Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 11, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF POSITIVE SOLUTIONS FOR SELF-ADJOINT BOUNDARY-VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS AT RESONANCE

AIJUN YANG, BO SUN, WEIGAO GE

ABSTRACT. In this article, we study the self-adjoint second-order boundary-value problem with integral boundary conditions,

$$(p(t)x'(t))' + f(t, x(t)) = 0, \quad t \in (0, 1),$$

$$p(0)x'(0) = p(1)x'(1), \quad x(1) = \int_0^1 x(s)g(s)ds,$$

which involves an integral boundary condition. We prove the existence of positive solutions using a new tool: the Leggett-Williams norm-type theorem for coincidences.

1. INTRODUCTION

This paper concerns the existence of positive solutions to the following boundary value problem at resonance:

$$(p(t)x'(t))' + f(t, x(t)) = 0, \quad t \in (0, 1),$$
(1.1)

$$p(0)x'(0) = p(1)x'(1), \quad x(1) = \int_0^1 x(s)g(s)ds, \tag{1.2}$$

where $g \in L^1[0,1]$ with $g(t) \ge 0$ on [0,1], $\int_0^1 g(s)ds = 1$, $p \in C[0,1] \cap C^1(0,1)$, p(t) > 0 on [0,1].

Recently much attention has been paid to the study of certain nonlocal boundary value problems (BVPs). The methodology for dealing with such problems varies. For example, Kosmatov [7] applied a coincidence degree theorem due to Mawhin and obtained the existence of at least one solution of the BVP at resonance

$$u''(t) = f(t, u(t), u'(t)), \ t \in (0, 1),$$
$$u'(0) = u'(\eta), \quad \sum_{i=1}^{n} \alpha_i u(\eta_i) = u(1),$$

under the assumptions $\sum_{i=1}^{n} \alpha_i = 1$ and $\sum_{i=1}^{n} \alpha_i \eta_i = 1$.

Supported by grant 11071014 from NNSF of China, by the Youth PhD Development Fund of CUFE 121 Talent Cultivation Project.

²⁰⁰⁰ Mathematics Subject Classification. 34B10, 34B15, 34B45.

Key words and phrases. Boundary value problem; resonance; cone; positive solution; coincidence.

^{©2011} Texas State University - San Marcos.

Submitted September 29, 2010. Published January 20, 2011.

Han [5] studied the three-point BVP at resonance

$$x''(t) = f(t, x(t)), \quad t \in (0, 1),$$

 $x'(0) = 0, \quad x(\eta) = x(1).$

The author rewrote the original BVP as an equivalent problem, and then used the Krasnolsel'skii-Gue fixed point theorem.

Although the existing literature on solutions of BVPs is quite wide, to the best of our knowledge, only a few papers deal with the existence of positive solutions to multi-point BVPs at resonance. In particular, there has been no work done for the BVP (1.1)-(1.2). Moreover, Our main approach is different from the ones existing and our main ingredient is the Leggett-Williams norm-type theorem for coincidences obtained by O'Regan and Zima [9].

2. Related Lemmas

For the convenience of the reader, we review some standard facts on Fredholm operators and cones in Banach spaces. Let X, Y be real Banach spaces. Consider a linear mapping $L : \operatorname{dom} L \subset X \to Y$ and a nonlinear operator $N : X \to Y$. Assume that

(A1) L is a Fredholm operator of index zero; that is, Im L is closed and

 $\dim \ker L = \operatorname{codim} \operatorname{Im} L < \infty.$

This assumption implies that there exist continuous projections $P: X \to X$ and $Q: Y \to Y$ such that $\operatorname{Im} P = \ker L$ and $\ker Q = \operatorname{Im} L$. Moreover, since dim $\operatorname{Im} Q = \operatorname{codim} \operatorname{Im} L$, there exists an isomorphism $J: \operatorname{Im} Q \to \ker L$. Denote by L_p the restriction of L to $\ker P \cap \operatorname{dom} L$. Clearly, L_p is an isomorphism from $\ker P \cap \operatorname{dom} L$ to $\operatorname{Im} L$, we denote its inverse by $K_p: \operatorname{Im} L \to \ker P \cap \operatorname{dom} L$. It is known (see [8]) that the coincidence equation Lx = Nx is equivalent to

$$x = (P + JQN)x + K_P(I - Q)Nx.$$

Let C be a cone in X such that

(i) $\mu x \in C$ for all $x \in C$ and $\mu \ge 0$,

(ii)
$$x, -x \in C$$
 implies $x = \theta$

It is well known that C induces a partial order in X by

$$x \preceq y$$
 if and only if $y - x \in C$.

