ∈ [6,∞)P1,1 . For this equation, we see that A(t) ≡ −2, α(t) = t − 6, B(t) =
2/(t−4), β(t) = t−4, C(t) = 1/(t−2) and γ(t) = t−2 for t ∈ [6,∞)P1,1 . Thus, we
deduce that υ(t) = t−2 and D(t) = 1/(t−4) for t ∈ [6,∞)P1,1 . One can check that
all the conditions of Theorem 2.11 are satisfied but (2.15) admits a nonoscillatory
unbounded solution x(t) = t for t ∈ [6,∞)P1,1 .

Remark 2.14. Under the assumptions of Theorem 2.11, the statement in Corol-
lary 2.5 is still valid.

With the following theorem, we are able to study existence of nonoscillatory
solutions, which does not asymptotically tend to zero. Clearly, we have to prove
existence of a solution of which superior (inferior) limit is a positive (negative)
finite, and as we infer from the proofs of Theorem 2.1, Theorem 2.4 and Theo-
rem 2.11, we have to prove that inferior (superior) limit of the solution must be
positive (negative). Otherwise, since Φ may have a finite limit at infinity, we may
proceed as in the proofs of the mentioned theorems and obtain that the solution is
asymptotically tending to zero.

Theorem 2.15. Suppose that (H5), (A2) hold, and that A satisfies (R1). If (A1)
does not hold, then (1.1) has a bounded nonoscillatory solution, which does not tend
to zero asymptotically.

Proof. To prove existence of such nonoscillatory solution, we apply Krasnoselkii’s
fixed point theorem (see [34, Lemma 5]). Let K ∈ (0,∞)R and t1 ∈ [t0,∞)T satisfy
|Φ(t)| ≤ K for all t ∈ [t1,∞)T. Since A satisfies (R1), then we can pick L, l ∈ [0, 1)R
with L + l < 1 and M,m ∈ (0,∞)R with M > m such that L ≥ A+(t), l ≥ A−(t),
K = [(1− l − L)M −m]/6 and

max
λ∈[m,M ]R

{F (λ)}
∣∣∣ ∫ t

υ(t)

C(η)∆η
∣∣∣ ≤ K (2.16)

for all t ∈ [t2,∞)T for a sufficiently large t2 ∈ [t1,∞)T. There exists t3 ∈ [t2,∞)T
satisfying

max
λ∈[m,M ]R

{F (λ)}
∫ ∞

t

D(η)∆η ≤ K (2.17)

for all t ∈ [t3,∞)T. Let BCrd([t3,∞)T, R) be the Banach space of all bounded
rd-continuous functions on [t3,∞)T equipped with the supremum norm

‖x‖ := sup{|x(η)| : η ∈ [t3,∞)T},
and set

Ω :=
{
x ∈ BCrd([t3,∞)T, R) : m ≤ x(η) ≤ M for η ∈ [t3,∞)T

}
. (2.18)
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Pick t4 ∈ [t3,∞)T satisfying δ(t4) ≥ t3 and set N := [(1− l + L)M + m]/2. Define
now two mappings Γ,Ψ : Ω → Ω as follows:

Γx(t) :=

{
Γx(t4), t ∈ [t3, t4)T

N −A(t)x(α(t)) + Φ(t), t ∈ [t4,∞)T

and

Ψx(t) :=


Ψx(t4), t ∈ [t3, t4)T∫ t

υ(t)

C(η)F (x(γ(η)))∆η +
∫ ∞

t

D(η)F (x(γ(υ(η))))∆η, t ∈ [t4,∞)T.

We assert that Γx + Ψx = x has a fixed point in Ω by the means of Krasnoselkii’s
fixed point theorem. First, we show Γx + Ψy ∈ Ω for all x, y ∈ Ω. Clearly, from
(2.16) and (2.17), for any x, y ∈ Ω, we obtain

Γx(t) + Ψy(t) ≤ N + lM + 3K = M

and
Γx(t) + Ψy(t) ≥ N − LM − 3K = m

for all t ∈ [t3,∞)T, which proves that the claim is true. Γ is a contraction mapping
since max{l, L} < 1 and ‖Γx − Γy‖ ≤ max{l, L}‖x − y‖ on [t3,∞)T. Next, we
show that Ψ is a completely continuous mapping; i.e., Ψ is continuous and maps
bounded sets into relatively compact sets. Let {xk}k∈N be a sequence in Ω, which
converges to x ∈ Ω. For all t ∈ [t4,∞)T and k ∈ N, we have∣∣Ψxk(t)−Ψx(t)

∣∣ =
∣∣∣ ∫ t

υ(t)

C(η)
[
F (xk(γ(η)))− F (x(γ(η)))

]
∆η

+
∫ ∞

t

D(η)
[
F (xk(γ(υ(η))))− F (x(γ(υ(η))))

