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REACTION-DIFFUSION SYSTEM OF EQUATIONS IN
NON-STATIONARY MEDIUM AND ARBITRARY NON-SMOOTH
DOMAINS

SIKIRU ADIGUN SANNI

ABSTRACT. A system of non-linear partial differential equations describing
one-step irreversible reaction, reactant to product, in a non-stationary medium
and non-smooth domain is considered. After obtaining the necessary a priori
estimates, the existence of a unique local strong solution to the system is
proved using a fixed point theorem.

1. INTRODUCTION

We consider the semilinear parabolic system of partial differential equations

V=0 inQp (1.1)

% —vAr=-V.(0 Q1) — %Vp in Qp (1.2)

% — kAu=—=V.(ou) + Quf(u) in Qp (1.3)

88—1: —dAw = —V.(vw) —wf(u) in Qr (1.4)
v=0,u=w=0 ondQx][0,7T) (1.5)

0(x,0) = vo(x), u(z,0) = up(x), w(w,0) = wy(x) (1.6)

where 0 is the zero vector in R3, ® is the matrix multiplication defined by the tensor
TQ70:=wvw; (1,5 =1,2,3) and Qp = Q x [0,T). Notice then that V.(v ® v) =
2 (0:0)) = 72 (Biy) = vige = 5.V7 (using (L))

In applications, the system models a single-step irreversible reaction, reactant
— product in non-stationary incompressible medium. o(z,t) is the velocity of the
medium; v and p are the kinematic viscosity and the density of the medium respec-
tively. u(x,t) is the temperature in the reaction vessel, w(x,t) is the mass fraction
of the reactant, 1 —w(x, t) is the mass fraction of the product, k the positive thermal
conductivity and d the reactant diffusivity. Qw f(u) and —wf(u) are the reaction
kinetics, determined by a positive, uniformly bounded and differentiable function
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f(w). Furthermore, f’(u) is assumed to be Lipschitz continuous. It is assumed that

Q is an open and bounded arbitrary non-smooth domain in R*. Theoretically, the

reactant decomposes at a rate which is proportional to w(z,t) f(u), where f(u) is

the approximate number of molecules that have sufficient energy for the reaction
to begin. In this paper, we shall assume that

0<f(u)<B (1.7)

[f'(w)] < B, [f(u) = f(@)| < Llu— (1.8)

For further information on chemical kinetics and combustion, the reader is re-
ferred to Buckmaster[3], Buckmaster and Ludford [4], and Frank-Kamenetskii [9].

Several combustion models assumed some smoothness on the boundary vis-a-vis
stationary media. Authors of these models include Avrin [I], 2], Daddiouaissa [5],
De Oliviera et al [6], Fitzgibbon and Martin [8], Henry [10], Konach [II], Sanni
[13], Sattinger [14], and some literature cited in them.

In this paper, we establish the existence of a unique local-in-time strong so-
lution to the system —, in arbitrary non-smooth domains. Clearly, the
inclusion of the Navier-Stokes equations in the system implies that the medium is
non-stationary.

Using Leray projector [I5], the problem (L.I)-(L.6) can be reduced to that of
finding only (7, u,w) by a variational formulation. We are thus motivated to define:

Definition 1.1. We call a solution (v,u,w) of the system (1.1)-(L.6) a strong
solution, provided (v, u,w) € X3, where X is defined by

X := L°[0, T Hy(@)] N H'[0,T; Hy@Q) n W [0, T;22(Q)] (1.9)
2. A PRIORI ESTIMATES

We will need the following Sobolev embedding theorem, stated and proved in [7]
pp. 265-266].

Theorem 2.1. Assume that Q C R™ is open and bounded. Suppose U € Wol’p(Q)
for some 1 < p <n. Then we have the estimate
[UllLa(e) < ClIVU| e (0 (2.1)

for each q € [1, px], the constant C depending only on p,q,n and Q, where px := 2

—p
is the Sobolev conjugate.

Notice that the hypothesis of Theorem [2.I] requires no smoothness assumption
on the boundary .