The following property is valid for every cone in a Banach space X.

Lemma 2.1 ([10]). Let C be a cone in X. Then for every $u \in C \setminus \{0\}$ there exists a positive number $\sigma(u)$ such that

$$||x+u|| \ge \sigma(u)||u|| \quad for \ all \ x \in C.$$

Let $\gamma: X \to C$ be a retraction; that is, a continuous mapping such that $\gamma(x) = x$ for all $x \in C$. Set

$$\Psi := P + JQN + K_p(I - Q)N \quad \text{and} \quad \Psi_\gamma := \Psi \circ \gamma.$$

We use the following result due to O'Regan and Zima, with the following assumptions:

- (A2) $QN: X \to Y$ is continuous and bounded and $K_p(I-Q)N: X \to X$ be compact on every bounded subset of X,
- (A3) $Lx \neq \lambda Nx$ for all $x \in C \cap \partial \Omega_2 \cap ImL$ and $\lambda \in (0, 1)$,

EJDE-2011/11

- (A4) γ maps subsets of $\overline{\Omega}_2$ into bounded subsets of C,
- (A5) deg{ $[I (P + JQN)\gamma]|_{\ker L}, \ker L \cap \Omega_2, 0$ } $\neq 0$,
- (A6) there exists $u_0 \in C \setminus \{0\}$ such that $||x|| \leq \sigma(u_0) ||\Psi x||$ for $x \in C(u_0) \cap \partial \Omega_1$, where $C(u_0) = \{x \in C : \mu u_0 \leq x \text{ for some } \mu > 0\}$ and $\sigma(u_0)$ such that $||x + u_0|| \geq \sigma(u_0) ||x||$ for every $x \in C$,
- (A7) $(P + JQN)\gamma(\partial\Omega_2) \subset C$,
- (A8) $\Psi_{\gamma}(\overline{\Omega}_2 \setminus \Omega_1) \subset C.$

Theorem 2.2 ([9]). Let C be a cone in X and let Ω_1 , Ω_2 be open bounded subsets of X with $\overline{\Omega}_1 \subset \Omega_2$ and $C \cap (\overline{\Omega}_2 \setminus \Omega_1) \neq \emptyset$. Assume that (A1)–(A8) hold. Then the equation Lx = Nx has a solution in the set $C \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

For simplicity of notation, we set

$$\omega := \int_{0}^{1} \left(\int_{s}^{1} \frac{1}{p(\tau)} d\tau \right) g(s) ds,$$

$$l(s) := \int_{s}^{1} \left(\int_{\tau}^{1} \frac{1}{p(\tau)} d\tau \right) g(\tau) d\tau + \int_{s}^{1} \frac{1}{p(\tau)} d\tau \int_{0}^{s} g(\tau) d\tau,$$
(2.1)

and

$$G(t,s) = \begin{cases} \frac{1}{\omega} \Big[\int_0^s (\int_s^1 \frac{1}{p(\tau)} dr - \int_\tau^1 \frac{r}{p(\tau)} dr) g(\tau) d\tau + \int_s^1 \int_\tau^1 \frac{1-r}{p(\tau)} dr g(\tau) d\tau \Big] \\ \times \Big[\int_0^1 \frac{\tau}{p(\tau)} d\tau - \int_t^1 \frac{1}{p(\tau)} d\tau \Big] + 1 + \int_0^1 \frac{\tau^2}{p(\tau)} d\tau + \int_t^1 \frac{1-\tau}{p(\tau)} d\tau - \int_s^1 \frac{\tau}{p(\tau)} d\tau, \\ \text{if } 0 \le s < t \le 1, \\ \frac{1}{\omega} \Big[\int_0^s (\int_s^1 \frac{1}{p(\tau)} d\tau - \int_\tau^1 \frac{r}{p(\tau)} dr) g(\tau) d\tau + \int_s^1 \int_\tau^1 \frac{1-r}{p(\tau)} dr g(\tau) d\tau \Big] \\ \times \Big[\int_0^1 \frac{\tau}{p(\tau)} d\tau - \int_t^1 \frac{1}{p(\tau)} d\tau \Big] + 1 + \int_0^1 \frac{\tau^2}{p(\tau)} d\tau + \int_s^1 \frac{1-\tau}{p(\tau)} d\tau - \int_t^1 \frac{\tau}{p(\tau)} d\tau, \\ \text{if } 0 \le t \le s \le 1. \end{cases}$$

Note that $G(t,s) \ge 0$ for $t,s \in [0,1]$, and set

$$\kappa := \min \left\{ 1, \ \frac{1}{\max_{t,s \in [0,1]} G(t,s)} \right\}.$$
(2.2)

3. Main result

To prove the existence result, we present here a definition.

