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DYNAMIC EVOLUTION OF DAMAGE IN
ELASTIC-THERMO-VISCOPLASTIC MATERIALS

ABDELBAKI MEROUANI, FARID MESSELMI

ABSTRACT. We consider a mathematical model that describes the dynamic
evolution of damage in elastic-thermo-viscoplastic materials with displacement-
traction, and Neumann and Fourier boundary conditions. We derive a weak
formulation of the system consisting of a motion equation, an energy equation,
and an evolution damage inclusion. This system has an integro-differential
variational equation for the displacement and the stress fields, and a varia-
tional inequality for the damage field. We prove existence and uniqueness of
the solution, and the positivity of the temperature.

1. INTRODUCTION

The constitutive laws with internal variables has been used in various publi-
cations in order to model the effect of internal variables in the behavior of real
bodies like metals, rocks polymers and so on, for which the rate of deformation
depends on the internal variables. Some of the internal state variables considered
by many authors are the spatial display of dislocation, the work-hardening of mate-
rials, the absolute temperature and the damage field, see for examples and details
Bl 8, 211 221 23], 29], B0] and references therein for the case of hardening, tempera-
ture and other internal state variables and the references [12] 13}, 14}, 22| 25| 27] for
the case of damage field.

The aim of this paper is to study the dynamic evolution of damage in elastic-
thermo-viscoplastic materials. For this, we consider a rate-type constitutive equa-
tion with two internal variables of the form

o(t) = A(e((t))) + E(=(u(t)))
+ / G((s) ~ Al=(ia(s))),=(u(s)), 8(s), s(5) ) ds,

in which u, o represent, respectively, the displacement field and the stress field
where the dot above denotes the derivative with respect to the time variable, 6
represents the absolute temperature, ¢ is the damage field, A and £ are nonlinear
operators describing the purely viscous and the elastic properties of the material,

(1.1)
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respectively, and G is a nonlinear constitutive function which describes the visco-
plastic behavior of the material.

Examples and mechanical interpretation of elastic-viscoplastic can be found in
[9,[16]. Dynamic and quasistatic contact problems are the topic of numerous papers,
e.g. [I 2, [4 11, 26], and the comprehensive references [I5] [28]. However, the
mathematical problem modelled the quasi-static evolution of damage in thermo-
viscoplastic materials has been studied in [22].

The paper is organized as follows. In Section 2 we present the mechanical prob-
lem of the dynamic evolution of damage in elastic-thermo-viscoplastic materials.
We introduce some notations and preliminaries and we derive the variational for-
mulation of the problem. We prove in Section 3 the existence and uniqueness of
the solution as well as the positivity of the temperature.

2. STATEMENT OF THE PROBLEM

Let @ C R™ (n = 2,3) be a bounded domain with a Lipschitz boundary T,
partitioned into two disjoint measurable parts I'y and I's such that meas(I';) > 0.
We denote by S,, the space of symmetric tensors on R™. We define the inner product
and the Euclidean norm on R™ and S,,, respectively, by

u-v=uwv; Yu,veR" o.-17=0y7; Vo,TES,,
lul = (u-u)? YueR", |o|=(0c-0)? VYoes,.
Here and below, the indices ¢ and j run from 1 to n and the summation convention
over repeated indices is used. We shall use the notation
H=L*Q)" ={u={u}:u; € L*(Q)},
M ={o = {0y} : 01 = 0ji € L*(Q)},
Hy={u€H:e(u) e H},
H,={o € H:Div(o) € H},
V =HY Q).
Here € : Hy — H and Div : H; — H are the deformation and divergence operators,
respectively, defined by

e(u) = (eij(u)), &i;(u) = %(um‘ +uji), Div(o) = (04j,5)-

The sets H, H, H1, H1 and V are real Hilbert spaces endowed with the canonical
inner products:

(u,v)g = /Quividx, (o,7)n = ‘/Q(rijnjalgv7
(w,v)m, = (u,v)m + (e(u),e(v))n,
(0,7)4, = (0, 7)w + (Div(o), Div(7))u,
(f,9)v = (f,9) 2@ + (o, 9ei) 12(0) -

The associated norms are denoted by || - ||z, || |2, || - |z, [| - |7, and || - [|[v/. Since
the boundary I' is Lipschitz continuous, the unit outward normal vector field v on
the boundary is defined a.e. For every vector field v € H; we denote by v, and v
the normal and tangential components of v on the boundary given by

Vy =V U, V;=V—uU,l.
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Let Hr = (HY?(T))" and « : H; — Hr be the trace map. We denote by V the
closed subspace of H; defined by

V={veH :yvv=0onT4}.

