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ASYMPTOTIC STABILITY OF SWITCHING SYSTEMS

DRISS BOULARAS, DAVID CHEBAN

Abstract. In this article, we study the uniform asymptotic stability of the
switched system u′ = fν(t)(u), u ∈ Rn, where ν : R+ → {1, 2, . . . , m} is an

arbitrary piecewise constant function. We find criteria for the asymptotic sta-

bility of nonlinear systems. In particular, for slow and homogeneous systems,
we prove that the asymptotic stability of each individual equation u′ = fp(u)

(p ∈ {1, 2, . . . , m}) implies the uniform asymptotic stability of the system (with

respect to switched signals). For linear switched systems (i.e., fp(u) = Apu,
where Ap is a linear mapping acting on En) we establish the following result:

The linear switched system is uniformly asymptotically stable if it does not

admit nontrivial bounded full trajectories and at least one of the equations
x′ = Apx is asymptotically stable. We study this problem in the framework

of linear non-autonomous dynamical systems (cocyles).

1. Introduction

The aim of this article is studying the uniform asymptotic stability of the
switched system

x′ = fν(t)(x), (x ∈ En) (1.1)

where ν : R+ → {1, 2, . . . ,m} is an arbitrary piecewise constant function, En is an
n-dimensional euclidian space, and R+ := [0,+∞).

The discrete-time counterpart of (1.1) takes the form

xk+1 = fν(k)(xk), (1.2)

where ν : Z+ → {1, 2, . . . ,m} and Z+ := {0, 1, 2, . . . }.
A continuous function γ : R+ → En (respectively, γ : Z+ → En) is called a solu-

tion of (1.1) (respectively, of (1.2)), if γ(t) = γ(0) +
∫ t

0
fν(s)(γ(s))ds (respectively,

γ(n+ 1) = fν(n)(γ(n))) for all t ∈ R+ (respectively, n ∈ Z+).
Denote by [En] the space of all linear operators A : En → En equipped with the

operator norm.
If fp(x) = Ap(x) (x ∈ En and p = 1, 2, . . . ,m), where Ap ∈ [En], then (1.1)

(respectively, (1.2) is called a linear switched system.
The linear switched system (1.1) (respectively, (1.2)) is called uniformly (with

respect to switching signals ν) exponentially stable if there are two positive numbers
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N and ν such that |γ(t)| ≤ N e−νt|γ(0)| for all solution γ of (1.1) (respectively,
(1.2)) and t ∈ R+ (respectively, t ∈ Z+).

Remark 1.1. (1) If (1.1) is uniformly exponentially stable, then every equation
x′ = Aix (i = 1, 2, . . . ,m) is also exponentially stable; i.e.,

Reλj(Ai) < 0 (1.3)

for all j = 1, 2, . . . , n, where σ(Ai) := {λ1(Ai), λ2(Ai), . . . , λn(Ai)} is the spectrum
of the linear operator Ai).

(2) From condition (1.3), generally speaking, it does not follow uniformly expo-
nentially stability of linear switched system (1.1) (see, for example, [31] and [33]).
However, if in addition the interval between any two consecutive discontinuities of
ν if sufficiently large, then the condition (1.3) implies the uniformly exponential
stability of (1.1) [36].

The problem of uniform exponential stability for the switched linear systems
(both with continuous and discrete time) arises in a number of areas of mathematics:
control theory – Cheban [12], Molchanov [34]; linear algebra – Artzrouni [2], Beyn
and Elsner [4], Bru, Elsner and Neumann [8], Daubechies and Lagarias [18], Elsner
and Friedland [20], Elsner, Koltracht and Neumann [21], Gurvits [25], Vladimirov,
Elsner and Beyn [43]; Markov Chains – Gurvits [22], Gurvits and Zaharin [23, 24];
iteration process – Bru, Elsner and Neumann [8], Opoitsev [37] and see also the
bibliography therein.

For the discrete linear switched system (1.2), it is established the following result
in [15].

Theorem 1.2 (Cheban, Mammana [15]). Let Ai ∈ [En] (i = 1, 2, . . . ,m). Assume
that the following conditions are fulfilled:

(1) there exists j ∈ {1, 2, . . . ,m} such that the operator Aj is asymptotically
stable (i.e., r(Aj) < 1, where r(A) is the spectral radius of the operator A);

(2) the discrete linear switched system (1.2) has not nontrivial bounded on Z
solutions.

Then the discrete linear switched system (1.2) is uniformly exponentially stable

In this paper we generalize this result for linear switched system (1.1) with con-
tinuous time. We present here also some tests of the asymptotic stability of non-
linear switched systems. In particular, for the slow homogeneous switched systems
(i.e., fp(λu) = λfp(u) for all u ∈ Rn, p ∈ {1, 2, . . . ,m} and λ > 0) we prove that
the asymptotic stability of each individual equation u′ = fp(u) (p ∈ {1, 2, . . . ,m})
implies the uniform (with respect to switched signals) asymptotic stability of sys-
tem (1.1). We study this problem in the framework of non-autonomous dynamical
systems (cocyles).

This paper is organized as follows: In section 2 we introduce the shift dynam-
ical system on the space of piecewise constant functions which play a very im-
portant role in the study of of switched system. We show that every switched
system generates a cocycle. This fact allows us to apply the ideas and methods of
non-autonomous dynamical systems for studying the switched systems. Here , we
present some tests of the asymptotic stability of nonlinear switched systems (1.1)
(Theorems 2.20, 2.24 and 3.11).

Section 3 is dedicated to the study of switched homogeneous systems. We give a
necessary and sufficient conditions of asymptotic stability of homogeneous systems



EJDE-2010/21 ASYMPTOTIC STABILITY OF SWITCHING SYSTEMS 3

(1.1) (Theorem 3.8) and a sufficient condition for the asymptotic stability of slow
switched homogeneous systems (1.1) is given (Theorem 3.11).

The main result of Section 4 is Theorem 4.14, which contains a necessary and
sufficient conditions for the uniformly exponentially stability of linear switched
system (1.1).

2. Asymptotic Stability of Nonlinear Switched Systems

Shift dynamical systems on the space of piecewise constant functions.
Let m ∈ N := {1, 2, . . . } (m ≥ 2), P := {1, 2, . . . ,m} , and S(R+,P) be the
set of piecewise constant functions ν: R+ → P, i.e., ν ∈ S(R+,P) if and only if
there is a increasing sequence {tνk}k∈Z+ such that tν0 := 0, tk → +∞ as k → +∞,
ν(t) = pk ∈ P for all t ∈ [tνk, t

ν
k+1).

