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EXISTENCE OF POSITIVE SOLUTIONS FOR SELF-ADJOINT
BOUNDARY-VALUE PROBLEMS WITH INTEGRAL BOUNDARY
CONDITIONS AT RESONANCE

AIJUN YANG, BO SUN, WEIGAO GE

ABSTRACT. In this article, we study the self-adjoint second-order boundary-
value problem with integral boundary conditions,

(p)' (1)) + f(t,x(t)) =0, t€(0,1),

1
p(0)2'(0) = p(1)2'(1), (1) =/0 z(s)g(s)ds,

which involves an integral boundary condition. We prove the existence of
positive solutions using a new tool: the Leggett-Williams norm-type theorem
for coincidences.

1. INTRODUCTION

This paper concerns the existence of positive solutions to the following boundary
value problem at resonance:

(p(t)2'(t))" + f(t,x(t)) =0, te(0,1), (1.1)
1
p(0)2'(0) = p(1)2'(1), z(1)= [ x(s)g(s)ds, (1.2)
0
where g € L'0,1] with g(t) > 0 on [0,1], [, g(s)ds = 1, p € C[0,1] N C*(0,1),
p(t) > 0 on [0, 1].

Recently much attention has been paid to the study of certain nonlocal boundary
value problems (BVPs). The methodology for dealing with such problems varies.
For example, Kosmatov [7] applied a coincidence degree theorem due to Mawhin
and obtained the existence of at least one solution of the BVP at resonance

u"(t) = f(t,u(t),u'(t), t € (0,1),
U/(O) = U/(U), Z aiu(ni) = u(l)a
i=1
under the assumptions Y., ; =1 and Y ., a;nm; = 1.
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Han [5] studied the three-point BVP at resonance

a(t) = f(t,x(t), te(0,1),
2'(0)=0, xz(n)=z(1).
The author rewrote the original BVP as an equivalent problem, and then used the
Krasnolsel’skii-Gue fixed point theorem.

Although the existing literature on solutions of BVPs is quite wide, to the best
of our knowledge, only a few papers deal with the existence of positive solutions
to multi-point BVPs at resonance. In particular, there has been no work done
for the BVP —. Moreover, Our main approach is different from the ones
existing and our main ingredient is the Leggett-Williams norm-type theorem for
coincidences obtained by O’Regan and Zima [9].

2. RELATED LEMMAS

For the convenience of the reader, we review some standard facts on Fredholm
operators and cones in Banach spaces. Let X, Y be real Banach spaces. Consider a
linear mapping L : dom L C X — Y and a nonlinear operator N : X — Y. Assume
that

(A1) L is a Fredholm operator of index zero; that is, Im L is closed and
dimker L = codimIm L < oco.

This assumption implies that there exist continuous projections P : X — X and
Q@ :Y — Y such that Im P = ker L and ker Q = Im L. Moreover, since dim ImQ =
codim Im L, there exists an isomorphism J : Im@) — ker L. Denote by L, the
restriction of L to ker PNdom L. Clearly, L, is an isomorphism from ker PNdom L
to Im L, we denote its inverse by K, : Im L — ker P Ndom L. It is known (see [g])
that the coincidence equation Lz = Nz is equivalent to
xr=(P+JQN)x+ Kp(I — Q)Nzx.
Let C be a cone in X such that
(i) pz € C for all x € C and p > 0,
(ii) =, —z € C implies x = 0.
It is well known that C' induces a partial order in X by
x =y ifandonlyif y—zeC.
The following property is valid for every cone in a Banach space X.

Lemma 2.1 ([10]). Let C be a cone in X. Then for every u € C'\ {0} there exists
a positive number o(u) such that

|z +ull > o(w)|u|| forallxzeC.

Let v : X — C be a retraction; that is, a continuous mapping such that y(z) =
for all x € C. Set

UV:=P+JQN+K,(I -Q)N and ¥,:=Ton.
We use the following result due to O’Regan and Zima, with the following assump-
tions:
(A2) QN : X — Y is continuous and bounded and K,(I — Q)N : X — X be

compact on every bounded subset of X,
(A3) Lz # ANz for all z € C NIy N ImL and A € (0,1),
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(A4) v maps subsets of Qy into bounded subsets of C,

(A5) deg{[I — (P + JQN)7]|ker L, ker LN Qg,0} # 0,

(A6) there exists ug € C'\ {0} such that ||z|| < o(uo)||Pz| for z € C(ug) N N,
where C(ug) = {z € C : pup < = for some u > 0} and o(ug) such that
|z + uo|| > o(uo)||z| for every z € C,

(A7) (P+ JQN)v(092) C C,

(A8) W, (2 \ ) CC.