We now set out to obtain a priori estimates required to prove the existence of a
unique local strong solution to the system —. We first state and prove the
following Lemmas.

Lemma 2.2. Let u € HY(Q) and v,w,p € H}(Q). Then
[ wwnde < el + C@) ey e (2.9
[ womde < (Il + llg) + CO oty ool 29

[ wonde < elulla ey + OO ol ) (T2 0l @) + Tl o)
(2.4)
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/ u (pw — pw) dx
Q (2.5)

< el|ul[F2q) + C(Q)e™ {Hprqg(Q)Hw - @H%{(}(Q) +lp— p~||§{5(9)|\w||§101(9)}
/ u (pw — pw) dx
Q
< ellul3a ) + CE@ Il o) (T2 1w = @30

T2 w — @l ) + 1P = Bl (T 21002 + T2 10 )|

(2.6)
[ v ds < eVulag + @ ol el o)
+ CO (T2l + TIP3 ) 101303 )

u(vwp — vwp)dx

S

< C@e (Il @) + 1810 ) Il
+ el ull3z ) + CO) [l @) (T30 = Bll32() + 20 = ll33 )

+ (T2l 200 + T 21035y ) (Il = @l ) + 0 = Ty )|

(2.8)
Proof. 1. Proof of (2.2)). By Hélder’s inequality,
wwpdr < ||ulr2 w4 pllra
/ el z2cen o sy lIplzecay 9)

< O ullpz@ 1wl mp o lpl 2 o)

by Sobolev embedding theorem. Then (2.2) follows easily from (2.9) by Cauchy’s
inequality with e.

2. Proof of (2.3) and ([2.4).
1
/ uwpdx < e||u||%2(9) + Z/ p*w?dr  (by Cauchy’s inequality with €)
Q €Ja

1 1 o s .
< ellullzze) + 2Pz Iplloo) wllZo) - (by Holder’s inequality)

< ellullZ2(qy + C(Q)e) " HIpll 2o Il g o 1wl 7 -

(2.10)
by Sobolev embedding theorem. Then and follow by applying Cauchy’s
inequality with €2 and T"/2, respectively, to the appropriate factors of the second
term on the right side of (2.10]).

3. Proof of (2.5) and ([2.6).
/ u(pw — pw)dr = / up(w — w)dzx + / uw(p — p)dx. (2.11)
Q Q Q
Then and . ) follows by applying (2.2)) and . ) to (2.11) respectively.
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4. Proof of (2.7). By Young’s inequality and then by Holder’s inequality,

1 1
/uvadx§ f/u2v2dx+f/w2p2dx
Q 2 Ja 2 Ja

1 2.12
Sl lullzoqoy 0135 gy + 3o 1Pl 2o Ipllzoy 1)

IN

IN

||UHL2(Q)||UHH§(Q)||'U”%I§(Q) + ||w|\12qg(n)Hp||L2(Q)HP||Hg(Q),

by By Sobolev embedding theorem. ([2.7)) follows by applying Cauchy’s inequalities
with € and T"/2 to the first and second terms on the right side of (2.12) respectively.

5. Proof of (2.§]).

/ u(vwp — vwp)dx
Q

(2.13)
= / wow(p — p)dx + / wop(w — w)dw + / upw(v —v)dx .
Q Q Q
Then (2.8)) follows by applying (2.7) to the each term on the right side of (2.13]).
This concludes the proof of Lemma [2.2] O

Lemma 2.3. Let — hold. Suppose vy, ug, wo € Hi(Q) N H?(Q), then
18600122 () + 19kuo |22 () + 1Brwo 22 (q)
< C(IIV ol ()% + Vo |11 (92)* + [[Vewo | 1 (2)*) (1 + 1|70 71 (o)
where C = C(v,k,d, B, p,Q2,Q)

Proof. Taking (1.1)) and (|1.3)) on ¢ = 0 and multiplying the corresponding equation
to (1.3) by Orug, we estimate