Denote by

d(ν1, ν2) :=
+∞∑
k=1

1
2k

dk(ν1, ν2)
1 + dk(ν1, ν2)

(2.1)

for all ν1, ν2 ∈ S(R+,P), where dk(ν1, ν2) :=
∫ k

0
||ν1(t)− ν2(t)||dt for all k ∈ N. By

(2.1) is defined a complete metric on the space S(R+,P).
Let τ > 0. Denote by Sτ (R+,P) the subset of S(R+,P) consisting of functions

ν ∈ S(R+,P) with the sequences {tνk}k∈Z+ satisfying the condition tνk+1 − tνk ≥ τ
for all k ∈ Z+.

Theorem 2.1 ([29]). (Sτ (R+,C), d) is a compact metric space.

Let σ be a mapping from R+×Sτ (R+,P) into Sτ (R+,P) defined by the equality
σ(t, ν) := νt for all t ∈ R+ and ν ∈ Sτ (R+,P), where νt is the t–shift of the function
ν, i.e., νt(s) := ν(t+ s) for all s ∈ R+. It is easy to verify that:

(1) σ(0, ν) = ν for all ν ∈ Sτ (R+,P);
(2) σ(t1 + t2, ν) = σ(t2, σ(t1, ν)) for all t1, t2 ∈ R+ and ν ∈ Sτ (R+,P);
(3) for all t ∈ R+ and ν ∈ Sτ (R+,P) there exists l = l(t, ν) ∈ Z+ such that

t ∈ [tνl , t
ν
l+1), {t

νt

k } = {tνl+k} − t := {tνk+l − t : k ∈ N} and tνt
0 := 0.

Theorem 2.2 ([6, 29, 41]). The mapping σ : R+ × Sτ (R,P) → Sτ (R+,P) is con-
tinuous and, consequently, (Sτ (R+,P),R+, σ) is a dynamical system on Sτ (R+,P).

Switched Dynamical Systems.

Definition 2.3. A switched dynamical system [31] is a differential equation of the
form

x′ = fν(t)(x) (2.2)

where {fp : p ∈ P} is a family of sufficiently regular functions from En on En

parametrized by some finite index set P, and ν : R+ → P is a piecewise constant
function of time, called a switching signal.

For example, we can take the function fp, p ∈ P, locally Lipschitzian such that
the equation x′ = fp(x) generates on En a dynamical system (En,R+, πp).

Remark 2.4. Note that
(1) a piecewise constant function ν : R+ → En has at most a countable set

{tνk} of discontinuity points;
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(2) without loss of the generality we may suppose that tνk → +∞ as k → +∞
(every finite segment [a, b] ⊂ R+ contains at most a finite number of points
from {tνk}).

Definition 2.5. A positive number τ is called a dwell time of (2.2) if for arbitrary
switching signal ν the interval between any two consecutive switching times is not
smaller then τ , i.e., tνk+1 − tνk ≥ τ for all k ∈ N.

Definition 2.6. A continuous function γ : R+ → Enis called a solution of switched
system (2.2), if

γ(t) = πν(t)(t− tνk, γ(t
ν
k)) (2.3)

for all t ∈ [tνk, t
ν
k+1) and k ∈ {0, 1, 2, . . . }.

Denote by t → ϕ(t, x, ν) the solution of equation (2.2) with initial condition
ϕ(0, u, ν) = u, assuming that an unique solution exists for all t ∈ R+. Then the
mapping ϕ : R+ × En × Sτ (R+,C) possesses the following properties:

(1) ϕ(0, u, ν) = u for all u ∈ En and ν ∈ Sτ (R+,P);
(2) ϕ(t + s, u, ν) = ϕ(s, ϕ(t, u, ν), σ(t, ν)) for all t, s ∈ R+, u ∈ En and ν ∈

Sτ (R+,P).

Theorem 2.7 ([29]). The mapping ϕ : R+×En×Sτ (R+,P) → En is continuous.

Thus the triple 〈En, ϕ, (Sτ (R+,P),R+, σ)〉 is a cocycle under dynamical system
(Sτ (R+, P), σ) with the fiber En and, consequently, we can study the switched
systems (1.1) in the framework of the non-autonomous (cocycle) systems (see, for
example, [10, 41]).

Global attractors of dynamical systems. Let (X, ρ) be a complete metric
space and (X,R+, π) be a dynamical system on X.

Definition 2.8 ([10, ChI]). A dynamical system (X,R+, π) is said to be
• pointwise dissipative if there exists a nonempty compact subset K ⊆ X

such that
lim

t→+∞
ρ(π(t, x),K) = 0 (2.4)

for all x ∈ X (in this case one say that the set K attracts every point x of
X);

• compactly dissipative if the equality (2.4) holds uniformly with respect to x
on every compact subset M from X; i.e., there exists a nonempty compact
subset K ⊆ X attracting every compact subset M in X.

Remark 2.9. It is clear that every compact dissipative dynamical system is point-
wise dissipative. The pointwise dissipativity, generally speaking, does not imply
the compact dissipativity (see [10, ChI]).

Theorem 2.10 ([10, ChI]). If the metric space (X, ρ) is locally compact, then the
dynamical system (X,R+, π) is compactly dissipative if and only if it is pointwise
dissipative.

Let M ⊆ X; denote
Ω(M) := ∩t≥0∪τ≥tπ(τ,M).

If the dynamical system (X,R+, π) is compactly dissipative and K is a compact
subset fromM which attracts every compact subset fromX, then the set J := Ω(K)



EJDE-2010/21 ASYMPTOTIC STABILITY OF SWITCHING SYSTEMS 5

does not depend of the choice of the attracting set K and it is well defined only by
dynamical system (X,R+, π) (see, for example, [10, 26]). The set J is called [10]
Levinson center for compactly dissipative dynamical system (X,R+, π).

Definition 2.11. A subset M ⊆ X is called:
• positively (respectively, negatively) invariant if π(t,M) ⊆M (respectively,
M ⊆ π(t,M)) for all t ∈ R+;

• invariant if it is positively and negatively invariant, i.e., π(t,M) = M for
all t ∈ R+;

• orbitally stable if for every ε > 0 there exists a positive number δ = δ(ε)
such that ρ(x,M) < δ implies ρ(π(t, x),M) < ε for all t ∈ R+;

• attracting if there exists a positive number α such that
limt→+∞ ρ(π(t, x),M) = 0 for all x ∈ B(M,α) := {x ∈ X : ρ(x,M) < α};

• asymptotically stable if it is an orbitally stable and attracting set.

Theorem 2.12 ([10, 26]). Let (X,R+, π) be compactly dissipative dynamical sys-
tem. Then the following statements hold:

(1) the Levinson center J of (X,R+, π) is a nonempty, compact and invariant
subset of X;

(2) J is asymptotically stable;
(3) J attracts every compact subset M from X;
(4) J is a maximal compact invariant set in X, i.e., if J ′ is a compact invariant

subset from X, then J ′ ⊆ J .