Theorem 2.2 ([9]). Let C be a cone in X and let Qq, Qo be open bounded subsets
of X with Q1 C Qy and C N (Q2\ Q1) # 0. Assume that (A1)—(A8) hold. Then the
equation Lr = Nx has a solution in the set C' N (Qz\ Q1).

For simplicity of notation, we set

v [ K / 1 (s,

I(s) := /Sl (/Tl ]%dr)g(T)dT—F /51 ﬁdT /OS g(T)dr,

(2.1)

and
%[foi(fsl p(lr)dr—f L dr T)dT +2f fl 1= ”d?‘g )dr]
<[ fo sty =1, p(r)dT] +1+f o 4T +f ST = ) iy,
fo<s<t<l,
G(t,s) =

s 1 r 1 r
%[fol fs p(lr) dr — f‘zi p(r) d’f’ d7_+f f ]13(7"1) Cll’f'g dT]
4ﬁu”> ﬁp dﬂ+1+ﬁ”$¢ +fp5d—1ﬂﬁ%m7
Hfo<t<s<l.

Note that G(t,s) > 0 for ¢, s € [0,1], and set
1

:=minJ{1
" mln{ ’ maxy se0,1) G(t, 8)

%, (2.2)

3. MAIN RESULT
To prove the existence result, we present here a definition.

Definition 3.1. We say that the function f : [0,1] x R — R satisfies the L!-
Carathéodory conditions, if
(i) for each u € R, the mapping ¢ — f(¢,u) is Lebesgue measurable on [0, 1],
(ii) for a.e. t € [0, 1], the mapping u — f(¢,u) is continuous on R,
(iii) for each r > 0, there exists a,. € L]0, 1] satisfying c.(t) > 0 on [0, 1] such
that
|u| <7 implies | f(t, u)| < an(¢).
Now, we state our result on the existence of positive solutions for (1.1)-(1.2).
under the following assumptions:

(H1) f:[0,1] x R — R satisfies the L!-Carathéodory conditions,
(H2) there exist positive constants by, ba, b3, ¢1, c2, B with

baco b3 /1 1+s
B> — -‘r 3 + — ds, 3.1
c1 (b101 bl) p(s) y (3.1)
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such that
—rr < f(t,x), [flt,x)<—c1z+co, f(t,x) < —=b1|f(t,x)| + boz + b3
for t € 10,1], =z € [0, B],

(H3) there exist b € (0,B), to € [0,1], p € (0,1], § € (0,1) and ¢ € L[0,1],
q(t) > 0 on [0,1], h € C([0,1] x (0,b],RT) such that f(¢t,z) > q(t)h(t,z)
for t € [0,1] and x € (0,b]. For each t € [0, 1], h(;f;;”) is non-increasing on

e (0,b] with

! h(s,b) 1-96
/OG(tO,s)q(s) b ds > 5 (3.2)

Theorem 3.2. Under assumptions (H1)—(H3), The problem (L.1)-(1.2) has at least

one positive solution on [0, 1].

Proof. Consider the Banach spaces X = ([0, 1] with the supremum norm |jz|| =

maxye,1) [#(t)| and Y = L*[0,1] with the usual integral norm |[|y|| = fo ly(t)|dt.
Define L :domL C X — Y and N : X — Y with

dom L = {z € X : p(0)2’(0) = p(1)2’(1), z(1) = /0 x(s)g(s)ds,
z,px’ € AC0,1], (pz’) € L*|0, 1]}
with Lx(t) = —(p(t)2'(¢t))" and Nz(¢t) = f(¢,z(t)), t € [0,1]. Then
ker L = {x € dom L : z(t) = ¢ on [0, 1]},

ImL={yeY :/0 y(s)ds = 0}.

Next, we define the projections P : X — X by (Px)(t) = fol z(s)dsand Q:Y =Y
by

(Qu)(t) = / y(5)ds.

Clearly, ImP = kerL and kerQ = ImL. So dimkerL = 1 = dimIm@ =
codimIm L. Notice that Im L is closed, L is a Fredholm operator of index zero;
i.e. (Al) holds.

