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GLOBAL CLASSICAL SOLUTIONS FOR REACTION-DIFFUSION
SYSTEMS WITH A TRIANGULAR MATRIX OF DIFFUSION

COEFFICIENTS

BELGACEM REBIAI

Abstract. The goal of this article is to study the existence of classical solu-
tions global in time for reaction-diffusion systems with strong coupling in the
diffusion and with exponential growth (or without any growth) conditions on
the nonlinear reactive terms. This extends some similar results in the case
of a diagonal diffusion-operator associated with nonlinearities preserving the
positivity and the total mass of the solutions or for which the total mass is a
priori bounded.

1. Introduction

In this study, we are interested in the existence of classical global solutions to
the reaction-diffusion system

∂u

∂t
− a∆u = λ− f(u, v)− µu in (0,+∞)× Ω, (1.1)

∂v

∂t
− c∆u− d∆v = f(u, v)− µv in (0,+∞)× Ω, (1.2)

where Ω is an open bounded domain of class C1 in Rn with boundary ∂Ω, the
constants a, c, d, λ, µ are such that

(A1) a > 0, c > 0, d > a, 2
√
ad > c, λ ≥ 0 and µ > 0,

and the function f is a nonnegative and continuously differentiable on [0,+∞) such
that

(A2) f(0, η) = 0 and f(ξ, η) ≥ 0, with f(ξ, c
d−a (λ

µ − ξ)) = 0 when a+ c ≥ d,
(A3) f(ξ, η) ≤ Cϕ(ξ)ηreαη for some constants C > 0 and α > 0 when a+ c < d,

where r is a positive constant such that r ≥ 1 and ϕ is any nonnegative
continuously differentiable function on [0,+∞) such that ϕ(0) = 0.

We assume that the solutions of (1.1)–(1.2) also satisfy: the boundary conditions

∂u

∂ν
=
∂v

∂ν
= 0 on (0,+∞)× ∂Ω, (1.3)
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where ∂
∂ν is the outward normal derivative to ∂Ω; and the initial conditions

u(0, x) = u0(x), v(0, x) = v0(x) in Ω, (1.4)

where u0, v0 are nonnegative and bounded functions satisfying the following re-
strictions:

‖u0‖∞ ≤ λ

µ
<

8ad
αn(a− d)2

, when a+ c < d,

‖u0‖∞ ≤ λ

µ
, when a+ c ≥ d,

(1.5)

v0 ≥
c

d− a
(
λ

µ
− u0). (1.6)

Problem (1.1)–(1.4) may be viewed as a diffusive epidemic model where u and v
represent the nondimensional population densities of susceptibles and infectives,
respectively. This problem can be represent a model describing the spread of an
infection disease (such as AIDS for instance) within a population assumed to be
divided into the susceptible and infective classes as precised (for further motivation
see for instance [6, 7, 10] and the references therein).

When λ = µ = 0, Kouachi and Youkana [18] generalized the method of Haraux
and Youkana [12] with the reaction term f(ξ, η) requiring the condition

lim
η→+∞

ln(1 + f(ξ, η))
η

< α∗, for any ξ ≥ 0,

with

α∗ =
2ad

n(a− d)2‖u0‖∞
min{1, a− d

c
},

where a, c and d satisfy a > 0, c > 0, d > 0 and a > d. This condition reflects the
weak exponential growth of the function f .
Kanel and Kirane [15] proved the existence of a classical global solutions for a cou-
pled reaction-diffusion system without any conditions on the growth of the function
f under the following conditions:

• a > d and c ≥ d− a > 0,
• f(ξ, η) = F (ξ)G(η).