Definition 3.1. We say that the function $f : [0,1] \times \mathbb{R} \to \mathbb{R}$ satisfies the L^1 -Carathéodory conditions, if

- (i) for each $u \in \mathbb{R}$, the mapping $t \mapsto f(t, u)$ is Lebesgue measurable on [0, 1],
- (ii) for a.e. $t \in [0, 1]$, the mapping $u \mapsto f(t, u)$ is continuous on \mathbb{R} ,
- (iii) for each r > 0, there exists $\alpha_r \in L^1[0, 1]$ satisfying $\alpha_r(t) > 0$ on [0, 1] such that

$$|u| \le r$$
 implies $|f(t, u)| \le \alpha_r(t)$.

Now, we state our result on the existence of positive solutions for (1.1)-(1.2). under the following assumptions:

- (H1) $f: [0,1] \times \mathbb{R} \to \mathbb{R}$ satisfies the L¹-Carathéodory conditions,
- (H2) there exist positive constants $b_1, b_2, b_3, c_1, c_2, B$ with

$$B > \frac{c_2}{c_1} + 3(\frac{b_2c_2}{b_1c_1} + \frac{b_3}{b_1}) \int_0^1 \frac{1+s}{p(s)} ds,$$
(3.1)

such that

- $-\kappa x \le f(t,x), \quad f(t,x) \le -c_1 x + c_2, \quad f(t,x) \le -b_1 |f(t,x)| + b_2 x + b_3$ for $t \in [0,1], x \in [0,B],$
- (H3) there exist $b \in (0, B)$, $t_0 \in [0, 1]$, $\rho \in (0, 1]$, $\delta \in (0, 1)$ and $q \in L^1[0, 1]$, $q(t) \ge 0$ on [0, 1], $h \in C([0, 1] \times (0, b], \mathbb{R}^+)$ such that $f(t, x) \ge q(t)h(t, x)$ for $t \in [0, 1]$ and $x \in (0, b]$. For each $t \in [0, 1]$, $\frac{h(t, x)}{x^{\rho}}$ is non-increasing on $x \in (0, b]$ with

$$\int_0^1 G(t_0, s)q(s)\frac{h(s, b)}{b}ds \ge \frac{1-\delta}{\delta^{\rho}}.$$
(3.2)

Theorem 3.2. Under assumptions (H1)–(H3), The problem (1.1)-(1.2) has at least one positive solution on [0, 1].

Proof. Consider the Banach spaces X = C[0, 1] with the supremum norm $||x|| = \max_{t \in [0,1]} |x(t)|$ and $Y = L^1[0,1]$ with the usual integral norm $||y|| = \int_0^1 |y(t)| dt$. Define $L : \operatorname{dom} L \subset X \to Y$ and $N : X \to Y$ with

dom
$$L = \left\{ x \in X : p(0)x'(0) = p(1)x'(1), \ x(1) = \int_0^1 x(s)g(s)ds, x, px' \in AC[0,1], \ (px')' \in L^1[0,1] \right\}$$

with $Lx(t) = -(p(t)x'(t))'$ and $Nx(t) = f(t, x(t)), \ t \in [0,1].$ Then

 $\ker L = \{x \in \operatorname{dom} L : x(t) \equiv c \text{ on } [0, 1]\},\$

Im
$$L = \{y \in Y : \int_0^1 y(s)ds = 0\}.$$

Next, we define the projections $P:X\to X$ by $(Px)(t)=\int_0^1 x(s)ds$ and $Q:Y\to Y$ by

$$(Qy)(t) = \int_0^1 y(s)ds.$$

Clearly, $\operatorname{Im} P = \ker L$ and $\ker Q = \operatorname{Im} L$. So dim $\ker L = 1 = \dim \operatorname{Im} Q = \operatorname{codim} \operatorname{Im} L$. Notice that $\operatorname{Im} L$ is closed, L is a Fredholm operator of index zero; i.e. (A1) holds.