/ |8tu0|2dx
Q

= 7/ 5‘tu0.170.Vu0d:17+k/ atquuodx+Q/ Oruowo f (ug)dx
Q Q Q

1
< 2 ( 2 2 )
< 26/Q|8tu0| dx + i QB/O|w0| dac-l—k/Q|Au0\ dx (2.15)
(Integrating by parts, using Cauchy’s inequality with e and (1.7]))

B,k,Q
S2‘5/ |8t170|2d$+M
Q €

(2.14)

X (H50l1373 o 720 302 + 1w I3y + 19200032 )

by Hélder and Poincare’s inequalities and using that [|Avg||12(q) < [|V200l|L2(0)-
Choosing € > 0 sufficiently small and simplifying, we deduce

10suoll 720y < C(Q, Bk, Q) [(1 + H170||§13(Q))||VU0||}{(Q)2 + ||w0||?13(n)} (2.16)
Evaluating (1.1)), (1.2]) and (1.4)) at ¢ = 0, we obtain analogous estimates to (2.16]),

V1z:

1070122 () < C(v, Q)L + [[Tol1 73 ()| Vol 1 (€2) (2.17)
[0swol| 720y < C(d, B,Q) {(1 + ”50”?{5(9))”VU}OH}{(Q>2 + HU)OH%I[}(Q)} (2.18)

Combining (2.16), (2.17) and (2.18), we deduce (2.14)). |
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Theorem 2.4. Let ¥y, up,wo € HL(Q) N H%(Q). Suppose (v,u,w) is a strong
solution of the system (1.1)-(1.6). Then we have the estimate

[SOUTP] <||3t17||%2(9) + ||17||§15(Q) + [|8ull72 0 + HUH%(Q) + 10wl 22 () + ||w||?{(}(n))

+ IV (8:0) 112210 122 () + IV @) 1721070200 + IV (B5w) 1210 722 (02
_ CTI(1 + 190173 ) ) (G (20, w0, wo) + 1)]?
—{1-20T[(1+ ||170H§{6(Q))(G(170,u0, wo) + 1)]2}3/2

=: Y = constant,

(2.19)
for

T < {2C1(1 + [|90lI771 () ) IVl 1 ()% + Vol 1 ()% + [[Vawo |7 (2)%) + 117},
(2.20)
where
G (o, w0, wo) = [[Vo || ()% + [[Vuoll r (2)* + [|Vawo | 7 (€2)?
and C = C(v, k,d,Q, B, B, Q).

We will use ([1.3) and the corresponding conditions in ([1.5)) and (1.6 to obtain
estimates for u; and thereafter, for brevity, state analogous estimates for ¥ and w.

Proof. 1. Multiplying (1.3]) by O;u, integrating the ensuing equation by parts over
Q and using (1.1)) and (|1.5)), we deduce

kd
2 ka 2
/ |Osu|“dx + 5 a1l </ [Vul dx)

- /Q V(deu).(vu)dr 4 Q /Q Opuw f (u)dx

(2.21)
1,
< V@20 + CO) (ol @ el Q) + QB il )
+ Hatu”%Q(Q)ﬂ
using (2.2)) of Lemma Simplifying, (2.21)) yields
d k,
%(5”“”&}(9)) (222)

1,
< eIV (@) gy + ) (1ol (2 ull (22 + Q2B w3y o))

2. Differentiating (1.3) with respect to ¢ yields

%(&u) — kA(Qpu) = —0,0.Vu + 0.V (0u) + Qoyw. f(u) + Quduf' (u)  (2.23)
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Multiply by d;u and integrating by parts over 2 and use (1.1]), (1.5) to deduce:

1d
§£(H3tu||%2(g)) + k”V(atU)H%z(Q)

=/V(@tu).aﬂi.udm—i—/V(atu).ﬁ.atudx
Q Q

—l—Q/Q@tuatuwf’(u)dx—l—Q/Qatuatwf(u)dm

2.24
< €| V(0u) |22y + €llV(9:0) 720 + C(Q)e?|00]| L2 (g l1ull a0 2
e[V (0eu) |22y + €l V(Oru)IF2 () + C)e 2|0l 22 () 0]l 711 (0
+ QB[] 0sul|72q) + €l V(0u)[[72 () + C(Q)e | 0sull72 (g ||w||[1113(9)]
+ QB([|8sul 20y + 10iw]F2 ()
using of Lemma .2_—2| and Young’s inequality.
3. Combining @ and we deduce
@100l + Mg ) + 2KV (@)
< C[EHV(&&UJ)HQB(Q) + 6||V(8t77)||2L2(Q) + €||atu|\%2(g) (2.25)

+(14et4ed) (1 + 1001320 181373 0y + 100wl

3
el gy + 190020 + 00y ) |

where C = C(Q, B, B, Q).