Denote
ΩX := ∪{ωx : x ∈ X},

where ωx := Ω({x}) = ∩t≥0∪τ≥tπ(τ, x).

Theorem 2.13 ([10, ChI]). The pointwise dissipative dynamical system (X,R+, π)
is compact dissipative if and only if there exists a nonempty compact set M ⊆ X
possessing the following properties:

(1) ΩX ⊆M ;
(2) M is orbitally stable.

Remark 2.14. Under the conditions of Theorem 2.13 J ⊆ M , where J is the
Levinson center of (X,R+, π).

Asymptotic stability of switched systems. We are assuming here that every
equation

x′ = fp(x) (2.5)
(p ∈ P) has a trivial equilibrium point: fp(0) = 0, p ∈ P. It is clear that in this case
the switched system (2.2) has a trivial solution, i.e., ϕ(t, 0, ν) = 0 for all t ∈ R+

and ν ∈ Sτ (R+,P).

Definition 2.15. The trivial solution of the switched system (2.2) is called:
• uniformly (with respect to switching signals ν) stable if for every ε > 0

there exists a positive number δ = δ(ε) (depending only of ε) such that
|u| < δ implies |ϕ(t, u, ν)| < ε for all t ∈ R+ and ν ∈ Sτ (R+,P);

• attracting if there exists a positive number α such that

lim
t→+∞

|ϕ(t, u, ν)| = 0 (2.6)

for all |u| < α and ν ∈ Sτ (R+,P);
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• uniformly asymptotically stable if it is uniformly stable and attracting;
• uniformly globally asymptotically stable if it is uniformly asymptotically

stable and (2.6) holds for all u ∈ En and ν ∈ Sτ (R+,P).

Remark 2.16. Clearly, a necessary condition for uniformly (globally) asymptoti-
cally stability under arbitrary switching is that all of the individual subsystems (2.5)
are (globally) asymptotically stable. On the other hand, the (global) asymptotic
stability of all the individual subsystems (2.5) is not sufficient (see, for example,
[31, 33] and also [19] (for the discrete switched systems)).

Definition 2.17. Let R+ ⊂ T ⊂ R. A continuous mapping γx : T → X is called
a motion of the dynamical system (X,R+, π) issuing from the point x ∈ X at the
initial moment t = 0 and defined on T, if

(a) γx(0) = x;
(b) γx(t2) ∈ π(t2 − t1, γx(t1)) for all t1, t2 ∈ T (t2 > t1).

The set of all motions of (X,R+, π), passing through the point x at the initial
moment t = 0 is denoted by Φx(π) and Φ(π) := ∪{Φx(π) : x ∈ X} (or simply Φ).

Definition 2.18. The trajectory γ ∈ Φ(π) defined on R is called a full (entire)
trajectory of the dynamical system (X,R+, π).

Definition 2.19. A continuous function γν : R → En is said to be an entire
solution of switched system (2.2) if there exists an entire trajectory γ̃ ∈ Φν(σ) such
that γν(t+ s) = ϕ(t, γν(s), γ̃(s)) for all t ∈ R+ and s ∈ R.

Theorem 2.20. The trivial solution of switched system (2.2) is uniformly globally
asymptotically stable if and only if the following conditions are fulfilled:

(1) every solution of switched system (2.2) is bounded on R+; i.e.,
supt∈R+

|ϕ(t, u, ν)| < +∞ for all u ∈ En and ν ∈ Sτ (R+,P);
(2) the switched system does not have nontrivial entire bounded on R solutions.

Proof. Necessity: Let (2.2) be uniformly asymptotically stable. Let
X := En × Sτ (R+,P) and (X,R+, π) be a skew-product dynamical system gen-
erated by cocycle ϕ; i.e., π(t, (u, ν)) := (ϕ(t, u, ν), σ(t, ν)) for all t ∈ R+, u ∈ En

and ν ∈ Sτ (R+,P). At first we will prove that the skew-product dynamical system
(X,R+, π) is compactly dissipative. To this end, we note that the space X is locally
compact because Sτ (R+,P) is compact. According to Theorem 2.10, it is sufficient
to establish its pointwise dissipativity. Let x := (u, ν) ∈ En × Sτ (R+,P), then the
semi-trajectory Σx := ∪t≥0π(t, x) is relatively compact because |ϕ(t, u, ν)| → 0 as
t → +∞. Thus ωx ⊆ Θ = {0} × Sτ (R+,P) for all x ∈ X, where ωx is the ω–limit
set of the point x. This means that (X,R+, π) is pointwise dissipative and, hence,
it is compactly dissipative too.

Now we will establish that under the conditions of Theorem the set Θ is orbitally
stable. In fact, if we suppose that this is not true, then there are ε0 > 0, δn → 0
(δn > 0) and tn → +∞ such that

ρ(xn,Θ) < δn and ρ(π(tn, xn),Θ) ≥ ε0 (2.7)

for all n ∈ N. Since Θ is a compact set then we may suppose that {xn} := (un, νn)
is a convergent sequence. Let x̄ := limn→+∞ xn, then by (2.7) there exists ν̄ ∈
Sτ (R+,P) such that x̄ = (0, ν̄). On the other hand by compact dissipativity of
the dynamical system (X,R+, π) we may suppose that the sequence {π(tn, xn)} is
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also convergent. Denote by x̃ its limit; i.e., x̃ := limn→+∞ π(tn, xn). From (2.7)
it follows that ρ(x̃,Θ) ≥ ε0 and, consequently, |ũ| = limn→+∞ |ϕ(tn, un, νn)| ≥ ε0.
Thus x̃ := (ũ, ν̃) 6= (0, ν̃). Now we denote by δ0 = δ(ε0) > 0 a positive number
from the uniform stability of switched system (2.2). Then for a sufficiently large n
we will have

|ϕ(tn, xn, νn)| < ε0/2 (2.8)

and, consequently, |ũ| ≤ ε0/2. The obtained contradiction proves our statement.
Taking into account that the set Θ is compact, ΩX ⊆ Θ and Θ is orbitally stable

according to Theorem 2.13 (see also Remark 2.14) we obtain J ⊆ Θ. From this
inclusion it follows that the switched system does not the nontrivial entire solutions
bounded on R. In fact, if γ : R → En is a nontrivial entire solution of (2.2) which
is bounded on R, then γ(s) := (ψ(s), σ(s, ν)) (s ∈ R) is an entire trajectory of
skew-product dynamical system (X,R+, π) with relatively compact rang γ(R) and,
consequently, γ(s) ∈ J for all s ∈ R. Since ψ is a nontrivial solution of (2.2), then
γ(R) 6⊆ Θ. The obtained contradiction proves our statement.