Later they improved their results in [16] where they extended the result of Herrero
et al [14] to the case of a bounded domain under the following assumptions:

• a < d and 0 ≤ c < d− a,
• f(ξ, η) ≤ Cϕ(ξ)eαη, for some C > 0, α > 0 and any nonnegative continuous

and locally Lipschitzian function ϕ on R such that ϕ(0) = 0.
In the case, where λ ≥ 0 and µ > 0, Abdelmalek and Youkana [1] proved the

global existence of nonnegative classical solutions for the nonlinearities of weakly
exponential growth under the following assumptions:

• a > 0, c > 0, d− a ≥ c, and 2
√
ad > c,

• ‖u0‖∞ ≤ λ/µ.
We note that solving problem (1.1)–(1.4) is quite difficult. As a consequence

of the blow-up examples found in [23], we can prove that there is blow-up of the
solutions in finite time for such triangular systems even though the initial data are
regular, the solutions are positive and the nonlinear terms are negative, a structure
that ensured the global existence in the diagonal case.
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The aim of this article is to prove the existence of global classical solutions to
(1.1)–(1.4) without any restrictions on the growth of the function f when a+ c ≥ d
and with possibility of exponential growth for this function when a+c < d. For this
purpose, we demonstrate that for any initial conditions satisfying (1.5) and (1.6),
the problem (1.1)–(1.4) is equivalent to a problem for which the global existence
follows from a similar Lyapunov functionals appeared in [12, 4, 18, 24] under the
assumptions (A1)–(A3).

2. Existence of local and positive solutions

The study of existence and uniqueness of local solutions (u, v) of (1.1)–(1.4)
follows from the basic existence theory for parabolic semilinear equations (see, e.g.,
[3, 9, 13, 22]). As a consequence, for any initial data in C(Ω) or L∞(Ω) there exists
a T ∗ ∈ (0,+∞] such that (1.1)–(1.4) has a unique classical solution on [0, T ∗)×Ω.
Furthermore, if T ∗ < +∞, then

lim
t↑T∗

(
‖u(t)‖∞ + ‖v(t)‖∞

)
= +∞.

Therefore, if there exists a positive constant C such that

‖u(t)‖∞ + ‖v(t)‖∞ ≤ C ∀t ∈ [0, T ∗),

then T ∗ = +∞.
Since the initial conditions (1.5) and (1.6) are satisfied under assumptions (A1)

and (A3), the next lemma says that the classical solution of (1.1)–(1.4) on [0, T ∗)×Ω
remains nonnegative on [0, T ∗)× Ω.

Lemma 2.1. Assume (A1), (A3). Then for any initial conditions u0 and v0 satisfy-
ing (1.5) and (1.6), the classical solution (u, v) of problem (1.1)–(1.4) on [0, T ∗)×Ω
satisfies

0 ≤ u ≤ λ

µ
, v ≥ c

d− a
(
λ

µ
− u).

Proof. In system (1.1)-(1.2) the change of variables

w = v − c

d− a
(
λ

µ
− u),

F (u,w) = f(u,w +
c

d− a
(
λ

µ
− u))

leads to the system

∂u

∂t
− a∆u = λ− F (u,w)− µu in (0,+∞)× Ω, (2.1)

∂w

∂t
− d∆w =

d− a− c

d− a
F (u,w)− µw in (0,+∞)× Ω, (2.2)

with boundary conditions

∂u

∂ν
=
∂w

∂ν
= 0, on (0,+∞)× ∂Ω, (2.3)

and initial conditions

u(0, x) = u0(x), w(0, x) = w0(x) in Ω, (2.4)
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If we assume (A1) and (A3), then a simple application of comparison theorem
[26, Theorem 10.1] to system (2.1)-(2.2) implies that for any initial conditions u0

and v0 satisfying (1.5) and (1.6), we have

0 ≤ u(t, x) ≤ λ

µ
, v(t, x) ≥ c

d− a
(
λ

µ
− u(t, x)) ∀(t, x) ∈ [0, T ∗)× Ω.

�

3. Existence of global solutions

It is clear that to prove the existence of global solutions for problem (1.1)–(1.4)
we need to prove it for problem (2.1)-(2.4).