4. Following steps 1-3 in respect of (1.1), (1.2)), (1.4) and the corresponding
conditions in (1.5, we obtain analogous estimates to (2.25):

d _ _ _
(190172 + V115l 73 0)) + 20V (@) 720

(2.26)
< CQ) [V 2@y + (7 + ) (1001320 + 19133 0) |
d
&(H&swlliz(m +d||w||§{g(g)) +2d||V (9:w) | 720
< ClelIVOm) |2y + €ll V(000 320 + elldrullF oy .

+(1+et+ 673)<1 + 18501220 + H"_’H?qg(g) + [10sull 72 q)

3
+ Hu”?t]é(ﬂ) + 10wl 22 () + ||w||fqg(ﬂ)) ]v

where C' = C(B, B, Q).
5. Combining (2.25))-(2.27)), choosing ¢ > 0 sufficiently small and simplifying, we
deduce

d _ _
%(H@UH%%Q) + HU”?H&(Q) + [10cul|72) + ||UH§13(Q) + 0w 720
+ ||’LU||§{(}(Q)) + ||V(3t77)||%2(9) + ||v(atu)||2L2(Q) + ||V(atw)||2L2(Q)

< C(,k,d, Q. B, B',Q)(1+ 011132y + 1913730 + 9rull3 ey
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3
gy @y + 190l + el o))
Solving the above equation, maximizing the left and right sides of the ensuing
inequalities and using Lemma [2.3] concludes the proof of the Theorem [2:1} O
3. EXISTENCE OF A SOLUTION

We prove the existence of a unique local strong solution to the system ([1.1f)-(1.6)),
in a subset K of the space X3 equipped with the norm

1(n,€,O)llxs
< H77||2Loo[o,T;Hg(Q)] + ||3t77|\%oo[o,T;L2(Q)] + H§||2Loo[o,T;H3(gz)]
+ ||8tf||2Lw[0,T;L2(Q)] + ||C||2L°°[O,T;H(}(Q)] + ||8t<HQL°°[0,T;L2(Q)]
3
+ ||v(8tn)||2L2[O,T;L2(Q)] + ||V(8tf)||2L2[o,T;L2(Q)} + ”v(atC)”%?[O,T;L?(Q)]} )

(3.1)
where X is defined by (1.9).

Theorem 3.1. Let vy, ug and wy € HE(Q) N H%(Q). Then there exists a unique
local strong solution to the system (1.1)-(1.6).

Proof. 1. The fixed point arguments for the system (|1.1])-(1.6|) are

V.Q=0 inQp (3.2)

%? ~vAQ = -V.(1®7) - %VY in Qr (3-3)
%If — kAR = —V.(tu) + Quf(u) in Qr (3.4)
%‘j _dAS = —V.(ow) — wf(u) in QO (3.5)
Q=0, R=S=0 ondQx][0,7T) (3.6)

Q(m,O) = 70(:17)7 R(I7O) :U0($>7 S(CL‘,O) :’U)()(x),
where Y is the pressure distribution corresponding to the solution (Q, R, S).
2. We next define a mapping
7 X% - X3 (3.8)
by setting 7[(9,u,w)] = (Q, R, S), whenever (Q, R, S) is derived from (v, u,w) via
(13.2)-(3.7). We will prove that for sufficiently small 7' > 0, 7 is a contraction
mapping. Choose (9, u,w), (9,4, w) € X3 and define
7[(7,u,w)] = (Q,R,S), 7[(,1,%)]=(Q,R,S).
Thus, for two solutions (Q, R, S), and (6:2, R, S) of the system (3.2)-(3.7), we have