Note that the inverse $K_p : \operatorname{Im} L \to \operatorname{dom} L \cap \ker P$ of L_p is given by

$$(K_p y)(t) = \int_0^1 k(t,s) y(s) ds,$$

where

$$k(t,s) := \begin{cases} -\int_{s}^{1} \frac{\tau}{p(\tau)} d\tau + \frac{1}{\omega} l(s) \Big[\int_{0}^{1} \frac{\tau}{p(\tau)} d\tau - \int_{t}^{1} \frac{1}{p(\tau)} d\tau \Big] \\ +\int_{t}^{1} \frac{1}{p(\tau)} d\tau, & 0 \le s \le t \le 1, \\ -\int_{s}^{1} \frac{\tau}{p(\tau)} d\tau + \frac{1}{\omega} l(s) \Big[\int_{0}^{1} \frac{\tau}{p(\tau)} d\tau - \int_{t}^{1} \frac{1}{p(\tau)} d\tau \Big] \\ +\int_{s}^{1} \frac{1}{p(\tau)} d\tau, & 0 \le t < s \le 1, \end{cases}$$
(3.3)

It is easy to see that $|k(t,s)| \leq 3 \int_0^1 \frac{1+s}{p(s)} ds$. Since f satisfies the L¹-Carathéodory conditions, (A2) holds.

Consider the cone

$$C = \{ x \in X : x(t) \ge 0 \text{ on } [0,1] \}.$$

 $\mathrm{EJDE}\text{-}2011/11$

Let

$$\Omega_1 = \{ x \in X : \delta \|x\| < |x(t)| < b \text{ on } [0,1] \},\$$

$$\Omega_2 = \{ x \in X : \|x\| < B \}.$$

Clearly, Ω_1 and Ω_2 are bounded and open sets and

$$\overline{\Omega}_1 = \{ x \in X : \delta \|x\| \le |x(t)| \le b \text{ on } [0,1] \} \subset \Omega_2$$

(see [9]). Moreover, $C \cap (\overline{\Omega}_2 \setminus \Omega_1) \neq \emptyset$. Let J = I and $(\gamma x)(t) = |x(t)|$ for $x \in X$. Then γ is a retraction and maps subsets of $\overline{\Omega}_2$ into bounded subsets of C, which means that 4° holds.

To prove (A3), suppose that there exist $x_0 \in \partial \Omega_2 \cap C \cap \text{dom } L$ and $\lambda_0 \in (0,1)$ such that $Lx_0 = \lambda_0 N x_0$, then $(p(t)x'_0(t))' + \lambda_0 f(t, x_0(t)) = 0$ for all $t \in [0,1]$. In view of (H2), we have

$$-\frac{1}{\lambda_0}(p(t)x'_0(t))' = f(t,x_0(t)) \le -\frac{1}{\lambda_0}b_1|(p(t)x'_0(t))'| + b_2x_0(t) + b_3.$$

Hence,

$$0 \le -b_1 \int_0^1 |(p(t)x_0'(t))'| dt + \lambda_0 b_2 \int_0^1 x_0(t) dt + \lambda_0 b_3,$$

which gives

$$\int_{0}^{1} |(p(t)x_{0}'(t))'| dt \le \frac{b_{2}}{b_{1}} \int_{0}^{1} x_{0}(t) dt + \frac{b_{3}}{b_{1}}.$$
(3.4)

Similarly, from (H2), we also obtain

$$\int_{0}^{1} x_{0}(t)dt \le \frac{c_{2}}{c_{1}}.$$
(3.5)

On the other hand,

$$x_{0}(t) = \int_{0}^{1} x_{0}(t)dt + \int_{0}^{1} k(t,s)(p(s)x_{0}'(s))'ds$$

$$\leq \int_{0}^{1} x_{0}(t)dt + \int_{0}^{1} |k(t,s)| |(p(s)x_{0}'(s))'|ds.$$
(3.6)

From (3.4), (3.5) and (3.6), we have

$$B = ||x_0|| \le \frac{c_2}{c_1} + 3\left(\frac{b_2c_2}{b_1c_1} + \frac{b_3}{b_1}\right) \int_0^1 \frac{1+s}{p(s)} ds,$$

which contradicts (H2).