Sufficiency. Let now all solutions of switched system (2.2) are bounded on R+

and (2.2) does not have nontrivial bounded on R entire solutions. Let x := (u, ν) ∈
En × Sτ (R+,P), then the semi-trajectory Σx := ∪t≥0π(t, x) is relatively compact
because ϕ(R+, u, ν) is bounded. Thus the ω–limit set ωx of the point x is nonempty,
compact and invariant. Let p := (ũ, ν̃) ∈ ωx, then there exists an entire trajectory
ψ : R → ωx of the dynamical system (X,R+, π). It is easy to verify that the
continuous function γ := pr2 ◦ ψ (pr2 : X → Sτ (R+,P)) is an entire trajectory of
the switched system (2.2) and γ(R) is relatively compact. Since trivial solution is
an unique bounded on R entire solution of (2.2) then γ(t) = 0 for all t ∈ R. Thus
ωx ⊆ Θ := {0} × Sτ (R+,P) for all x ∈ X and, consequently, ΩX is a compact
subset because ΩX ⊆ Θ. This means that (X,R+, π) is pointwise dissipative and,
hence, it is compactly dissipative too.

Let J the Levinson center of (X,R+, π). We will show that J = Θ. To prove
this equality it is sufficient to establish the inclusion J ⊆ Θ because Θ is a compact
and invariant subset of X and, consequently, Θ ⊆ J (according to Theorem 2.10
J is the maximal compact invariant subset of X). Let x := (u, ν) ∈ J , then there
exists an entire trajectory ψ : R → J of dynamical system (X,R+, π) such that
ψ(0) = x. Then the function γ : R → En defined by equality γ(s) := pr2(ψ(s))
(s ∈ R) is an entire solution of switched system (2.2) which is bounded on R.
Under the conditions of Theorem γ coincides with the trivial solution of (2.2) and,
consequently, x ∈ Θ; i.e., J ⊆ Θ.

To finish the proof it is establish the uniform asymptotic stability of the trivial
solution of (2.2). If we suppose that it is not true, then there are ε0 > 0, δn → 0
(δn > 0) and tn → +∞ such that

|xn| < δn and |ϕ(tn, un, νn)| ≥ ε0 (2.9)

for all n ∈ N. Since the dynamical system (X,R+, π) is compactly dissipative, then
we may suppose that the sequences xn := (un, νn) and π(tn, xn) = (ϕ(tn, un, νn),
σ(tn, νn)) are convergent. Let x̄ := limn→+∞ xn and x̃ := limn→+∞ π(tn, xn). It
is clear that x̃ ∈ J ⊆ Θ. On the other hand from the inequality (2.9) we obtain
|ũ| ≥ ε0, where x̃ = (ũ, ν̃) and, consequently, x̃ /∈ Θ. The obtained contradiction
proves our statement. �
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Corollary 2.21. The trivial solution of switched system (2.2) is uniformly globally
asymptotically stable if and only if the following conditions are fulfilled:

(1) limt→+∞ |ϕ(t, u, ν)| = 0 for all u ∈ En and ν ∈ Sτ (R+,P);
(2) the switched system does not have nontrivial entire bounded on R solutions.

Proof. This statement it follows from Theorem 2.20. In fact, under the conditions
of Theorem 2.20 it easy to see that for every bounded on R+ solution ϕ(t, u, ν) we
have supt→+∞ |ϕ(t, u, ν)| = 0. �

Remark 2.22. (1) Note that in the particular case this statement was established
by Kloeden [29]. Namely, in [29] it is proved that the trivial (zero) solution of
switched system (2.2) is uniformly asymptotically stable (with respect to two-sided
switched signals), if the trivial solution of each individual subsystem (2.5) is asymp-
totically stable, these systems have a common positively invariant absorbing set and
the zero solution is the only bounded entire solution of switched system (2.2).

(2) Theorem 2.10 also holds for arbitrary non-autonomous dynamical systems
〈(X,T+, π), (Y,T, σ), h〉 if the following conditions are fulfilled:

(1) the space Y is compact and invariant (i.e., σ(t, Y ) = Y for all t ∈ T);
(2) (X,h, Y ) is a finite-dimensional vectorial fibering with the norm | · |.

Criteria for asymptotic stability.

Lemma 2.23 ([16]). Let f : R+ → R+ be a function satisfying the following
conditions:

(H1) f(0) = 0;
(H2) f(t) > 0 for all t > 0;
(H3) f : (0,+∞) → (0,+∞) is locally Lipschitz;
(H4) f satisfies the condition of Osgoode, i.e.,

∫ ε

0
ds

f(s) = +∞ for all ε > 0.

Then, the equation
u′ = −f(u) (2.10)

admits an unique solution ω(t, r) with initial condition ω(0, r) = r and the mapping
ω : R2

+ → R+ possesses the following properties:
(1) the mapping ω : R2

+ → R+ is continuous;
(2) ω(t, r) < r for all r > 0 and t > 0;
(3) for all r > 0 the mapping ω(·, r) : R+ → R+ is decreasing;
(4) for all t ∈ R+ the mapping ω(t, ·) : R+ → R+ is increasing;
(5) ω(t, 0) = 0 for all t ∈ R+;
(6) limt→+∞ ω(t, r) = 0 for all r > 0.

Theorem 2.24. Suppose that there exists a function θ ∈ C(R,R) satisfying the
above properties (H1)-(H4) and the inequality

〈u, fp(u)〉 ≤ −θ(|u|2) (2.11)

for all u ∈ En and p ∈ P. Then the following statements hold:
(1)

|ϕ(t, u, ν)|2 ≤ ω(t, |u|2)
for all t ≥ 0 and (u, ν) ∈ En ×Sτ (R+,P), where t 7→ ω(t, r) is the solution
of equation x′ = −θ(x) with the initial condition ω(0, r) = r;

(2) the trivial solution of switched system (2.2) is globally uniformly asymptot-
ically stable.
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Proof. Denote by (En,R+, πp) (p ∈ P) the dynamical system generated by equation
(2.5). Let now ν ∈ Sτ (R+,P), {tνk}k∈Z+ the set of points of discontinuity of u and
t ∈ R+. Then there exists k ∈ Z+ such that tνk ≤ t < tνk+1 and ν(t) = pk ∈ P (for
all t ∈ [tνk, t

ν
k+1)). Hence, we have the equality

ϕ(t, u, ν) = πpk
(t− tνk, ϕ(tνk, u, ν)). (2.12)

According to the condition (2.11) we obtain

d|πpk
(t, u)|2

dt
≤ −θ(|πpk

(t, u)|2) (2.13)

and, consequently,
|πpk

(t, u)|2 ≤ ω(t, |u|2) (2.14)
for all t ≥ 0 and u ∈ En. From (2.12) and (2.14) we have

|ϕ(t, u, ν)|2 = |πpk
(t− tνk, ϕ(tνk, u, ν))|2 ≤ ω(t− tνk, |ϕ(tνk, u, ν)|2) (2.15)

for all t ∈ (tνk, t
ν
k+1), u ∈ En and ν ∈ Sτ (R,P). Denote by bk(u, ν) := |ϕ(tνk, u, ν)|2

