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LOSS OF EXPONENTIAL STABILITY FOR A THERMOELASTIC
SYSTEM WITH MEMORY

BRUNO FERREIRA ALVES, WALDEMAR DONIZETE BASTOS, CARLOS ALBERTO

RAPOSO

Abstract. In this article we study a thermoelastic system considering the

linearized model proposed by Gurtin and Pipkin [8] instead of the Fourier’s
law for the heat flux. We use theory of semigroups [9, 11] combining Pruss’

Theorem [10] and the idea developed in [5] to show that the system is not

exponentially stable.

1. Introduction

We study a partial differential equation that models an elastic string:

utt − uxx + θxx = 0 in (0, L)× (0,∞), (1.1)

θt − g ∗ θxx + c g ∗ θ − uxxt = 0 in (0, L)× (0,∞), (1.2)

with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) .

The function u = u(x, t) is the small transversal vibration of the elastic string of
reference configuration of length L, and θ = θ(x, t) is the temperature difference
from the material and natural ambient. To fix ideas we assume that the string is
held fixed at both ends, x = 0 and x = L. We impose the boundary conditions

u(0, t) = u(L, t) = 0,

θ(0, t) = θ(L, t) = 0.

In this model, c is a positive constant, and g : R+ → R+ is the relaxation function.
We assume that g is differentiable and satisfies g(0) > 0, g′(t) < 0 and

1−
∫ ∞

0

g(s)ds = ` > 0.
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We introduce the convolution product

(g ∗ u)(t) :=
∫ t

0

g(t− τ)u(·, τ)dτ .

Now we observe that when c = 0 the thermoelastic system has exponential decay,
as can be seen in [4], when we replace g ∗ u by θ in (1.2) we also have exponential
decay, see [3]. The similar situation is valid for thermoelastic plate, see [5] and [7].

The article is organized as follows, in the Section 2 we introduce the notation and
the functional spaces, in the Section 3 we obtain the semigroup of solutions and fi-
nally, in the Section 4 we prove the loss of exponential stability for the thermoelastic
system with memory.

2. Functional setting and notation

We use the standard Lebesgue spaces and Sobolev spaces with their usual pro-
prieties as in [1]. Consider the positive operators A and B on L2(0, L) defined by
A = −(·)xx and B = cI − ( · )xx, with domains D(A) = D(B) = (H2 ∩H1

0 )(0, L).
Now, for r ∈ R, we introduce the scale of Hilbert spaces Hr = D(Ar/2) with
the usual inner products 〈v1, v2〉Hr

= 〈Ar/2v1, A
r/2v2〉 and we have Hr1 ↪→ Hr2

are compact whenever r1 > r2. Concerning the memory kernel g, we make the
substitution µ(s) = −g(s) and we require

µ ∈ C1(R+) ∩ L1(R+), µ(s) > 0, µ′(s) ≤ 0, g(0) =
∫ ∞

0

µ(s)ds > 0. (2.1)

Calling σ∞ = sup{s : µ(s) > 0}, we infer that, dual to (2.1), for each σ > 0, there
exists a set Oσ ⊂ (σ, σ∞) of positive Lebesgue measure such that µ′(s) < 0, in Oσ.
Now for r ∈ R consider the weighted Hilbert spaces:

Mr = L2
µ(R+;Hr)

with the inner product

〈ν, η〉Mr
=

∫ ∞

0

µ(s)〈Br/2ν(s), Br/2η(s)〉 ds (2.2)

and we introduce as in [6] the linear operator T on M1 defined by Tη = −ηs with
domain

D(T ) = {η ∈M1 : ηs ∈M1, η(0) = 0},

where ηs is the distributional derivative of η with respect to the internal variable
s, and then the operator T is the infinitesimal generator of a C0-semigroup of
contractions. In particular, there holds

〈Tη, η〉M1 =
∫ ∞

0

µ′(s)‖B1/2η(s)‖ ds ≤ 0, for all η ∈ D(T ). (2.3)

Finally, we define with the usual inner products, the following Hilbert spaces:

Hr = Hr+2 ×Hr ×Hr ×Mr+1, r ∈ R.
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3. The semigroup of solutions

To describe properly the solutions of the system (1.1)-(1.2) by means of a C0-
semigroup of linear operators acting on the phase-space H0, we will follow the ideas
of [1]. In this direction we introduce an additional variable, namely, the summed
past history of θ defined as

ηt(s) =
∫ s

0

θ(t− y)dy, with t, s ≥ 0.