We also denote by H{ the dual of Hr. Moreover, since meas(I'y) > 0, Korn’s
inequality holds and thus, there exists a positive constant Cy depending only on €2,
I'; such that

le)llae = Collvlla, VveV.

Furthermore, if o € H; there exists an element ov € H{ such that the following
Green formula holds

(0,e(v))n + (Div(e),v)n = (ov,7V)m.xH: YV € Hi.

In addition, if o is sufficiently regular (say C!), then

(0,e(v))n + (Div(o),v)g = /Fay ~yvdy Vv € Hj.

where dvy denotes the surface element. Similarly, for a regular tensor field o : Q2 —
S,, we define its normal and tangential components on the boundary by

O, =0V-V, O;=0V—0,U.

Moreover, we denote by V' and V' the dual of the spaces V and V, respectively.
Identifying H, respectively L%(§2), with its own dual, we have the inclusions

VCHCV, VcIL*Q)cV.

We use the notation (-, -)yrxy, (-, -}yv/xv to represent the duality pairing between
V',V and V', V, respectively.

For the rest of this article, we will denote by ¢ possibly different positive constants
depending only on the data of the problem.

The physical setting is the following. An elastic-thermo-viscoplastic body occu-
pies the domain Q. We assume that the body is clamped on I'y x (0,7, (T > 0)
and therefore the displacement field vanishes there. Surface tractions of density fy
acts on T'y x (0,7) and a volume forces of density f is applied in Q x (0,7). In
addition, we admit a possible external heat source applied in  x (0,7, given by
the function gq.

The mechanical problem may be formulated as follows.

Problem (P). Find the displacement field u : Q x (0,7) — R", the stress field
c:Qx(0,T) — S,, the temperature 6 : Q x (0,7) — R and the damage field
¢: Q% (0,T) — R such that

(1) = A1) + E(c(a(0) + [ 6(o(s)

(2.1)

- A(e(ﬁ(s))),s(u(s)),9(5),§(8)>d8 in Qae. te(0,7),
pu=Div(o)+f inQx(0,T), (2.2)
P — koAO = p(0,e(11),0,¢) +q in Qx (0,T), (2.3)
pS — k1A + Ok p(s) 3 ¢(o,e(u),0,5) in Qx (0,7), (2.4)
u=0 onTly x(0,7), (2.5)
ov=1, onTyx(0,T), (2.6)
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00

ko% +p80=0 onlx(0,7), (2.7)
% =0 onIx(0,7), (2.8)
u(0) =ug, w(0)=w, 6(0) =06, <(0)=c inQ. (2.9)

This problem represents the dynamic evolution of damage in elastic-thermo-
viscoplastic materials. Equation is the elastic-thermo-viscoplastic constitutive
law where A and £ are nonlinear operators describing the purely viscous and the
elastic properties of the material, respectively, and G is a nonlinear constitutive
function which describes the viscoplastic behavior of the material. represents
the equation of motion in which the dot above denotes the derivative with respect
to the time variable and p is the density of mass. Equation represents the
energy conservation where ¢ is a nonlinear constitutive function which represents
the heat generated by the work of internal forces and ¢ is a given volume heat
source. Inclusion describes the evolution of damage field, governed by the
source damage function ¢, where dx ¢(s) is the subdifferential of indicator function
of the set K of admissible damage functions given by

K={ecV:0<&xz)<1 ae. ze€},

in such a way that the damage function ¢ varied between 0 and 1. If ¢ = 1 there
is no damage in the material, if ¢ = 0 the material is completely damaged and if
0 < ¢ < 1 the material is partially damaged.

Equalities (2.5) and are the displacement-traction boundary conditions,
respectively. ([2.7), represent, respectively on I', a Fourier boundary condition
for the temperature and an homogeneous Neumann boundary condition for the
damage field on I'. Finally the functions ug, w, 6y and ¢y in are the initial
data.