(for all k ∈ Z+), then by inequality (2.15) we obtain

bk+1(u, ν) ≤ ω(tνk+1 − tνk, bk(u, ν)) (2.16)

for all k ∈ Z+ and (u, ν) ∈ En × Sτ (R+,P). We note that

b0(u, ν) = |ϕ(tν0 , u, ν|2 ≤ ω(tν0 , |u|2)
b1(u, ν) ≤ ω(tν1 − tν0 , |ϕ(t0, u, ν)|2) ≤ ω(tν1 − tν0 , ω(tν0 , |u|2)) = ω(tν1 , |u|2)

. . .

bk+1(u, ν) ≤ ω(tνk+1 − tνk, bk(u, ν)) ≤ ω(tνk+1 − tνk, ω(tνk, |u|2)) = ω(tνk+1, |u|2).
(2.17)

Now, using the (2.12), (2.15) and (2.17), we have

|ϕ(t, u, ν)|2 ≤ ω(t− tνk, |ϕ(tνk, u, ν)− ϕ(tνk, u, ν)|2)
≤ ω(t− tνk, bk(u, ν))

≤ ω(t− tνk, ω(tνk, |u|2)) = ω(t, |u|2)
(2.18)

for all t ≥ 0 and (u, ν) ∈ En × Sτ (R+,P). From the inequality (2.18) and Lemma
2.23 it follows that limt→+∞ |ϕ(t, u, ν| = 0 for all (u.ν) ∈ En×Sτ (R+,P). Thus to
finish the proof of Theorem it is establish the uniform stability of trivial solution
of switched system (2.2). Let ε be an arbitrary positive number and 0 < δ <
ε, then if |u| < δ by inequality (2.18) and Lemma 2.23 we have |ϕ(t, u, ν)|2 ≤
ω(t, |u|2) < |u2| < δ2 < ε2 and, consequently, |ϕ(t, u, ν)| < ε for all t ∈ R+ and
ν ∈ Sτ (R+,P). �

Example 2.25. As an illustration of Theorem 2.24 we consider the switched system
(2.2) with functions fp(x) (p ∈ P) satisfying the condition 〈u, fp(u)〉 ≤ −α|u|β for
all u ∈ En, where α > 0 and β ≥ 2 (for example fp(u) := −αpu|u|β (β ≥ 0 and
αp > 0 for all p ∈ P), then θ(x) := αx1+β/2 and α := minp∈P αp).

Lemma 2.26. Let ω : R2
+ → R+ be a continuous function with the properties

(1) ω(t+ τ, r) ≤ ω(t, ω(τ, r)) for all t, τ, r ∈ R+;
(2) ω(t, r) < r for all r > 0 and t > 0;
(3) for all t ∈ R+ the mapping ω(t, ·) : R+ → R+ is increasing;
(4) ω(t, 0) = 0 for all t ∈ R+.
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Then limt→+∞ ω(t, r) = 0 for every r > 0.

Proof. Let τ and r be arbitrary positive numbers and {xk} a sequence defined by
xk := ω(kτ, r)} (k ∈ N). Under the conditions of Lemma we have xk+1 < xk for
all k ∈ N and, consequently, {xn} converges. Denote by c := limk→+∞ xn, then
ω(τ, c) = c. It follows that c = 0 because, if c > 0, then ω(τ, c) < c.

We will prove that limt→+∞ ω(t, r) = 0 for every r > 0. If we suppose that it
is not so, then there exist r0 > 0, ε0 > 0 and a sequence {tk} such that tk → +∞
and

ω(tk, r0) ≥ ε0. (2.19)

Let τ > 0, then there exist nk ∈ N and τk ∈ [0, τ) such that tk = nkτ + τk. From
(2.19) we have

ε0 ≤ ω(tk, r0) = ω(nkτ + τk, r0) ≤ ω(τk, x0
k), (2.20)

where x0
k := ω(nkτ, r0). By reasoning above the sequence {x0

k} converges to 0.
Since τk ∈ [0, τ) without loss of generality we may suppose that the sequence {τk}
is convergent. Denote by τ0 its limit, then τ0 ∈ [0, τ ]. Passing into limit in (2.20)
as k → +∞ and taking into account the established above facts we will have
ε0 ≤ ω(τ0, 0) = 0. The obtained contradiction proves our statement. �

Theorem 2.27. Suppose that there exists a continuous function ω : R2
+ → R+

with the properties
(1) ω(t+ τ, r) ≤ ω(t, ω(τ, r)) for all t, τ, r ∈ R+;
(2) ω(t, r) < r for all r > 0 and t > 0;
(3) for all t ∈ R+ the mapping ω(t, ·) : R+ → R+ is increasing.

If |πp(t, x)| ≤ ω(t, |x|) for all (t, x) ∈ R+×En and p = 1, . . . ,m, then the trivial
solution of switched system (2.2) is globally uniformly asymptotically stable.

Proof. This statement may be proved using the same reasoning as in the proof of
Theorem 2.24 and taking into account Lemma 2.26. �

3. Homogeneous switched systems

Asymptotic stability of homogeneous switched systems.

Definition 3.1. Let X be a linear space. A dynamical system (X,R+, π) is said to
be homogeneous of order k (k ≥ 1) if π(t, λx) = λπ(λk−1t, x) for all λ > 0, x ∈ X
and t ∈ R+.

Remark 3.2. Let f : En → En be a regular function; i.e., the equation

x′ = f(x) (3.1)

generates on En a dynamical system (X,R+, π), where t → π(t, x) is an unique
solution of equation (3.1), defined on R+ and passing through point x ∈ En at the
initial moment t = 0. If the function f is homogeneous of order k (i.e., f(λx) =
λkf(x) for all x ∈ En and λ > 0), then the dynamical system (X,R+, π), generated
by the equation (3.1), is homogeneous of order k.

Theorem 3.3 ([10, ChII]). Let X be a Banach space, (X,R+, π) be an homogeneous
of order k (k ≥ 1) dynamical system and π(t, 0) = 0 for all t ∈ R+. Then the
following conditions are equivalent:
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(1) the trivial motion of dynamical system (X,R+, π) is uniformly asymptoti-
cally stable;

(2) if k = 1 (respectively, k > 1), then there exist two positive numbers N and
α (respectively, α and β) such that

|π(t, x)| ≤ N e−αt|x| (respectively, |π(t, x)| ≤ (α|x|1−k + βt)−
1

k−1 )

for all x ∈ X and t ∈ R+.