Observe that we have formally ( d
dt +

d
ds )(ηt(s)) = θ in (0, L) subject to the boundary

and initial conditions ηt(0) = 0 in (0, L), t ≥ 0,

η0(s) =
∫ s

0

θ(−y)dy, s ≥ 0.

For the rest of this article, we consider the vectors U(t) = (u(t), v(t), θ(t), ηt)T and
U(0) = (u0, v0, θ0, η0)T ∈ H0. We obtain the linear evolution equation, in H0,

Ut − LU = 0 (3.1)

U(0) = U0 (3.2)

where the linear operator L is defined as

LU =


v

uxx − θxx

uxx −
∫∞
0

g(s)[cθ(t− s)− θxx(t− s)]ds
η

 .

with domain D(L) = {(u, v, θ, η)T ∈ H0} such that v ∈ H2, uxx − θxx ∈ H0,

uxx −
∫ ∞

0

g(s)[cθ(t− s)− θxx(t− s)]ds ∈ H0, η ∈ D(T ).

Theorem 3.1. System (3.1) defines a C0-semigroup of contractions S(t) = etL on
the phase-space H0.

The proof is done by using the Lumer - Phillips theorem [9, Theorem 4.3].

4. Loss of exponential stability

To prove the loss of exponential stability we use the following result.

Theorem 4.1. Let S(t) = etL be a C0-semigroup of contractions in a Hilbert space.
Then S(t) is exponentially stable if and only if,

iR = {iβ : β ∈ R} ⊂ ρ(L) (4.1)

and
‖(λI − L)−1‖ ≤ C, for every λ ∈ iR. (4.2)

The proof of the above theorem can be found in [10] and in [11].
We note that (3.1)-(3.2) is dissipative, because (2.3) implies

〈LU, U〉H0 = 〈Tη, η〉M1 ≤ 0, for all U ∈ D(L), (4.3)

and it is standard matter to show that (I − L) maps D(L) onto H0, see [3], where
a similar case is treated.

Then, using 〈Tu, u〉 < 0 for all nonzero u in D(T ), one can show that the solution
of thermoelastic system (1.1)-(1.2) decays to zero as time approaches ∞.
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Now we are in position of to show our main result.

Theorem 4.2. The semigroup S(t) = etL on H0 defined by (3.1)-(3.2) is not
exponentially stable.

Proof. For iλ ∈ ρ(L) and V = (0, 0, 0, η)T ∈ H0, consider the complex equation

(iλ I − L)U = V (4.4)

that when written explicitly reads

iλu− v = 0 (4.5)

iλv − uxx + θxx = 0 (4.6)

Consider an orthonormal basis {wj}n∈N of eigenvectors of the operator A and the
respective eigenvalues {αn}n∈N. We recall that αn →∞ as n →∞. We set

ηn(s) =
wn√

c + αn

and

Vn = (0, 0, 0, ηn)T .

Notice that, using (2.1) and (2.2) we have

‖Vn‖H0 = ‖ηn‖M1 =
1

(c + αn)

∫ ∞

0

µ(s)‖B1/2wn(s)‖2ds =
1

(c + αn)

∫ ∞

0

µ(s)(c + αn)‖wn(s)‖2ds

=
∫ ∞

0

µ(s)ds = g(0).

Now we build a sequence of λn such that the corresponding solution Un of

(iλnI − L)Un = Vn (4.7)

satisfies ‖Un‖H0 → ∞ as n → ∞. In this direction we look for a solution Un =
(wn, wn, snwn, wn) where sn ∈ C. Then, from (4.5) and (4.6) we have

−λ2
n − αn + snαn = 0 (4.8)

that implies

sn = 1 +
λ2

n

αn
.

Choosing λn = |αn| we finally have

‖Un‖H0 ≥ ‖sn wn‖H0 = |sn| ≥
λ2

n

|αn|
= |αn| → ∞ as n →∞.

which yields the conclusion. �
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