In the study of the mechanical problem (P), we consider the following hypotheses

A:Q xS, — S, satisfies the following properties:

(a) There exists an Lg > 0 such that |A(z,e1) — A(z,e9)] <
Laley —eg| for all e1,e5 €S, ae. €
(b) There exists an m 4 such that (A(z,e1) — A(z,e2)).(e1 —e2) >

maler — eo)? for all 61,69 €S, ae. x € (2.10)
(¢) The mapping = — A(z,e) is Lebesgue measurable on ) for
alle €S,

(d) The mapping z — A(z,0) € H.
E:Q xS, — S, satisfies the following properties:

(a) There exists an Lg > 0 such that |E(x,e1)—E(z,e2)| < Leler—

go| for all €1,e9 € S,, a.e. x € Q;

(b) The mapping x — £(z, ) is Lebesgue measurable on € for all (2.11)
€ ESy;

(¢) The mapping x — &£(z,0) € H.
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G:QAxS§, xS, xR xR —S§, satisifes the following properties:

(a) There exists an Lg > 0 such that |G(x,01,e1,61,61) —
G(x,02,€2,02,%) < Lg(|lo1 — 02| + |e1 — &2| + 61 — O] + |51 — <2)
for all 01,09 € S, for all e1,e5 € S,,, for all 01,05 € R, for all
61,62 € Rae. x € (2.12)
(b) The mapping x — G(x,0,¢,0,¢) is Lebesgue measurable on
for all o,e € S, for all §,¢ € R;
(¢) The mapping z — G(«,0,0,0,0) € H.
P2 xS, xS, xR xR — R satisfies the following properties:
(a) There exists an L, > 0 such that |¢(x,01,e1,61,61) —
Y(x, 09,€2,02,62)| < Ly(|lor — 02| + |e1 — e2] + |61 — 2] + |51 — 52])
for all 01,09 € S, for all e1,e5 € S,,, for all 01,05 € R, for all
1,62 €Rae z e (2.13)
(b) The mapping  — ¥(z,0,¢,0,¢) is Lebesgue measurable on §
for all o,e € S, for all 8,¢ € R;
(c) The mapping x — t(x,0,0,0,0) € L?(Q).
¢: xS, xS, xR xR — R satisfies the following properties:
(a) There exists an Ly > 0 such that |¢(x,01,e1,601,61) —
o(z,02,€2,02,5)| < L¢(|0'1 —oa|+|e1 —ea| + |01 — 02| + |51 — <2])
for all 01,09 € S, for all e1,e5 € S,,, for all 01,05 € R, for all
s1,62 ERae z e (2.14)
(b) The mapping = — ¢(z,0,¢,0,) is Lebesgue measurable on
for all o,e € S, for all §,¢ € R;
(c) The mapping z — ¢(x,0,0,0,0) € L%(£).

pELX(), p=p">0.
fc L?0,T;H), f,e€ L*0,T;L*T)"). (2.15)
q € L*0,T; L*(Q)).

u €V, woeH, 6eV, ¢ekK. (2.16)
ki >0, i=0,L1 (2.17)
We denote by F(t) € V' the following element
(F(t),v)vxy = (£(t), v)a + (fo(t), vV)2(r,)» VYV EV, te(0,T). (2.18)
The use of permits to verify that
F c L*(0,T; V). (2.19)

We introduce the following continuous functionals
a: VxV -oR, aO(C,f):ko/VC-V{dx—!—ﬂ/Cﬁd’y, (2.20)
Q r
ap VxV— R, al(C,f) = k1/ VC . Vfdm (221)
Q

Using the above notation and Green’s formula, we derive the following variational
formulation of mechanical problem (P).
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Problem PV. Find the displacement field u : Q x (0,7) — R", the stress field
o:Qx(0,T) — S,, the temperature 6 : Q@ x (0,7) — R and the damage field
¢: Q% (0,T) — R such that

o(t) = A((a(t)) + E(e(u(t)))
(2.22)
/ Glo(s) — Ae(u(s))), (u(s)), 0(s), s(s))ds ae. t € (0,T),
(D), V)vry + (0(0), (V) = (B(1), Vvisy ¥v €V, ae. t€ (0.T), (2.23)
(pB(t), W)y v + ao(A(t),w)

= (Y(o(t),e(a(t)),0(t),<(t), w)vxv + (q(t), w)r2(0) (2.24)
Vw eV, ae. t € (0,T),

(p(8): € = s(B))vrxv + ar(s(t),€ — <(1))

~+

> (¢(a(t),e(u(t)), 0(1),5(1)), € — (t)>v'xv (2.25)
VEe K, ae. t€(0,T),¢(t) €
u(0) =ug, u(0)=w, 6(0)=0bo, g(O) =¢ in . (2.26)

3. MAIN RESULTS
The main results are stated by the following theorems.

Theorem 3.1 (Existence and uniqueness). Under assumptions (2.10] - there
exists a unique solution {u,o,0,c} to problem (PV). Moreover, the solutmn has the
reqularity

uec’0,T;V)ncH0,T; H),

uec L*0,T;V),
i e L0,T;V),
o€ L*(0,T;H),

0 € L*0,T;V)NnC®(0,T; L*(Q)),
6 e L2(0,T; V"),

s € L*(0,T;V)NnC°0,T; L*(Q)),
¢e L*0,T; V).