Definition 3.4. A switched system (2.2) is said to be homogeneous of order k
(k ≥ 1), if every function fp (p ∈ P) is homogeneous of order k.

Definition 3.5. A non-autonomous dynamical system 〈(X,R+, π), (Y,R+, σ), h〉 is
said to be homogeneous [10] (of order k = 1) if the following conditions are fulfilled:

(1) (X,h, Y ) is a vectorial bundle fiber;
(2) π(t, λx) = λπ(t, x) for all t ∈ R+, x ∈ X, and λ > 0.

Let (X,h, Y ) be a vector bundle, Xy := {x ∈ X : h(x) = y} and θy be the
null element of Xy . Denote by Θ := ∪{θy : y ∈ Y } the null (trivial) section of
(X,h, Y ).

Definition 3.6. The trivial section Θ of non-autonomous dynamical system 〈(X,
R+, π), (Y,R+, σ), h〉 is said to be globally asymptotically stable if the following
conditions hold:

• limt→+∞ |π(t, x)| = 0 for all x ∈ X;
• for every ε > 0 there exists δ = δ(ε) > 0 such that |x| < δ implies |π(t, x)| <
ε for all t ∈ R+.

Theorem 3.7 ([9],[10, ChII]). Let (X,h, Y ) be a finite-dimensional vectorial fiber
bundle, 〈(X,R+, π), (Y,R+, σ), h〉 be an homogeneous non-autonomous dynamical
system and Y be compact and invariant (i.e., σ(t, Y ) = Y for all t ∈ R+), then the
following statements are equivalent:

(1) lim inft→+∞ |π(t, x)| = 0 for every x ∈ X;
(2) limt→+∞ |π(t, x)| = 0 for every x ∈ X;
(3) the trivial section Θ is globally asymptotically stable;
(4) limt→+∞ sup|x|≤r |π(t, x)| = 0 for every r > 0;
(5) there are two positive numbers N and α such that |π(t, x)| ≤ N e−αt|x| for

all x ∈ X and t ∈ R+.

Theorem 3.8. Let (2.2) be an homogeneous switched system of order k = 1. Then
the following statements are equivalent:

(1) lim inft→+∞ |ϕ(t, u, ν)| = 0 for all u ∈ En and ν ∈ Sτ (R+,P);
(2) limt→+∞ |ϕ(t, u, ν)| = 0 for all u ∈ En and ν ∈ Sτ (R+,P);
(3) the trivial solution of (2.2) is globally asymptotically stable;
(4) limt→+∞ sup|u|≤r, ν∈Sτ (R+,P) |ϕ(t, u, ν)| = 0 for every r > 0;
(5) there are two positive numbers N and α such that |ϕ(t, u, ν)| ≤ N e−αt|u|

for all u ∈ En, ν ∈ Sτ (R+,P) and t ∈ R+.

Proof. Let (2.2) be an homogeneous switched system of order k = 1, X := En ×
Sτ (R+,P) and (X,R+, π) be a skew-product dynamical system generated by co-
cycle ϕ; i.e., π(t, (u, ν)) := (ϕ(t, u, ν), σ(t, ν)) for all t ∈ R+, u ∈ En and ν ∈
Sτ (R+,P). Then it is easy to show that the non-autonomous dynamical system
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〈(X,R+, π), (Sτ (R+,P),R+, σ), h〉, where h := pr2 : X → Sτ (R+,P), generated
by (2.2) is homogeneous of order k = 1. Since the space Sτ (R+,P) is compact
and invariant with respect to translations (i.e., σ(t, Sτ (R+,P)) = Sτ (R+,P) for all
t ∈ R+), then to finish the proof of Theorem 3.8 it is sufficient to apply Theorem
3.7. �

Remark 3.9. (a) Theorem 3.8 (equivalence of the conditions (2) and (3)) refines
Theorem 2.10 (see also Corollary 2.21) for homogeneous switched systems.

(b) The equivalence of the conditions (1), (2), (3) and (5). was established by
Angeli D. [1].

Slow homogeneous switched systems.

Definition 3.10. A switched system (2.2) is said to be slow if its dwell time τ is
large enough.

Theorem 3.11. Suppose that the following conditions are fulfilled:
(1) every individual equation (2.5) admits a trivial asymptotically stable solu-

tion;
(2) the switched system (2.2) is homogeneous of order k = 1;
(3) the switched system (2.2) is slow.

Then the switched system (2.2) is globally asymptotically stable.

Proof. Suppose that (2.2) has order of the homogeneity k = 1. Then by Theorem
3.3, there are positive numbers Np and αp (p ∈ P) such that

|πp(t, u)| ≤ Npe
−αpt|u| (3.2)

for all t ∈ R+, u ∈ En, and p ∈ P. Denote by N := maxp∈P Np and α :=
minp∈P αp. Now we will choose the number τ such that δ := N e−ατ < 1, then
from (3.2) we have

|ϕ(t, u, ν)| = |πpk
(t− tνk, ϕ(tνk, u, ν))|

≤ N e−α(t−tν
k)|ϕ(tνk, u, ν)|

= N|πpk−1(t
ν
k − tνk−1, ϕ(tνk−1, u, ν))|

≤ N δ|ϕ(tνk−1, u, ν))| ≤ . . .

≤ N δk|ϕ(tν0 , u, ν))| ≤ N 2δk|u|

(3.3)

for all t ∈ [tνk+1, t
ν
k). Since k → +∞ as t→ +∞, then from (3.3) we obtain

lim
t→+∞

sup
|u|≤r, ν∈Sτ (R+,P)

|ϕ(t, u, ν)| = 0

for every r > 0. Now to finish the proof, it is sufficient to apply Theorem 3.7. �

Remark 3.12. (1) For the linear switched systems (i.e., fp(u) = Apu for all u ∈ En

and p ∈ P, where Ap (p ∈ P) is a linear operator acting on En) Theorem 3.11 was
established by Morse [36] (see also [27]).

(2) Theorem 3.11 also holds for the infinite-dimensional switched systems (2.2).

Theorem 3.13. Suppose that there exists a continuous function ω : R2
+ → R+

with the properties
(1) there exists a positive number τ0 such that ω(τ0, r) < r for all r > 0;
(2) for all t ∈ R+ the mapping ω(t, ·) : R+ → R+ is increasing;



EJDE-2010/21 ASYMPTOTIC STABILITY OF SWITCHING SYSTEMS 13

(3) ω(t, 0) = 0 for all t ∈ R+;
(4) limt→+∞ ω(t, r) = 0 for every r > 0.

If |πi(t, x)| ≤ ω(t, |x|) for all (t, x) ∈ R+ ×En and τ ≥ τ0, then the trivial solution
of switched system (2.2) is globally uniformly asymptotically stable.