V.Q-Q) =0 inQy (3.9)
o _

(@v-100)— -V -Y) inQr (3.10)

DI

—(R—R) - kA(R—R) = —V.(tu — v1) + Q(wf(u) —wf(@)) inQr (3.11)
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%(s —8) —dA(S — 8) = —V.(tw — o) — (wf(u) —wf(a)) inQp (3.12)

Q-Q=0, R—-R=S-S=0 onoQx[0,7T) (3.13)

3. Multiplying (3.11)) by d;(R — R), integrating the ensuing equation by parts
over §2, using (3.13) and applying (2.5) of Lemma we deduce

~ k d ~
2 2
018 = B) 220 + 55 (IV @B = B2

= /QV ((%(R — R)) (vu — va)dz + Q/Q&g(R — R)(wf(u) — f(a))dx
< V@R ~ B) 20, + ellOn(R ~ B)[F2(0 (8.15)
+O(Q)e! (”@”%Ié(Q)HU - ﬂ”%{g(ﬂ) + ||ﬁ||?{3(9) v — 5“%{3(9))
+C(Q, B, B, Qe (wll3sy oy lu = @l 0 + o = Bl303)),
where we have used some bounds in and .
4. Further, we differentiate with respect t to get
0

57 (O:(R = R)) = kA(O(R — R))
= V. (8yvu — 85 + v0yu — 5041) Q (Dpw f () (3.16)
— 0 f () + wouf'(u) — woaf ()
Multiplying (3.16]) by 9;(R— R)7 integrating by parts over €2, and applying Young’s
inequality with e, (2.6) and (2.8) as appropriate, we deduce
1d
2 dt
Q

([10:(R = R)[[72(0)) + kIIV(O:(R = R)) 726

+Q /Q (R — R).(Bywf(u) — Oy f (@) + wdyuf (v) — woaf ())dx

< 36| V(R — B) 320y + (26 + CO@ gy )10 (R = B[z (0y
+0(,B,B,Q. L) { [T72(10:l13(0) + 19532 ) + 10002
+ l0ulF (e ) +T2(IV(060) 3200 + IV @) 3 (@) + IV (Ow) 32y
1V @) [22(c ) | (e = gy + 117 = B3y + w0 = D3y )
+ [ (100 = D)3e() + 1000 = D32y + 190 — D)2
+ T2V (000 = D)2 + IV(@(w = )20

V@10 — DDl )| (1+ Il + 100 + 15130 }
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5. Combining the above inequality with (3.15]), Choosing € > 0 sufficiently small,
and simplifying, we deduce

L our - B2 R-R|3 V(0:(R - R))|

a [106( Nz2@) + | 730y ) + 1V (Oi( Nz2o

< C{(l + HU’H?{(%(Q))Q(H@(R — R)|Z2() + IR~ R”?{é(ﬂ)) + {1 + ”T)H?{é(ﬂ)
+ Ha“?{g(sz) + ||IUH§{5(Q) + T71/2(||8t1:]”2L2(Q) + HatﬂH%2(Q) + ||atw||2L2(Q)
+ Hatu||%2(n)) +T1/2(\|V(5t5)\\%2(9) + ||V(atﬂ>||2L2(Q) + ||V(8tw))||2L2(Q)
+ IV @@ ) | (Il = @3y ) + 17 = 1373y + o = D30
+ [T (1000 = D)3a() + 100 = D)3z + 1900 — D) 32
+ T2 (HV(@(?7 = D)2 () + IV (0(u — @) |72 (q)

+ IV @:w = @) Iaqey ) | (1+ el ) + 1910y + 12030 ) §-
(3.17)
where C' = C(k,Q,B,B’,Q, L).