At first, when a + c ≥ d, the local classical solutions of (1.1)–(1.4) may be
extended as a classical and uniformly bounded solutions on [0,+∞) × Ω for any
nonnegative initial data u0 and v0 satisfying (1.5) and (1.6) without any restrictions
on the growth of the function f under the assumptions (A1) and (A2). Indeed, since
u, w and f are nonnegative, then from (A1) and (A2), we have by the comparison
theorem that

0 ≤ u(t, x) ≤ λ

µ
, 0 ≤ w(t, x) ≤ ‖w0‖∞ ∀(t, x) ∈ [0, T ∗)× Ω.

Now, the main result for the case a+ c < d is stated in the following theorem.

Theorem 3.1. Under assumptions (A1)-(A3) and restrictions (1.5) and (1.6), the
solutions of problem (1.1)–(1.4) are global and uniformly bounded on [0,+∞)× Ω.

Since 0 ≤ u ≤ λ
µ , then the problem of global existence reduces to establish

the uniform boundedness of w on [0, T ∗). By Lp-regularity theory for parabolic
operator (see, e.g., [19, 25]) it follows that it is sufficient to derive a uniform estimate
of ‖ρF (u,w) − µw‖p on [0, T ∗) for some p > n

2 where ρ = d−a−c
d−a . The proof of

Theorem 3.1 is based on the following key proposition.

Proposition 3.1. Suppose (A1)-(A3), (1.5) and (1.6). For every classical solution
(u,w) of (2.1)-(2.4) on [0, T ∗)× Ω, consider the function

L(t) =
∫

Ω

[δu+ (M − u)−γ(w + 1)βpeαpw](t, x)dx,

where α, β, γ, δ, p and M are positive constants such that
λ

µ
< M <

2γ
αn

, γ < γ =
4ad

(a− d)2
, β = max{r, γ(1 + γ)

p(γ − γ)
}. (3.1)

Then, there exists δ > 0, σ > 0 and p > n
2 such that

d

dt
L(t) ≤ −µL(t) + σ ∀t ∈ [0, T ∗). (3.2)

Before proving this proposition we need the following lemmas.

Lemma 3.1. Let (u,w) be a solution of (2.1)-(2.4) on [0, T ∗) × Ω, then under
assumption (A3), we have∫

Ω

F (u(t, x), w(t, x))dx ≤ λ|Ω| − d

dt

∫
Ω

u(t, x)dx. (3.3)

Proof. Since u is a nonnegative function, it suffices to integrate both sides of (2.1)
on Ω, to obtain (3.3), which competes the proof. �
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Lemma 3.2. Let φ and ψ be two nonnegative continuous functions on [0,+∞)
with φ(η) goes to +∞ as η → +∞. Then there exists a positive constant A such
that (

1− φ(η)
)
ψ(η) ≤ A ∀η ≥ 0. (3.4)

Proof. Since φ(η) goes to +∞ as η → +∞, there exists η0 > 0 such that for all
η > η0, we obtain

(1− φ(η))ψ(η) ≤ 0.
On the other hand, if η is in the compact interval [0, η0], then the continuous
function

η 7−→
(
1− φ(η)

)
ψ(η)

is bounded. So that (3.4) immediately follows. �

Proof of Proposition 3.1. Differentiating L with respect to t, one obtains
d

dt
L(t) = δ

d

dt

∫
Ω

u(t, x)dx+ I + J, (3.5)

where

I =
∫

Ω

(
aγ(M − u)−γ−1(w + 1)βpeαpw∆u

+ dp(M − u)−γ [α(w + 1)βp + β(w + 1)βp−1]eαpw∆w
)
dx,

and

J =
∫

Ω

µ
(
γ(M − u)−1(

λ

µ
− u)− p[α+ β(w + 1)−1]w

)
× (M − u)−γ(w + 1)βpeαpwdx

+
∫

Ω

(
ρp(M − u)[α+ β(w + 1)−1]− γ

)
× F (u,w)(M − u)−γ−1(w + 1)βpeαpwdx.