Proof. Let t ∈ R+, x ∈ En, ν ∈ Sτ (R+,P) and τ ≥ τ0, then there exists an unique
k ∈ N such that t ∈ [tνk, t

ν
k+1). Then we have

|ϕ(t, u, ν)| = |πpk
(t− tνk, ϕ(tνk, u, ν))| ≤ ω(t− tνk, |ϕ(tνk, u, ν)|) ≤ ω(τ0, |ϕ(tνk, u, ν)|)

(3.4)
and, consequently,

ck+1(u, ν) ≤ ω(τ0, ck(u, ν)), (3.5)

where ck(u, ν) := |ϕ(tνk, u, ν)|. From the inequality (3.5) we have

ck(u, ν) ≤ ω(kτ0, |u|) ≤ ω(kτ0, r) (3.6)

for all k ∈ N, ν ∈ Sτ (R+,P) and u ∈ En with condition |u| ≤ r. Using the same
reasoning as in the proof of Lemma 2.26 we may prove that the sequence {ω(kτ0, r)}
is convergent and its limit is equal to zero. Since k → +∞ as t→ +∞, then from
(3.3) we obtain

lim
t→+∞

sup
|u|≤r, ν∈Sτ (R+,P)

|ϕ(t, u, ν)| = 0 (3.7)

for every r > 0. Now to complete the proof, it is sufficient to show that from the
condition (3.7) it follows the uniform stability of trivial solution of switched system
(2.2). If we suppose that it is not so, then there are ε0 > 0, δk → 0, uk ∈ En with
|uk| < δk, tk → +∞, and νk ∈ Sτ (R+,P) such that

|ϕ(tk, uk, νk)| ≥ ε0 (3.8)

for all k ∈ N. On the other hand we have

ε ≤ |ϕ(tk, uk, νk)| ≤ sup
|u|≤r0, ν∈Sτ (R+,P)

|ϕ(t, u, ν)|, (3.9)

where r0 := sup{δk| k ∈ N}. Passing into limit in (3.8) as k → +∞ and taking
into account (3.7) we get ε0 ≤ 0. The obtained contradiction ends the proof of
Theorem. �

Remark 3.14. (1) If ω(t, r) = N e−αtr, then from Theorem 2.27 we obtain Theo-
rem 3.11.

(2) Note that the problem of asymptotic stability of slow homogeneous switched
system is solved by Theorem 3.11 (in the case when k = 1) and it is open in the
general case (i.e., in the case when k > 1).

(3) Suppose that that every individual system (2.5) is asymptotically stable and
homogeneous of order k > 1. Then by Theorem 3.3 there are positive numbers
ap ≤ 1 and bp such that

|πp(t, u)| ≤
|u|

(ap + bp|u|k−1t)1/(k−1)
(3.10)

for all t ∈ R+, u ∈ En and p = 1, . . . ,m. Denote by

ω(t, r) :=
r

(a+ brk−1t)1/(k−1)
,
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where a := min{ap| p = 1, . . . ,m} and b := min{bp : p = 1, . . . ,m}. Then under
the assumptions above we have |πp(t, u)| ≤ ω(t, |u|) for all t ∈ R+, u ∈ En and
p = 1, . . . ,m. According to the definition of the number a, we have 0 < a ≤ 1.

(3.1) If a = 1, then by Theorem 2.27 the switched system (2.2) will be globally
uniformly asymptotically stable.

(3.2) If a < 1 the problem of asymptotic stability of switched system (2.2)
remains open.

4. Asymptotic stability of linear switched systems

Linear Non-autonomous Dynamical Systems. LetW,Y be two complete met-
ric spaces and (Y,R+, σ) be a semi-group dynamical system on Y .

Definition 4.1 ([41]). Recall that the triplet 〈W,ϕ, (Y,R+, σ)〉 (or shortly ϕ) is
called a cocycle over (Y,R+, σ) with fiber W if ϕ is a continuous mapping from
R+ ×W × Y to W satisfying the following conditions:

(a) ϕ(0, x, y) = x for all (x, y) ∈W × Y ;
(b) ϕ(t+ τ, x, y) = ϕ(t, ϕ(τ, x, y), σ(τ, y)) for all t, τ ∈ R+ and (x, y) ∈W × Y .

If W is a Banach space and
(c) ϕ(t, λx1+µx2, y) = λϕ(t, x1, y)+µϕ(t, x2, y) for all λ, µ ∈ R (or C), x1, x2 ∈

W and y ∈ Y ,
then the cocycle ϕ is called linear.

Definition 4.2. Let 〈W,ϕ, (Y,R+, σ)〉 be a cocycle (respectively, linear cocycle)
over (Y,R+, σ) with the fiber W (or shortly ϕ). If X := W × Y, π := (ϕ, σ), i.e.,
π((u, y), t) := (ϕ(t, x, y), σ(t, ω)) for all (u, ω) ∈ W × Ω and t ∈ R+, then the
dynamical system (X,R+, π) is called [41] a skew product dynamical system over
(Y,R+, σ) with the fiber W .

Definition 4.3. Let (X,R+, π) and (Y,R+, σ) be two dynamical systems and h :
X → Y be a homomorphism from (X,R+, π) onto (Y,R+, σ). A triplet 〈(X,R+, π),
(Y,R+, σ), h〉 is called a non-autonomous dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Y,R+, σ)〉 over the dynamical system (Y,R+, σ)
with the fiber W , then there can be constructed a non-autonomous dynamical sys-
tem 〈(X,R+, π), (Y,R+, σ), h〉 (X := W ×Y ), which we will call a non-autonomous
dynamical system generated (associated) by the cocycle 〈W,ϕ, (Y,R+, σ)〉 over (Y ,
R+, σ).–

Let 〈(X,R+, π), (Y,R+, σ), h〉 be a non-autonomous dynamical system. Denote
by Xs := {x ∈ X : limt→+∞ |π(t, x)| = 0}, Xs

y := Xs ∩ Xy, and Xy := h−1(y)
(y ∈ Y ).

Let (X,h, Y ) be a locally trivial vectorial fiber bundle [5, 28].

Definition 4.4. A non-autonomous dynamical system 〈(X,R+, π), (Y,R+, σ), h〉
is said to be linear, if the map πt : Xy → Xσ(t,y) is linear for every t ∈ R+ and
y ∈ Y , where πt := π(t, ·).

Definition 4.5. The entire trajectory of the semigroup dynamical system (X,T, π)
passing through the point x ∈ X at t = 0 is defined as the continuous map γ : R →
X that satisfies the conditions γ(0) = x and πtγ(s) = γ(s + t) for all t ∈ R+ and
s ∈ R, where πt := π(t, ·).
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Let Φx(π) be the set of all entire trajectories of (X,R+, π) passing through x at
t = 0 and Φ(π) = ∪{Φx(π) : x ∈ X}.