6. There exist analogous estimates to for Q — Q and S — S, which for
brevity, we do not render here. If we combine these estimates with (3.17), we
deduce, after an application of the differential form of the Gronwall’s inequality,
the estimates:

1/2 3 3.18
<o (r+1) " oxp [T+ )] o

N

~ ~ 1/2 — fad ~ ~
x (1 10w w0) s + 115, 9)3 ) 110w, w) = (5,3 )] x5

where C' = C(Q, B,B’',Q,k,d,v, L).

7. Notice that the bound in (3.18]) is not uniform. Thus we need to prove the
existence of a unique solution in a subset of X3. Define a convex set

K = {(0,u,w)| (v, u,w) — (v, u0, wo) € X5 and ||(0,u,w)| xs <2VE}, (3.19)
where X3 is the set where the initial and the boundary values are zero; and ¥ =
constant is the bound in (2.19). We will show that, if T > 0 is sufficiently small,
then

TIKIC K, |7[(0,u,w)] = 7[(0,%,D)][ xs <Y[(@,u,w) = (0,4,D)|xs (3.20)

for all (v,u,w), (V,%, @) € K and some vy < 1. Using (2.19) and (3.7), we have

17[(B0, wo, wo)]l|xs = (@, 0), R(=,0), S(,0))| x5 = [|(T0, uo, wo)||l x5 < VS
(3.21)
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Therefore, for (7,u,w) € K, using (3.18) and (3.21)),
71, u, w)][| x

< HT[(T]Ov Uo, wo)]”X" + ||T[({}’ u, w)] - T[(EO’ Uo, wo)} HX3

1/2
<VZ+C (T + Tl/Q) exp [2*1T(1 + ||w||§{g(9))}

(L4 10,0 s+ 0w, ) ) 0,0) = (5wl s
<VE+o(T+T?) 2 exp [271T(1 + 45)] (1 4 55) /2 (4v/E)
<2V,
for T' > 0 sufficiently small such that
4C(T + TV2) 2 exp[27 ' T(1 + 4)](1 + 55) /2 < 1 (3.23)

Thus 7[(9,u,w)] € K, and hence 7(K) C K for T > 0 sufficiently small. Further-
more, if T" is chosen sufficiently small such that

C(T +T2) P exp27 1 T(1 + 48)](1 4 58)/2 = 4 < 1, (3.24)
then, (3.18) implies
||T[(57u7 w)] - T[(f},ﬂ, 7I])]HXB < '7”(777 u7w) - (57&7@)”)(3 (3'25)

for all (9,u,w), (v,4,%w) € K. Thus, the mapping 7 is a strict contraction for
sufficiently small 7" > 0.
8. Given (v, uk,wg) (k=0,1,2,...), inductively define

(Q)R7 S) = (T)k-‘rhuk-l-l)wk:-‘rl) eK

to be the unique weak solution of the linear initial boundary value problem

Ve =0 in Qp (3.26)
v 1

% — VAT = =V (0 @ 0) = Vprir i Qr (3.27)

ou .
;;1 — kAugy1 = —V.(Opug) + Qg f(ug) in Qp (3.28)

ow .
8kt+1 — dAwk+1 = 7V.(1_)kwk) — wkf(uk) in Qr (329)
U1 =0, Upr1 =wgr1 =0 on I x[0,T) (3.30)
Upr1(2,0) = 0p(x), ugy1(x,0) =uo(x), wirr1(xz,0)=wo(x), (3.31)

where Y := pi1 is the pressure distribution corresponding to (Ux41, Ukt1, Wit1)-
By the definition of the mapping 7, we have (for k = 0,1,2,...), using (3.26)-
(B31) that
(Vkg 1, Uy 1, Wrt1) = T[(Ok, upe, w)]- (3.32)
Consider the series

(171,U1,’LU1) + Z[('Ervura wr) - (ﬁr—17ur—17wr—1)} (333)

r>2
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The partial sum of the first k£ 4+ 1 terms of the series (3.33)) is
k41