To prove (A5), consider $x \in \ker L \cap \overline{\Omega}_2$. Then $x(t) \equiv c$ on [0, 1]. Let

$$H(c,\lambda) = c - \lambda |c| - \lambda \int_0^1 f(s,|c|) ds$$

for $c \in [-B, B]$ and $\lambda \in [0, 1]$. It is easy to show that $0 = H(c, \lambda)$ implies $c \ge 0$. Suppose $0 = H(B, \lambda)$ for some $\lambda \in (0, 1]$. Then, (H2) leads to

$$0 \le B(1-\lambda) = \lambda \int_0^1 f(s, B) ds \le \lambda(-c_1 B + c_2) < 0$$

which is a contradiction. In addition, if $\lambda = 0$, then B = 0, which is impossible. Thus, $H(x, \lambda) \neq 0$ for $x \in \ker L \cap \partial \Omega_2$, $\lambda \in [0, 1]$. As a result,

$$\deg\{H(\cdot,1), \ker L \cap \Omega_2, 0\} = \deg\{H(\cdot,0), \ker L \cap \Omega_2, 0\}.$$

However,

$$\deg\{H(\cdot,0), \ker L \cap \Omega_2, 0\} = \deg\{I, \ker L \cap \Omega_2, 0\} = 1$$

Then

 $\deg\{[I - (P + JQN)\gamma]_{\ker L}, \ker L \cap \Omega_2, 0\} = \deg\{H(\cdot, 1), \ker L \cap \Omega_2, 0\} \neq 0.$ Next, we prove (A8). Let $x \in \overline{\Omega}_2 \setminus \Omega_1$ and $t \in [0, 1]$,

$$\begin{split} (\Psi_{\gamma}x)(t) &= \int_{0}^{1} |x(s)| ds + \int_{0}^{1} f(s, |x(s)|) ds \\ &+ \int_{0}^{1} k(t, s) [f(s, |x(s)|) - \int_{0}^{1} f(\tau, |x(\tau)|) d\tau] ds \\ &= \int_{0}^{1} |x(s)| ds + \int_{0}^{1} G(t, s) f(s, |x(s)|) ds \\ &\geq \int_{0}^{1} (1 - \kappa G(t, s)) |x(s)| ds \geq 0. \end{split}$$

Hence, $\Psi_{\gamma}(\overline{\Omega}_2 \setminus \Omega_1) \subset C$; i.e. (A8) holds.

Since for $x \in \partial \Omega_2$,

$$(P + JQN)\gamma x = \int_0^1 |x(s)|ds + \int_0^1 f(s, |x(s)|)ds$$
$$\geq \int_0^1 (1 - \kappa)|x(s)|ds \ge 0.$$

Thus, $(P + JQN)\gamma x \subset C$ for $x \in \partial \Omega_2$, (A7) holds.

It remains to verify (A6). Let $u_0(t) \equiv 1$ on [0,1]. Then $u_0 \in C \setminus \{0\}$, $C(u_0) = \{x \in C : x(t) > 0$ on $[0,1]\}$ and we can take $\sigma(u_0) = 1$. Let $x \in C(u_0) \cap \partial \Omega_1$. Then x(t) > 0 on [0,1], $0 < ||x|| \le b$ and $x(t) \ge \delta ||x||$ on [0,1]. For every $x \in C(u_0) \cap \partial \Omega_1$, by (H3), we have

$$\begin{split} (\Psi x)(t_0) &= \int_0^1 x(s)ds + \int_0^1 G(t_0,s)f(s,x(s))ds \\ &\geq \delta \|x\| + \int_0^1 G(t_0,s)q(s)h(s,x(s))ds \\ &= \delta \|x\| + \int_0^1 G(t_0,s)q(s)\frac{h(s,x(s))}{x^{\rho}(s)}x^{\rho}(s)ds \\ &\geq \delta \|x\| + \delta^{\rho} \|x\|^{\rho} \int_0^1 G(t_0,s)q(s)\frac{h(s,b)}{b^{\rho}}ds \\ &= \delta \|x\| + \delta^{\rho} \|x\| \cdot \frac{b^{1-\rho}}{\|x\|^{1-\rho}} \int_0^1 G(t_0,s)q(s)\frac{h(s,b)}{b}ds \\ &\geq \delta \|x\| + \delta^{\rho} \|x\| \int_0^1 G(t_0,s)q(s)\frac{h(s,b)}{b}ds \geq \|x\|. \end{split}$$

Thus, $||x|| \leq \sigma(u_0) ||\Psi x||$ for all $x \in C(u_0) \cap \partial \Omega_1$.

By Theorem 2.2, the BVP (1.1)-(1.2) has a positive solution x^* on [0, 1] with $b \leq ||x^*|| \leq B$. This completes the proof.