]
∆η

∣∣∣.
Since Lebesgue’s dominated convergence theorem (see [6, § 5]) holds for delta inte-
grals, for all t ∈ [t4,∞)T, we have

lim
k→∞

∣∣Ψxk(t)−Ψx(t)
∣∣ = 0,

which proves continuity of Ψ on Ω. To show relatively compactness of ΨΩ, we shall
verify the assumptions of Arzelá-Ascoli theorem (see [2, Lemma 2.6]). Obviously,
Ω is uniformly bounded. For every ε > 0, there exists t5 ∈ [t4,∞)T such that

max
λ∈[m,M ]R

{F (λ)}
∣∣∣ ∫ t

υ(t)

C(η)∆η
∣∣∣ ≤ ε

4
, max

λ∈[m,M ]R
{F (λ)}

∣∣∣ ∫ ∞

t

D(η)∆η
∣∣∣ ≤ ε

4
.

for all t ∈ [t5,∞)T. Therefore, ΨΩ is uniformly Cauchy since for every s, t ∈
[t5,∞)T, we have |Ψx(t)−Ψx(s)| ≤ ε. On the other hand, for every ε, there exists
δ > 0 such that

max
λ∈[m,M ]R

{F (λ)}
∣∣∣ ∫ υ(t)

υ(s)

C(η)∆η
∣∣∣ ≤ ε

3
, max

λ∈[m,M ]R
{F (λ)}

∣∣∣ ∫ t

s

C(η)∆η
∣∣∣ ≤ ε

3
,

max
λ∈[m,M ]R

{F (λ)}
∣∣∣ ∫ t

s

D(η)∆η
∣∣∣ ≤ ε

3

for every s, t ∈ [t4, t5]T with |t − s| ≤ δ. The above arguments imply |Ψx(t) −
Ψx(s)| ≤ ε whenever |t−s| ≤ δ for s, t ∈ [t4, t5]T; i.e., ΨΩ are locally equicontiuous.
Therefore, by Arzelá-Ascoli theorem, ΨΩ is relatively compact in BCrd([t3,∞)T),
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and thus we conclude that Ψ is completely continuous. It follows from Krasnoselkii’s
fixed point theorem that there exists x ∈ Ω for which Γx+Ψx = x holds. Therefore
the proof is completed. �

Theorem 2.16. Suppose that (H5), (A2) hold, and that A satisfies (R2). If (A1)
does not hold, then (1.1) has a bounded nonoscillatory solution, which does not tend
to zero asymptotically.

Proof. To prove existence of such nonoscillatory solution, we apply Krasnoselkii’s
fixed point theorem. Let K ∈ (0,∞)R and t1 ∈ [t0,∞)T satisfy |Φ(α−1(t))| ≤ K for
all t ∈ [t1,∞)T. Since A satisfies (R2), we may pick L, l ∈ (1,∞)R with L > l, and
M,m ∈ (0,∞)R with M > m such that L ≥ A(α−1(t)) ≥ l, K = [(1− l)M −Lm]/6
and (2.16) for all t ∈ [t2,∞)T for a sufficiently large t2 ∈ [t1,∞)T. There exists
t3 ∈ [t2,∞)T such that (2.17) holds. Let Ω defined in (2.18) be the subset of
BCrd([t3,∞)T, R), and set Γ,Ψ : Ω → Ω as follows:

Γx(t) :=

Γx(t4), t ∈ [t3, t4)T
1

A(α−1(t))
[
N − x(α−1(t)) + Φ(α−1(t))

]
, t ∈ [t4,∞)T

and

Ψx(t) :=



Ψx(t4), t ∈ [t3, t4)T

1
A(α−1(t))

( ∫ α−1(t)

υ(α−1(t))

C(η)F (x(γ(η)))∆η

+
∫ ∞

α−1(t)

D(η)F (x(γ(υ(η))))∆η
)
,

t ∈ [t4,∞)T,

where t4 ∈ [t3,∞)T satisfies δ(t4) ≥ t3 and N := [(1 + l)M + Lm]/2. Then, it
is not hard to show that Γx + Ψy ∈ Ω holds for all x, y ∈ Ω holds. Moreover,
Γ is a contraction mapping since ‖Γx − Γy‖ < (1/l)‖x − y‖ and Ψ is completely
continuous. By Krasnoselkii’s fixed point theorem, Γx + Ψx = x has a solution in
x ∈ Ω. The proof for this case is hence completed. �

Corollary 2.17. Assume that (H1), (H2), (H4), (A2) hold and A satisfies either
(R1) or (R2). Every solution of (1.1) oscillates or converges to zero at infinity if
and only if (A1) holds.

Corollary 2.18. Assume that (H1), (H3), (H4), (A2) hold and A satisfies either
(R1) or (R2). Every unbounded solution of (1.1) oscillates if and only if (A1) holds.

Theorem 2.19. Suppose that (H5), (A2) hold, and that A satisfies (R4). If (A1)
does not hold, then (1.1) has a bounded nonoscillatory solution, which does not tend
to zero asymptotically.