(01, u1,wr) + Z[('Draurawr) — (Up—1,Up—1,Wr—1)] = (Vg1, U1, Wet1)  (3.34)
r=2
Now, using , we have
[[(V2, w2, wa2) = (V1, ur, wi)||xs = \\T[(_@1,u1,w1)] —_T[(TfovuovUJO)]HXf3 (3.35)
< Y01, w1, w1) = (Vo, o, wo)||x»
(03, us, w3) — (V2, uz, wa) || xz = [|7[(V2, uz, w2)] — 7[(01, w1, w1)][| x=
<@, u0) - (@ w0 vl )
By induction,
(k415 h 1, Whr) = (B, wy wi) || xs < A*)| (01, w1, w1) = (B0, w0, wo)|| xs (3:37)

< 4’yk\/§,

since (U1, u1,w1), (To,ug,wp) are in K, defined by (3.19). Hence the series (3.33))
is absolutely convergent, since using (3.37)), the series

> ayhVE, (3.38)
k=0

which converges, dominates

||(1_117U1,UJ1)HX3 + Z ”('Umurawr) - (T)rfl;urflawrfl)HXS' (339)
r>2

This implies that the series (3.33)) is convergent. Define
kllngo(ﬁk+1,uk+1,wk+1) = (0, u,w).
Thus (U1, Uk+1, Wet+1) — (T, 4, w) uniformly in K. Thus
kli_)n()lo(@k+1,uk+1,wk+1) = (U,u,w) = kli_)nolo T(Uk, ug, wi)] = 7[(0,u,w)]  (3.40)

By (3.40), (v,u,w) € K is the unique fixed point of 7.
9. As in [I5], define

V := The closure of {¢ € C2°(Q2) : V.{ = 0} in HJ(Q). (3.41)

In view of the previous steps of this section, we are motivated to give the following
definition.

Definition 3.2. The weak formulation of (1.1)-(1.6) is: For given (oo, ug,wo) €
[HE(Q) N H?(Q)]3, find (v,u,w) € K satisfying

/ 0yv.Cdxw + u/ Vo : V(dr = —/ V.(v ®0).Cdx (3.42)
Q Q Q
/Q&gugdac—l—k:/QVu.Vfdx: —/QV.(z’)u)fdx—i—Q/wa(u)fdac (3.43)

/Qatwﬁdx—i-d/QVw.Vﬁdm: —/QV.(ﬁw)fdx—/wa(u)ﬁdm (3.44)
1_)(‘1:70) - 1_)0(:17)7 ’U,({ZZ,O) - UO(x)’ ”LU(.T, O) - wo(l’), (345)
for each ¢ € V and each & € H} ().
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10. Before verifying that (9, u,w) is weak solution of (1.1)-(1.6]), we first prove
the following Lemma.

Lemma 3.3. If (v, up, wy) € K, £ € HY(Q) and ( € V, then

/V U ® Uk) Cd:c%/ (v ® D) <d$ (3.46)
/V.(@kuk)fdxﬁ/v.(ﬁu)fdx (3.47)

Q Q
/V.(ikwk)gdxﬂ/v.(ﬁw)fdx (3.48)

Q Q
flug) = f(u) in L*(Q) (3.49)
/wkf(uk)ﬁdxe/wf(u)fdm (3.50)

Q Q

Proof. (i). Proof of (3.46). Integrating by parts, we have
|| @ ncdnl = | [ 5o Vodel < [l laliy ey @50

by using (2.9) of Lemma[2.2] Equation (3.46) follows by taking limits on both sides
of (3.51)). Further, the proofs of (3.47) and (3.48)) follow by similar calculations.
(ii). Proof of (3.49). We have

[ vroae= [ | [7 pwyar s s do < [ |5l + 50 P

(3.52)
< Ci(B', £(0)) /Q(Iwcl2 + 2lug| + 1))dz < Co(B', £(0), Q)(|Jug 20y + 1)

where we have used the first inequality in (L.8) and the estimate [, |up|dz <
Q2 lurllz2(0))- Then (3.49) follows by taking limits on both sides of (3.52)).
(iii). Proof of (3.50]). We estimate

|/kaf(uk)§dif| < Nwrll g o 1 i)l L2 @)1l 2 ) (3.53)
using (2.9) of Lemma Hence, (3.50)) follows by taking limits in (3.53)).
11. We now verify that (0, u,w) € K is a weak solution of (1.1). Fix ( € V and