Remark 3.3. Note that with the projection P(x) = x(0), conditions (A7) and (A8) of Theorem 2.2 are no longer satisfied.

6

EJDE-2011/11

To illustrate how our main result can be used in practice, we present here an example.

Example. Consider the problem

$$(e^{54t}(1+t)x'(t))' + f(t,x(t)) = 0, \quad t \in (0,1),$$

$$x'(0) = 2e^{54}x'(1), \quad x(1) = \int_0^1 2sx(s)ds.$$

(3.7)

Corresponding to (1.1)-(1.2), we have

$$p(t) = e^{54t}(1+t), \quad g(t) = 2t,$$

$$f(t,x) = \begin{cases} \sin(\pi x/2), & (t,x) \in [0,1] \times (-\infty,3), \\ 2-x, & (t,x) \in [0,1] \times [3,+\infty). \end{cases}$$

When $\kappa = 1/2$, choose $c_1 = 1$, $c_2 = 3$, $b_1 = 1/2$, $b_2 = 3/2$, $b_3 = 9/2$, B = 4 and b = 1/2, $t_0 = 0$, $\rho = 1$, $\delta = 1/2$, q(t) = 1-t, $h(t, x) = \sin(\pi x/2)$. We can check that all the conditions of Theorem 3.2 are satisfied, then the BVP (3.7) has a positive solution on [0, 1].

References

- [1] K. Deimling; Nonlinear Functional Analysis. New York, 1985.
- [2] R. E. Gaines and J. Santanilla; A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations. Rocky Mountain. J. Math., 12 (1982) 669-678.
- [3] W. Ge; Boundary value problems for ordinary nonlinear differential equations, Science Press, Beijing, 2007.
- [4] D. Guo and V. Lakshmikantham; Nonlinear Problems in Abstract Cones. New York, 1988.
- [5] X. Han; Positive solutions for a three-point boundary value problem at resonance, J. Math. Anal. Appl., 336 (2007), 556-568.
- [6] G. Infante and M. Zima; Positive solutions of multi-point boundary value problems at resonance, Nonlinear Analysis, 69 (2008), No. 8, 2458-2465.
- [7] N. Kosmatov; A multi-point boundary value problem with two critical conditions, Nonlinear Anal., 65 (2006), 622-633.
- [8] J. Mawhin; Topological degree methods in nonlinear boundary value problems, in NSFCBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.
- D. O'Regan and M. Zima; Leggett-Williams norm-type theorems for coincidences, Arch. Math., 87 (2006), 233-244.
- [10] W. V. Petryshyn; On the solvability of $x \in Tx + \lambda Fx$ in quasinormal cones with T and F k-set contractive, Nonlinear Anal., 5 (1981), 585-591.
- [11] A. J. Yang; An extension of Leggett-Williams norm-type theorem for coincidences and its applications Topological Methods in Nonlinear Analysis, in press.
- [12] A. Yang and W. Ge; Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system, Boundary Value Problems, 2008, 437-453.
- [13] A. Yang and H. Wang; Positive solutions for higher-order nonlinear fractional differential equation with integral boundary condition, E. J. Qualitative Theory of Diff. Equ., 1 (2011), 1-15.

Addendum posted on March 14, 2011

In response to comments from a reader, we want to make the following corrections:

Page 2, Line 9: Delete the last sentence in the introduction: "Moreover, ... by O'Regan and Zima [9]". Then insert the following paragraph:

Using the Legget-Williams norm-type theorem for coincidences, which is a tool introduced by O'Regan and Zima [9], Infante and Zima [6] studied the multi-point boundary-value problem

$$\begin{aligned} x''(t) &= f(t, x(t)) = 0, \\ x'0) &= 0, \quad x(1) = \sum_{i=1}^{m-2} \alpha_i x(\eta_i) \,. \end{aligned}$$

Inspired by the work in [6, 9], we follow their steps, use the Legget-Williams normtype theorem, and quote some of their results.

Page 6, Line -3: Replace $b \leq ||x^*|| \leq B$ by $||x^*|| \leq B$.

The authors want to thank the anonymous reader for the suggestions.

AIJUN YANG

College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China

E-mail address: yangaij2004@163.com

Bo Sun

School of Applied Mathematics, Central University of Finance and Economics, Beijing, 100081, China

 $E\text{-}mail\ address:\ \texttt{sunbo19830328@163.com}$

Weigao Ge

Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081, China

 $E\text{-}mail\ address:\ \texttt{gew@bit.edu.cn}$