Note that the inverse K, : Im L — dom L Nker P of L, is given by

1
(o)1) = / k(. s)y(s)ds,

0

where
f s dT + Sls [fo sy dr — ft oy 47]
+ 0<s<t<,
k(t, s) == ft ok | i ) (3.3)
fs p(T)d T+ 2Us) [ fy s dT — J o dT]
+fq p(lf)dT 0<t<s<,

It is easy to see that |k(t,s)| < 3]1 Lis jds. Since f satisfies the L!-Carathéodory
conditions, (A2) holds.
Consider the cone

C={xeX:z(t)>0on[0,1]}.
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Let
O ={z e X :d|z| <|z(t) <bon [0,1]},
Oy ={zeX:|z| < B}.
Clearly, €21 and 5 are bounded and open sets and
O ={zxeX:d|z| <|z@)| <bon[0,1]} C O

(see [9]). Moreover, C' N (2 \ Q1) # 0. Let J = I and (yz)(t) = |z(t)| for z € X.
Then + is a retraction and maps subsets of Qy into bounded subsets of C, which
means that 4° holds.

To prove (A3), suppose that there exist g € Qs NC Ndom L and Mg € (0,1)
such that Lzo = AgNxo, then (p(¢)x((t)) + Ao f(t,zo(t)) = 0 for all ¢ € [0,1]. In
view of (H2), we have

—%@®%0W=fwmﬁﬁS—%MW@%®W+®%®+%-

0
Hence,

1
O< bl/ | |dt+)\0b2/ xo(t)dt—F)\obg,
0

/I Idt<—/ ot dt+—. (3.4)

Similarly, from (H2), we also obtain

/O1 zo(t)dt < 2. (3.5)

1

which gives

On the other hand,

m@=£mww+/HmM@%@Ms o

_/ zolt dt+/ le(t, 5)| | (p(s) 2 (5)) |ds.
From and ., we have

b b 1y
B = ol < 24322 4 2 e
¢l

+
bicy b1 Jo p(s)

S,

which contradicts (H2). B
To prove (A5), consider = € ker L N Q3. Then x(t) = ¢ on [0,1]. Let

1
H(e,\) =c— M| — )\/ f(s,le)ds
0
for ¢ € [-B,B] and A € [0,1]. It is easy to show that 0 = H(c, \) implies ¢ > 0.
Suppose 0 = H(B, \) for some A € (0,1]. Then, (H2) leads to
1
0<B(1-)\)= )\/ f(s,B)ds < A(—c1B+¢2) <0
0

which is a contradiction. In addition, if A = 0, then B = 0, which is impossible.
Thus, H(x,A) # 0 for © € ker LN 90, A € [0,1]. As a result,

deg{H(-,1),ker LN Q2,0} = deg{H(-,0), ker L Ny, 0}.
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However,
deg{H(-,0),ker LN Q9,0} = deg{I,ker LN Qs,0} = 1.
Then

deg{[I — (P + JQN)V]xer L, ker L N 03,0} = deg{H (-, 1), ker L N Q2,0} # 0.
Next, we prove (A8). Let z € Qy \ Q; and ¢ € [0, 1],

/ (s |ds+/ £(s,12(s)
+/ k(t, s)[f / f(r Jz()])dr]ds
/ (s |ds+/ G(t, 5)f (s, |u(s)|)ds

_/0 (1 KG(t, 8))|2(s)|ds > 0.

Hence, ¥, (02 \ 1) C C; i.e. (A8) holds.
Since for x € 089,

1 1
(P+ JQN)yx = /0 |z(s)|ds +/0 f(s, |z(s)])ds

> /0 (1— #)|2(s)|ds > 0.

Thus, (P + JQN)vx C C for x € 00, (A7) holds.

It remains to verify (A6). Let ug(t) =1 on [0,1]. Then ug € C'\ {0}, C(up) =
{r € C:z(t) >0on [0,1]} and we can take o(ug) = 1. Let z € C'(up) NI;. Then
x(t) > 0on [0,1], 0 < ||z|| < band x(t) > d||z| on [0, 1]. For every z € C(up) NNy,
by (H3), we have

(\I/a:)(to):/o x(s)ds+/0 Glto, $) f(s, (s))ds

> 6| + / G(to, $)a(s)h(s, x(s))ds
r(s)

o

! h(s
> 5l + 5] / G(to, 8)q(s)
0

:5||x||+/0 G(to, s)q(s) e

bP
h(s,b)

bds

bl*p 1
= el + 8%l o | Gt shate

! h(s, b
> el + 8%l | Glto,sas)
0
Thus, ||z]| < o(u)||¥z| for all z € C(ug) N Q.