~ s~

0 N O Ot B W N -
e DD D DO —

—~

The proof will be done in several steps. Based on classical arguments of func-
tional analysis concerning variational problems, and Banach fixed point theorem.
First step. Take an arbitrary element

(A1) € L2(0,T5V x V! x V'), (3.9)

and consider the auxiliary problem.

Problem PV1,, ,. Find the displacement field u, : @ x (0,7) — R, the
temperature 6y : Q x (0,7) — R and the damage field ¢, : © x (0,7") — R which
are solutions of the variational system

(piny (1), v)vixy + (Ae(y(t))),e(v)r + (n(t), vivixy = (F(t), v)vrxy

3.10
Vv eV, ae te(0,7T), (3.10)
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(POA (L), w) v xv + a0 (Ox(1),w) = (A(t) + q(t), w) v v

(3.11)
Vw eV, ae. t e (0,T),
(S (t),€ — su®)vrxv + a1(u(t), & — cu(t)) (3.12)
> (1€ — () vixy VEEK, ae t€(0,T), su(t) € K,
u,(0) =ug, u,(0)=w, 6,(0)=10, <.(0)=q inQ. (3.13)

Lemma 3.2. For all (n,\, 1) € L*(0,T; V' x V' x V"), there exists a unique solution

{u,,0x,5,} to the auxiliary problem PV, . satisfying (3.1)-(3.3) and (3.5)-
(3.8).

Proof. Let us introduce the operator A:V — V',
(A, viyixy = (Ale(a)),e(v))n (3.14)
It follows from hypothesis that
|[Au — Av]|y < Lg|lu—vl|y Vu,ve.

Which proves that A is bounded and hemi-continuous on V.
On the other hand, by (2.10) and Korn’s inequality, we find for every v € V,

<AV, V>V/ xV
Ivilv
The passage to the limit in this inequality when ||v||y — 4oc implies that A is
coercive in V.

Next, by definition of A, the use of (2.10) and Korn’s inequality permits also to
obtain

> Cimallvlly.

(Au— Av,u—v)yxy > Comalla = vy ifuv.
Then A is strict monotone. Therefore, (3.10)) can be rewritten, making use the
operator A, as follows
pu,(t) + A(w,(t)) = F,(t) on )V ae. t € (0,7T), (3.15)
where
F,(t) =F(t) —n(t) e V.
We recall that by (2.19) we have F,, € L?*(0,7;V’). Kipping in mind that
the operator A is strict monotone, hemi-continuous, bounded and coercive, then

by using classical arguments of functional analysis concerning parabolic equations
[7, 19] we can easily prove the existence and uniqueness of w,, satisfying

w, € L*(0,T;V)nC°(0,T; H), (

w, € L*(0,T; V"), (3.17
pWwy (t) + A(wy(t)) =F,(t) on V' ae. te(0,T), (
wy(0) = wo. (

Consider now the function u,, : (0,T) — V defined by
t
w (£) = / w,(s)ds + gVt € (0,T). (3.20)
0

It follows from (3.18) and (3.19) that u,, is a solution of the equation (3.15) and it
satisfies (3.1])-(3.3).
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Furthermore, by an application of the Poincaré-Friedrichs inequality, we can find
a constant 5’ > 0 such that

2 B 2 / 2
[ vcias+ 2 [iopay= g [ cPas weev.

Thus, we obtain

a0(¢,¢) Z ey ¥ eV, (3.21)
where ¢; = komin(1,3’)/2, which implies that ay is V—elliptic. Consequently,
based on classical arguments of functional analysis concerning parabolic equations,

the variational equation (3.11]) has a unique solution ) satisfies (3.5))-(3.6).
On the other hand, we know that the form a; is not V-elliptic. To solve this

problem we introduce the functions
Su(t) = Mg, (1), &(t) = eTMe(t).
We remark that if ¢, § € K then ¢,, 5 € K. Consequently, is equivalent to
the inequality
(P5u(1),€ = Gu(®)) vy + 01(Gu(8), € = Gu(t)) + 1 (95, € — Gu(8)) L2 (o)
> (e Mt & —&,())vixy VEEK, ae t€(0,T), S, € K.
The fact that