Proof. For this case the proof is very similar to that in the proof of Theorem 2.16
by letting M,m ∈ (0,∞)R with M > m satisfy K = [(1− l)M − Lm]/6 and N :=
[(1− l)M +Lm]/2, where L, l ∈ (1,∞)R with L > l satisfies −l ≥ A(t) ≥ −L for all
sufficiently large t by (R4). Finally, we find that the fixed point of Γx+Ψx = x ∈ Ω
is the desired solution of (1.1). Therefore the proof is completed. �

Corollary 2.20. Assume that (H1), (H2), (H4), (A2) hold and A satisfies (R4).
Every bounded solution of (1.1) oscillates or converges to zero at infinity if and
only if (A1) holds.
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The following example is an application for Theorem 2.15, Theorem 2.16 and
Theorem 2.19.

Example 2.21. Let T be any of the sets R, Z or P1/2,1/2. For λ 6= ±1, consider
the following dynamic equation[

x(t) + λx(t− 1)
]∆ +

2
t2

(x(t− 3))2 − 1
t2

(x(t− 1))2 =
1
t2

(2.19)

for t ∈ [1,∞)T, where A(t) ≡ λ, α(t) = t− 1, F (λ) = λ2, B(t) = 2/t2, β(t) = t− 3,
C(t) = 1/t2, γ(t) = t− 1 and ϕ(t) = 1/t2 for t ∈ [1,∞)T and λ ∈ R. This equation
satisfies all the assumptions of Theorem 2.15 for λ ∈ (−1, 1)R, Theorem 2.16 for
λ > 1 and Theorem 2.19 for λ < −1. Thus, (2.19) admits a nonoscillatory bounded
solutions which does not asymptotically tend to zero, and x(t) ≡ 1 for t ∈ [1,∞)T
is such a solution.

3. Final comments

Our results proved in the pervious section are still true for bounded solutions
when D is eventually nonpositive. Also, Theorem 2.1, Theorem 2.4, Theorem 2.7
and Theorem 2.11 apply for the following type of equations:[

x(t) + A(t)x(α(t))
]∆ + B(t)H(x(β(t)))− C(t)F (x(γ(t))) = ϕ(t) (3.1)

for t ∈ [t0,∞)T, where A,α,B,C, F, β, γ, ϕ are as mentioned before and H ∈
Crd(R, R) satisfies H(λ)/F (λ) ≥ 1 for all λ ∈ R\{0}.

It would be a significant interest to study the asymptotic properties of unbounded
solutions when F in (3.1) provides superlinear a growth when υ(t) ≤ t(6≡ t) holds
for all sufficiently large t; i.e., (H4) and (A3) do not hold simultaneously. The most
important improvement of this paper is that the nonlinear term F needs neither to
be nondecreasing as in [26, 27, 28] nor needs to satisfy lim infλ→∞

[
F (λ)/λ

]
> 0 as

in [28]. Moreover, unlike to all of the results in the papers [12, 14, 15, 16, 18, 20,
21, 22, 23, 24, 26, 27, 30, 31], we do not need υ to be a delay function; i.e, υ(t) < t
for all sufficiently large t; i.e., t−υ(t) is allowed to alternate in sign infinitely many
times (see Example 2.12).

Now, consider the neutral dynamic equation[
x(t) + A(t)x(α(t))

]∆ + B(t)F (x(β(t))) = ϕ(t) (3.2)

for t ∈ [t0,∞)T, where A,α, F, β, ϕ are as stated previously and B ∈ Crd([t0,∞)T, R)
is allowed to oscillate, then (3.2) can be rewritten in the form[

x(t) + A(t)x(α(t))
]∆ + B+(t)F (x(β(t)))−B−(t)F (x(β(t))) = ϕ(t)

for t ∈ [t0,∞)T, which has the same form with (1.1). Hence, our results can be
applied to (3.2), and thus, we not only extend the results of [10] but also improve
the results of [10, 16].

We finalize the work with the following example, which illustrates the importance
of the assumption (A2).

Example 3.1. Let T = [0,∞)R and a ∈ (−1, 1)R ∪ (1, 9)R. Consider the following
linear homogeneous differential equation:[

x(t) + ax(t/9)
]′ + 4

t
x(t/4)−

(5
2

+
a

6

)1
t
x(t) = 0 (3.3)
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for t ∈ [1,∞)R. For this equation, we have A(t) ≡ a, α(t) = t/9, B(t) = 4/t,
β(t) = t/4, F (λ) = λ, C(t) = (5/2 + a/6)/t, γ(t) = t and ϕ(t) = Φ(t) ≡ 0 for
t ∈ [0,∞)R and λ ∈ R. One can check that all the assumptions of Theorem 2.1 for
a ∈ (−1, 1)R and Theorem 2.4 for a ∈ (1, 9)R are satisfied except (A2) since

lim
t→∞

∫ t

t/4

(5
2

+
a

6

)1
η
dη =

(
5 +

a

3

)
ln(2) 6= 0.

And (3.3) admits a nonoscillatory unbounded solution x(t) =
√

t for t ∈ [1,∞)R,
which asymptotically tends to infinity.

Acknowledgement. The authors wish to express their sincere thanks to the
anonymous reviewer for his/her careful reading of the manuscript and helpful com-
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