By Theorem [2.2] the BVP (L.I)-(1.2) has a positive solution z* on [0,1] with
b < ||z*|| < B. This completes the proof. O

ds > |jz]].

Remark 3.3. Note that with the projection P(z) = z(0), conditions (A7) and
(A8) of Theorem are no longer satisfied.
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To illustrate how our main result can be used in practice, we present here an
example.

Example. Consider the problem
€1+ )2 (1) + f(t,a(t) =0, te(0,1),

1
2'(0) = 2e%2' (1), z(1) :/ 2sx(s)ds.
0
Corresponding to (1.1])-(1.2)), we have
p(t) = (1 +1), g(t) =2t

sin(mz/2), (¢, x) € [0,1] x (—o0,3),

2—x, (t,x) € [0,1] x [3,400).

When k = 1/2, choose ¢; = 1, o2 = 3, by = 1/2, by = 3/2, b3 = 9/2, B = 4 and
b=1/2,t=0,p=1,0 =1/2,q(t) =1—t, h(t,z) = sin(rz/2). We can check that
all the conditions of Theorem [3.2] are satisfied, then the BVP (3.7) has a positive
solution on [0, 1].

f(t,l') =

REFERENCES

[1] K. Deimling; Nonlinear Functional Analysis. New York, 1985.

[2] R. E. Gaines and J. Santanilla; A coincidence theorem in convex sets with applications to
periodic solutions of ordinary differential equations. Rocky Mountain. J. Math., 12 (1982)
669-678.

[3] W. Ge; Boundary value problems for ordinary nonlinear differential equations, Science Press,
Beijing, 2007.

[4] D. Guo and V. Lakshmikantham; Nonlinear Problems in Abstract Cones. New York, 1988.

[5] X. Han; Positive solutions for a three-point boundary value problem at resonance, J. Math.
Anal. Appl., 336 (2007), 556-568.

[6] G. Infante and M. Zima; Positive solutions of multi-point boundary value problems at reso-
nance, Nonlinear Analysis, 69 (2008), No. 8, 2458-2465.

[7] N. Kosmatov; A multi-point boundary value problem with two critical conditions, Nonlinear
Anal., 65 (2006), 622-633.

[8] J. Mawhin; Topological degree methods in nonlinear boundary value problems, in NSFCBMS
Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI,
1979.

[9] D. O’'Regan and M. Zima; Leggett- Williams norm-type theorems for coincidences, Arch.
Math., 87 (2006), 233-244.

[10] W. V. Petryshyn; On the solvability of x € Tx + AFz in quasinormal cones with T and F
k-set contractive, Nonlinear Anal., 5 (1981), 585-591.

[11] A. J. Yang; An extension of Leggett- Williams norm-type theorem for coincidences and its
applications Topological Methods in Nonlinear Analysis, in press.

[12] A.Yang and W. Ge; Positive solutions for boundary value problems of N-dimension nonlinear
fractional differential system, Boundary Value Problems, 2008, 437-453.

[13] A. Yang and H. Wang; Positive solutions for higher-order nonlinear fractional differential
equation with integral boundary condition, E. J. Qualitative Theory of Diff. Equ., 1 (2011),
1-15.

ADDENDUM POSTED ON MARCH 14, 2011

In response to comments from a reader, we want to make the following correc-
tions:

Page 2, Line 9: Delete the last sentence in the introduction: “Moreover, ...by
O’Regan and Zima [9]”. Then insert the following paragraph:
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Using the Legget-Williams norm-type theorem for coincidences, which is a tool
introduced by O’Regan and Zima [9], Infante and Zima [6] studied the multi-point
boundary-value problem

m—2
20)=0, =z(1)= Z a;x(n;) -
i=1
Inspired by the work in [0 @], we follow their steps, use the Legget-Williams norm-
type theorem, and quote some of their results.

Page 6, Line —3: Replace b < ||z*|| < B by ||z*|| < B.
The authors want to thank the anonymous reader for the suggestions.
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