(3.22)

a1(&,€) + k1 (p€, ) 12(q) > ki min(p*, D||E|; VE€V, (3.23)

and using classical arguments of functional analysis concerning parabolic inequal-
ities [7, [I0], implies that (3.22) has a unique solution ¢, having the regularity
(3.7)-(3.8). This completes the proof . O

Let us consider now the auxiliary problem.
Problem PV2,, . Find the stress field oy, , : @ x (0,7) — S, which is a
solution of the problem

Tann(8) = E(c((1) + [ 60,00

— A(€(ﬁn(8))),5(un(8)),9)\(5),§M(8))d8 a.e. t € (0,7),

Lemma 3.3. There exists a unique solution of Problem PV2, .y and it satisfies
. Moreover, if {u,,0x,,5u,} and oy, represent the solutions of problems
PV, x ) and PV2,, \ respectively, for 1 = 1,2, then there exists ¢ > 0
such that

(3.24)

iski)?
A ar (8) = O ra iz ()13
t
< [ (1 (9) = s + o () = w513 (3.25)
+ 103, (8) = Oxa ()15 + [l (5) — %Q(S)II\Z/)dS-
Proof. Let ¥, 5, : L*(0,T;H) — L*(0,T;H) be the mapping given by
Enanuo(t)

t , (3.26)
=5(E(un(t)))+/0 G(o(s) — Ale(ay(s))), e(uy(s)), 0x(s), su(s))ds.
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Let o; € L?(0,T;H), i = 1,2 and t; € (0,T). We find be using hypothesis (2.12)
and Holder’s inequality

t1
1200601 (81) = Sy w02 (t0)lI3 < LET/ lo1(s) = oa(s)|[3,ds. (3.27)
0

Integration on the time interval (0,t3) C (0,7T), it follows that

to to t1
/0 1202001 (t1) — Sy auo2(t1)]3dt < LgT/O /0 o1 (s) — aa(s)||3,dsdt;.
Using again ([3.27)), it follows that

ta t1
IS0 5001 (t2) = By a0z (t)llF, < LgT? / / lo1(s) — o2 (s) |3 dsdtr.
0 0

For t1,te,...,t, € (0,T), we generalize the procedure above by recurrence on n.
We obtain the inequality

[120,5,101(tn Enauoa(t )HH

<L2”T”/0 A/O lov(5) — o2 (8) % ds dt - .. dbn_1.

‘Which implies
) LénTnJrl T )
IZ00s1(ta) = Sprra(ta) e < =i [ lon(s) - oa()lfis.
' 0

Thus, we can infer, by integrating over the interval time (0,7, that
én n+2
2 2
||En,/\7u‘71 - 277,)\7NU2HL2(0,T;H) < ol o1 — U2||L2(0,T;H)-

It follows from this inequality that for n large enough, a power n of the map-
ping X, is a contraction on the space L?*(0,T;H) and, therefore, from the Ba-
nach fixed point theorem, there exists a unique element o, » , € L?(0,T;H) such
that X, x,.0na = Onau, Which represents the unique solution of the problem
PV2,.a,)- Moreover, if {u,,0,,5,,} and o, x,, represent the solutions of problem

PV, aip and PV2(,. . .., respectively, for i = 1,2, then we use (2.10)), (2.11)),
4-

12}) and Young’s inequality to obtain

||U"]1,)\17H1 (t) — Ona, Ao po (t)”%-l
t
< c||0771>>\1,M1 (t) — Ona, Ao 2 (t)”g-t + C/O (”um (S) - l.1772 (S)”%}

+ ||u711 (S) — Up, (S)”?} + ”9/\1 (S) - 9)\2 (S)H%/ + ”Clh (S) — Spe (S)”%/)ds

Which permits us to obtain, using Gronwall’s lemma, the inequality (3.25)).
Second step. Let us consider the mapping

A L0, TV x V' x V') — L*0,T;V x V! x V'),
defined by
A(n(t), A(t), p(t))
= (Ao(n(t),A(t),u(t)),w(on,x,u(t),f(ﬁn(t)),(A(t),cu(t)% (3.28)