Definition 4.6. Let (X,h, Y ) be a finite-dimensional vectorial fiber bundle with
the norm | · |. The non-autonomous dynamical system 〈(X,R+, π), (Ω,R+, σ), h〉
is said to be non-critical [40] (satisfying Favard’s condition) if B(π) = Θ, where
B(π) := {γ ∈ Φ(π) : sups∈R |γ(s)| < +∞} and Θ := {θω : θy ∈ Xy, |θy| = 0, y ∈
Y }.

Definition 4.7. The linear non-autonomous dynamical system 〈(X,R+, π), (Y ,
R+, σ), h〉 is said to be:

• convergent, iflimt→∞ |π(t, x)| = 0 for all x ∈ X;
• uniformly stable, if for all ε > 0 there exists a δ = δ(ε) > 0 such that
|x| < δ implies |π(t, x)| < ε for all t ≥ 0;

• uniformly asymptotically stable, if it is uniformly stable and convergent;
• uniformly exponentially stable, if there are two positive numbers N and ν

such that
|π(t, x)| ≤ N e−νt|x| (4.1)

for all x ∈ X and t ≥ 0.

Theorem 4.8 ([10]). Let Y be a compact space and

〈(X,R+, π), (Y,R+, σ), h〉 (4.2)

be a linear non-autonomous dynamical system. Then the following conditions are
equivalent:

(1) the non-autonomous dynamical system (4.2) is convergent;
(2) the non-autonomous dynamical system (4.2) is uniformly asymptotically

stable;
(3) the non-autonomous dynamical system (4.2) is uniformly exponentially sta-

ble.

Definition 4.9. A point y ∈ Y is said to be Poisson stable if y ∈ ωy; i.e., there
exists a sequence {tk} ⊆ R+ such that tk → +∞ and σ(tk, y) → y as k → +∞.

Theorem 4.10 ([15]). Let 〈(X,R+, π), (Y,R+, σ), h〉 be a linear non-autonomous
dynamical system and the following conditions be fulfilled:

(1) 〈(X,R+, π), (Y,R+, σ), h〉 is non-critical [40];
(2) Y is compact and invariant (πtY = Y for all t ∈ R+);
(3) there exists a Poisson stable point y ∈ Y such that H+(y) = Y , where

H+(y) := {σ(t, y)| t ∈ R+} and by bar is denoted the closure in Y ;
(4) there exists at least one asymptotical stable fiber Xy0 (i.e., Xs

y0
= Xy0).

Then 〈(X,R+, π), (Y,R+, σ), h〉 is asymptotically stable; i.e., X = Xs.

Linear Switched Systems. Let ϕ(t, x, ω) be the solution of the linear switched
system

x′ = Aν(t)(x) (4.3)
with initial condition ϕ(0, x, ω) = x, assuming that a unique solution exists for
all t ∈ R+. Then the mapping ϕ : R+ × En × Sτ (R+,P) possesses the following
properties:

(1) ϕ(0, u, ν) = u for all u ∈ En and ν ∈ Sτ (R+,P);
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(2) ϕ(t + s, u, ν) = ϕ(s, ϕ(t, u, ν), σ(t, ν)) for all t, s ∈ R+, u ∈ En and ν ∈
Sτ (R+,P);

(3) the mapping ϕ is continuous;
(4) ϕ(t, λ1u1 + λ2u2, ν) = λ1ϕ(t, u1, ν) + λ2ϕ(t, u2, ν) for all λ1, λ2 ∈ R (or C),

u1, u2 ∈ En, and ω ∈ Sτ (R+,P).
Thus the triplete 〈En, ϕ, (Sτ (R+,P),R+, σ)〉 is a linear cocycle under dynamical

system (Sτ (R+, P), σ) with the fiber En and, consequently, we can study the linear
switched systems (4.3) in the framework of the linear non-autonomous (cocycle)
systems (see, for example, [10, 41]).

Theorem 4.11. Let 〈En, ϕ, (Sτ (R+,P),R+, σ)〉 be a linear cocycle generated by
linear switched system (4.3), then the following conditions are equivalent:

(1) the linear switched system (4.3) is convergent;
(2) the linear switched system (4.3) is uniformly asymptotically stable;
(3) the linear switched system (4.3) is uniformly exponentially stable.

This above statement follows directly from Theorem 4.8.

Remark 4.12. The equivalence of the second and third statements this is a well
known fact (see, for example, [35]). The equivalence of the first and third statements
is a new result for the linear switched systems (4.3).

Theorem 4.13 ([11]). The following statements hold:

(1) Sτ (R+,P) = Per(σ), where Per(σ) is the set of all periodic points of
(Sτ (R+,P),R+, σ) (i.e., ϕ ∈ Per(σ), if there exists h > 0 such that σ(h +
t, ϕ) = σ(t, ϕ) for all t ∈ R+);

(2) Sτ (R+,P) is invariant, i.e., σtSτ (R+,P) = Sτ (R+,P) for all t ∈ R+.

Theorem 4.14. Let Ai ∈ [En] (i = 1, 2, . . . ,m). Assume that the following condi-
tions are fulfilled:

(1) there exists j ∈ {1, 2, . . . ,m} such that the equation x′ = Ajx is exponen-
tially stable;

(2) the linear switched system (4.3) has not nontrivial bounded on R solutions.
Then the linear switched system (4.3) is uniformly exponentially stable (with respect
to switching signal ν).

Proof. Let P := {1, 2, . . . ,m}, Y := Sτ (R+,P) and (Y , R+, σ) be a semi-group
dynamical system of shifts on Y . According to Theorem 4.13 the shift dynamical
system (Y,R+, σ) possesses the following properties:

(1) Y is compact;
(2) Y = Per(σ), where Per(π) the set of all periodic points of dynamical system

(Y,R+, σ);
(3) there exists a Poisson stable point y ∈ Y such that Y = H+(y).

Let 〈En, ϕ, (Y,R+, σ)〉 be a cocycle, generated by linear switched system (4.2),
(X,R+, π) be a skew-product system associated by cocycle ϕ (i.e., X := En × Y
and π := (ϕ, σ)) and 〈(X,R+, π), (Y,R+, σ), h〉 (h := pr2 : X → Y ) be a linear non-
autonomous dynamical system, generated by cocycle ϕ. Denote by ν0 : R+ → P
the mapping defined by equality ν0(t) = j for all t ∈ R+. Since the equation
x′ = Ajx is exponentially stable, then the fiber Xν0 is asymptotically stable. Now
to finish the proof of Theorem it is sufficient to refer Theorem 4.10. �
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Remark 4.15. It is easy to see that this statement is reversable; i.e., Theorem 1.2
gives necessary and sufficient conditions for the uniformly exponentially stability of
linear switched system (1.1).
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