€ € H} (). Using (3.26)-(3.31)), we have

/8t5k+1.6d$+y/ Vg4 : v&dl' = —/ V(’Bk ®’Dk).6dl‘ (354)
Q Q Q
/8tuk+1§dx+k/Vuk+1.V§da:
Q Q
(3.55)
—/ V(T}kuk)gd:v—l—Q/wkf(uk)gdx
Q Q
/atwk+1§dm+d/Vwk+1.V§dm
@ @ (3.56)

—/ V.(tpwy)édx — / wy f (ug)édx
Q Q
1_)k+1($,0) = 1_)0(1')7 uk+1(x7 0) = Uo(l’), wk+1(xa 0) = wO(x) . (357)



EJDE-2010/75 REACTION-DIFFUSION SYSTEM 13

Letting k — oo in (3.54)-(3.57) and using Lemma [2.3|to handle the nonlinear terms

yield (3.42)-(3.45) as desired. ([

12. We next demonstrate how to obtain the pressure Y = py1. First, we obtain
the boundary condition on pressure by taking (1.2) on the boundary and using

to deduce

1
;Vp =vA? on 0 (3.58)

Following the steps in [I2], we express (3.58)) in terms of the standard normal
derivatives as )
10p 0%
=Vvi.— 3.59
pon = o2 (3:59)
where () is the inward normal at = on 0fQ.
Taking the divergence of ([3.27) yields the equation satisfied by Y = pr41 as

Apgt1 = pV.[V. (0 @ k)], (3.60)

which is a form of Poisson’s equation. Further, in sympathy with the boundary

condition ([3.59)), we impose the the boundary condition on the pressure pyy1 as

1 0pr41 0%v

- =vn.— 3.61
p On Y on2 (3:61)

Hence, the formal solution of (3.60) subject to the condition (3.61)) is

pHAaw=—gécmwnmku%w®m@¢mw

3.62)
0%v(y,t) (
v [t n 08D 450
o
where G(x,y) is the Green’s function satisfying the Laplace’s equation in the form
AG(z,y) = 6(x —y) (3.63)
with the condition 5
% =0 (xon 0N). (3.64)
where § is the Dirac delta function
For n =3, G(z,y) = = yl,a:yEQ we define
1 _ _
Phia(nt) = —p | e V9006 © 0l )y
alr—yl+e
. (3.65)
+ u/ L 2000 g0
P salz—yl+e  On? Y
1
- —V.[V.(5(y,t) ® B(y, t))]d
o [ e V) @ o)y
. (3.66)
+p / ! nav(y’t)dS( )
@Q|x—y|—|—e " On? Y
== [ VAVl ) 9 0000y
(3.67)

1 d%0(y, 1)
+ pv n. ds
P /zm |z — yl on? )
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where € > 0. Notice that
ellm0p2+1(x,t) = pr11(x,t), lim pe(:v,t) = p(x,t)
Hence, integrating twice by parts, using and . we have
Phy (2, 8) — p(z, 1))

=le ) WV-{V[@C(% t) @ vk(y, 1) —v(y, 1) @ v(y, 1)) }dy| (3.68)
= o | VI l) ) © Tl 0) = 5000 @ (0. )]
which tends to 0 as k: — 00. Therefore
Jim g (2, 1) = (1) (3.69)

From whence sending € to 0, we obtain
kli>moopk+1(x’t) :p(x,t), (370)

where, p(x,t) given by (3.67)), is the pressure corresponding to the solution (v, u, w).
Indeed, (3.67) is the formal solution for the pressure p(z,t) satisfying

Ap = pV.[V.(0 ® D)), (3.71)
in terms of G(z,y), as obtained in [12]. O

4. REGULARITY

The Analysis so far carried out requires no smoothness assumption on the bound-
ary. However, for smooth solution up to the boundary, one requires the boundary
0N to be C*°. The lengthy proofs of the associated regularity theorems are cur-
rently being established by an analysis of certain difference quotients in another

paper.
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