0(0(1). £, (1), 0(1). (1)) ).
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where the mapping Ag is given by
<A0( (t) )\(t),u(t))7v>ley

t
+/0 oS (3.29)

O
Lemma 3.4. The mapping A has a fized point
(n*, N, u*) € L*(0,T; V' x V! x V).
Proof. Let t € (0,T) and
(11, A1, p12), (2, Ao, ) € L2(0, T3V x V! x V),
Let us start by using hypotheses (2.10), (2.11]) and (2.12)) to obtain
Ao (m1.(£), Ax(8), pa (£)) — Ao(nm2(), Az (), pa(2)) [l
< Ll ()~ v Ol + Lo [ (10000 (9) ~ Fnsrsa )
0 (3.30)
+ Lallty, (5) =y, (s)[lv + [[ag, (s) —wy, (s)[ly
103, (5) = 03 (220 + s () — s (5) 122000 ) s ave. € (0,7)
On the other hand, we know that for a.e. ¢t € (0,7,
t
[y, (8) = ap, ())][v < /O [, (5) = 1y, (s)[[vds. (3.31)
Applying Young’s and Holder’s inequalities, becomes, via ,
140 (1 (£), i (2), (1)) = Ao (n2(t), A2 (1), 2 () |5
t
<o [ (10mnn(5) = v e+ i 5) = a5 (332

+ [y, (5) = wg, ()15 + 105, (5) = Ox, ()15 + ll<ur (5) = G (S)ll%/)dS

a.e. t € (0,T). Furthermore, we find by taking the substitution n = 1, n = 12 in
(3.10) and choosing v = u,, — 1, as test function

<p(ﬁ7]1 (t) - 1.'.1772 (t)) + Aﬁn1 (t) - Al:l??z (t)’ ilm (t) - il??2 (t)>V’><V

= (m2(t) = m(8), 0y, () = 0y, ())yrxy ae. £ € (0, 7).
By virtue of (2.10)), this equation becomes

() d . . .

5 s (8) =, ()17 + mea[iy, () =y, (DI
< In2(t) = m () [y [, () — ay, (@)[lv.

Integrating this inequality over the interval time variable (0,t), Young inequality
leads to

(p") [ty () — 0, (D1 + mA/O 0y, (5) = g, (5) |3 ds
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2 ) - mlRs
Consequently,

[ )~ @) pds < [ Im(s) - m(@)peds ae e OT).  (333)
0 0

which also implies, using a variant of (3.31] -7 that

[y, (5) — g, ()] < 0/ I71(s) = m2(5)[3ds  aet € (0,7), (3.34)

Moreover, if we take the substitution A = A\;, A = A in (3.11) and subtracting the
two obtained equations, we deduce by choosing w = 0y, — 0, as test function

t
103, (£) = 05, (D7) + 1 /O 10, (5) = Ox, (5)II3-ds

< ; [A1(8) = A2(8)[[v/[10x, () — Ox, (8)[lvds a.e. t € (0,T).

Employing Holder’s and Young’s inequalities, we deduce that

163, (8) = O3, ()17 20 +/ 103, (s) — Ox; (5)[1-ds
(3.35)

< c/ A1 (s 2(s)|12ds ae. t€(0,T).

Substituting now {p = 1, =S, ), {1 = p2,§ =S, } in (3.22) and subtracting
the two inequalities, we obtain

t
1501 (8) = G (D720 +/0 1501 (£) = Guo (D)5 ds

t
< c/ lle ™ 1 (1 (s) — pa(s))||3ds ae. t € (0,T),
0

from which also follows that

t
501 (1) = 2 (D1 720 +/ 150 (8) = e (8) 13- ds
0 (3.36)

<c/ 1 (s) = pia(s)[Zds ace. t € (0,T),
We can infer, using ([3.25)), (3.32)), (3.33]), (3.35) and (3.36)), that
t
/0 1A0(m1(s), Ar(s), 1 (s)) — Do (112(5), Aa(s), pia(s)) [ ds

< C/O /OS (llﬁ’l’]l (T) - un2(7ﬂ)H\2; + ||9)\1 (r) — 9)\2(7")”%/
1, () = (I + 5 () = G (7“)||%/) drds a.e.te(0,T)
T /T
< C/O /0 (||1'1m (r) — 1'1772(7“)”% {16, () — B, ()%