Using Green’s formula in the first integral and taking into account (2.3), we obtain

I ≤ −
∫

Ω

Q(∇u,∇w)(M − u)−γ−2(w + 1)βpeαpwdx,

where

Q(∇u,∇w) = aγ(1 + γ)|∇u|2 + γp(a+ b)(M − u)[α+ β(w + 1)−1]∇u∇w
+ dp(M − u)2[α2p+ 2αβp(w + 1)−1 + β(βp− 1)(w + 1)−2]|∇w|2,

is a quadratic form with respect to ∇u and ∇w.
The discriminant of Q is given by

D = γp(d− a)2(M − u)2
(
β[βp(γ − γ) + γ(1 + γ)](w + 1)−2

+ α2p(γ − γ)[α+ 2β(w + 1)−1]
)
.

From conditions (3.1), we have D ≤ 0, then we obtain Q(∇u,∇v) ≥ 0 and conse-
quently

I ≤ 0. (3.6)
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Concerning the term J , since 0 ≤ u ≤ λ
µ < M , we observe that

J ≤
∫

Ω

µ
(
γ − p[α+ β(w + 1)−1]w

)
(M − u)−γ(w + 1)βpeαpwdx

+(M − λ

µ
)−γ−1

∫
Ω

(
pM [α+ β(w + 1)−1]− γ

)
F (u,w)(w + 1)βpeαpwdx,

or

J ≤ −µL(t) + λδ|Ω|

+ µ(M − λ

µ
)−γ

∫
Ω

(
γ + 1− p[α+ β(w + 1)−1]w

)
(w + 1)βpeαpwdx

+ (M − λ

µ
)−γ−1

∫
Ω

[βpM − (γ − αpM)(w + 1)]F (u,w)(w + 1)βp−1eαpwdx.

From (3.1), we obtain n
2 < γ

αM . Then we can choose p such that n
2 < p < γ

αM .
Using Lemma 3.2, we get δ1 > 0 and δ2 > 0 such that

J ≤ −µL(t) + (λδ + µδ1(M − λ

µ
)−γ)|Ω|+ δ2(M − λ

µ
)−γ−1

∫
Ω

F (u,w)dx.

Let δ = δ2(M − λ
µ )−γ−1 and using Lemma 3.1, we obtain

J ≤ −µL(t) + (2λδ + µδ1(M − λ

µ
)−γ)|Ω| − δ

d

dt

∫
Ω

u(t, x)dx. (3.7)

From (3.6) and (3.7), we conclude that

d

dt
L(t) ≤ −µL(t) + σ,

where σ = (2λδ + µδ1(M − λ
µ )−γ)|Ω|. This concludes the proof. �

Proof of Theorem 3.1. Let p be the same as in Proposition 3.1. Since M−γ ≤
(M − u)−γ , from (3.1) and (A3) it follows that

‖w‖p
p =

∫
Ω

|w|pdx ≤MγL(t),

‖F (u,w)‖p
p =

∫
Ω

|F (u,w)|pdx ≤MγKpL(t),

where
K = max

0≤ξ≤λ
µ

ϕ(ξ).

By (3.2), it is seen that there exists a positive constant B such that

L(t) ≤ B ∀t ∈ [0, T ∗),

and consequently

‖w‖p
p ≤ BMγ ,

‖F (u,w)‖p
p ≤ BMγKp.

Hence ρF (u(t, .), w(t, .))−µw(t, .) is uniformly bounded in Lp(Ω) for all t ∈ [0, T ∗)
with p > n

2 . Using the regularity results for solutions of parabolic equations in
[19, 25], we conclude that the solutions of the problem (1.1)–(1.4) are uniformly
bounded on [0,+∞)× Ω. �
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