+ g, (1) =y, (I + 6 (1) = G (7")||2v) dr ds
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Sy W (CACEHEIE
g () = gy () 108, (5) = Ony (93 + 11 (5) 3 (5)13 ) s
<o [ (Ime) = m() + 10a(5) = Ma)F -+ s () = (o)

[ty () = e ()13 ) ds
Thus, by (3.34), we find

T
/ 180 (n1(5), A1 (s), 11 (5)) — No(ma(s), Aa(s), pa(s)) [ ds
0 (3.37)

T
<c / (I (s) = ma()I + MM (5) = e () + laa () = pa(3)II3 ) s
Furthermore, hypothesis (2.13)) implies
t
(00 (9.0, 510,55 5))
= (s (9,600 (5)): O (5): s (5) ) [
t
< 3L12p/0 (HU"'lh/\th (S) ~ Ong, Ao,z (S)H%{ + ||1:1771 (S) - ﬁnz (S)H%

100, 8) ~ 0T + 15 () — 5O )ds ae. € (0.7).
This permits us to deduce, via (3.25), (3.33)), (3.35) and (3.36]), that

[ 10 (s (51,2000, 51),0,9). 60 (5))
0
— (0 s (5): i (), 0, (5): 4 () ) [ (3.38)

< c/o (||771(s) —0a(8) I3 + 1M1 (8) = Xa ()12 + [lpa(s) — uz(S)II%//)ds

Similarly, using (3.25]), (3.34), (3.35) and (3.36]), we obtain the following estimate
for ¢,

T
| 10(010 - 2000, (9,60, (5):50, ()
0
= (e s (9,11 (5)), 02, ), 6 (5)) 3 (3:39)

T
< [ (Ims) = mls) + 1000 = )+ i) = ma(s) ).
0

From (3.37)), (3.38)) and (3.39)), we conclude that there exists a positive constant
C > 0 verifying

lA(n1, Ary pn) = A(n2, A2, p2) || 220,70 x v v
<O —m2, A\t = Aoy pn — p2) | 20,150 x v x vy,
and so, by reapplication of mapping A, yields

(3.40)

A% (01, Ay ) — A% (2, A2, p2) || 220,707 x v vy
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S or ||( — M2, A1 — Ao, o1 — p2) || 20,10 x v x v
We generalize this procedure by recurrence on n. Then we obtain the formula

[A™ (1, Axy pn) — A" (n2, )‘27N2)||L2(0,T;V’><V’><V’)
con (3.41)
< FH(% =2, A1 — Az, i1 — p2)l[ L2010 x v x V-

We know that the sequence (C™/nl!),, converges to 0. So, for n sufficiently large
(;;, < 1. It means that a large power n of the operator A is a contraction on
L?(0,T;V" x V' x V'). Hence, Banach fixed point theorem shows that A admits a
unique fixed point (n*, \*, u*) € L2(0,T; V' x V! x V).

We can now prove the existence of a solution to problem (PV). To this aim, it
is sufficient to remark that for a.e. t € (0,7,

(el () + [ 0 (5) = Aleli (). 2(uay(5)). 00 (5).61())

=n"(t),
P(e(uy= (1)), Ox-(£), 5= (1)) = A*(2),
Pe(uy= (1)), Ox-(t), 5= (1)) = ™ (1),
which completes the proof. O

Theorem 3.5 (Positivity of the temperature). Let the hypotheses of Theorem
hold and suppose in addition that

P(o,e(u),0,6) >0 a.e inx(0,T), (3.42)
g>0 ae inQx(0,7), (3.43)
0o >0 a.e inQx(0,T). (3.44)

Then, the solution {u,0,0,¢} to problem (PV) is such that
O(x,t) >0 for a.e. (x,t) € Qx(0,T). (3.45)

Proof. We use a maximum principle argument [5]. Thus, we test the equation
(2.24) by the function —0~, where f~ denoting the so-called negative part of a

function f; ie., f~ = max{0,—f}, and integrate over (0,7). We can infer, using
the hypothesis (3.42)), (3.43)) and (3.44)), that
1
*( )26~ HLoc(o T2 Hallo” ||L2(o T:V)
<= [ [ vlctute.s). 000,95t 00 2. dods

—/ /q(:ms)@_(ac,s) drxds <0 ae. te(0,7).
0o Jo

Consequently
107 I20,7:v)n L (0,1522 () < 0,

which eventually gives (3.45]). O
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